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Abstract The context for geographic research has

shifted from a data-scarce to a data-rich environment,

in which the most fundamental changes are not just the

volume of data, but the variety and the velocity at

which we can capture georeferenced data; trends often

associated with the concept of Big Data. A data-driven

geography may be emerging in response to the wealth

of georeferenced data flowing from sensors and people

in the environment. Although this may seem revolu-

tionary, in fact it may be better described as evolu-

tionary. Some of the issues raised by data-driven

geography have in fact been longstanding issues in

geographic research, namely, large data volumes,

dealing with populations and messy data, and tensions

between idiographic versus nomothetic knowledge.

The belief that spatial context matters is a major theme

in geographic thought and a major motivation behind

approaches such as time geography, disaggregate

spatial statistics and GIScience. There is potential to

use Big Data to inform both geographic knowledge-

discovery and spatial modeling. However, there are

challenges, such as how to formalize geographic

knowledge to clean data and to ignore spurious

patterns, and how to build data-driven models that

are both true and understandable.

Keywords Big data � GIScience � Spatial statistics �
Geographic knowledge discovery � Geographic
thought � Time geography

Introduction

A great deal of attention is being paid to the potential

impact of data-driven methods on the sciences. The

ease of collecting, storing, and processing digital data

may be leading to what some are calling the fourth

paradigm of science, following the millennia-old

traditional of empirical science describing natural

phenomena, the centuries-old tradition of theoretical

science using models and generalization, and the

decades-old traditional of computational science sim-

ulating complex systems. Instead of looking through

telescopes and microscopes, researchers are increas-

ingly interrogating the world through large-scale,

complex instruments and systems that relay observa-

tions to large databases to be processed and stored as

information and knowledge in computers (Hey et al.

2009).

This fundamental change in the nature of the data

available to researchers is leading to what some call

Big Data. Big Data refer to data that outstrip our
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capabilities to analyze. This has three dimensions, the

so-called ‘‘three Vs’’: (1) volume—the amount of data

that can be collected and stored; (2) velocity—the

speed at which data can be captured; and (3) variety—

encompassing both structured (organized and stored in

tables and relations) and unstructured (text, imagery)

data (Dumbill 2012). Some of these data are generated

from massive simulations of complex systems such as

cities (e.g., TRANSIMs; see Cetin et al. 2002), but a

large portion of the flood is from sensors and software

that digitize and store a broad spectrum of social,

economic, political, and environmental patterns and

processes (Graham and Shelton 2013; Kitchin 2014).

Sources of geographically (and often temporally)

referenced data include location-aware technologies

such as the Global Positioning System and mobile

phones; in situ sensors carried by individuals in

phones, attached to vehicles, and embedded in infra-

structure; remote sensors carried by airborne and

satellite platforms; radiofrequency identification

(RFID) tags attached to objects; and georeferenced

social media (Miller 2007, 2010; Sui and Goodchild

2011; Townsend 2013).

Yet despite the enthusiasm over Big Data and data-

driven methods, the role it can play in scholarly

research, and specifically research in geography may

not be immediately apparent. Are theory and expla-

nation archaic when we can measure and describe so

much, so quickly? Does data velocity really matter in

research, with its traditions of careful reflection? Can

the obvious problems associated with variety—lack of

quality control, lack of rigorous sampling design—be

overcome? Can we make valid generalizations from

ongoing, serendipitous (instead of carefully designed

and instrumented) data collection? In short, can Big

Data and data-driven methods lead to significant

discoveries in geographic research? Or will the

research community continue to rely on what for the

purposes of this paper we will term Scarce Data: the

products of public-sector statistical programs that

have long provided the major input to research in

quantitative human geography?

Our purpose in this paper is to explore the impli-

cations of these tensions—theory-driven versus data-

driven research, prediction versus discovery, law-

seeking versus description-seeking—for research in

geography. We anticipate that geography will provide

a distinct context for several reasons: the specific issues

associated with location, the integration of the social

and the environmental, and the existence within the

discipline of traditions with very different approaches

to research. Moreover, although data-driven geogra-

phy may seem revolutionary, in fact it may be better

described as evolutionary since its challenges have

long been themes in the history of geographic thought

and the development of geographical techniques.

The next section of this paper discusses the

concepts of Big Data and data-driven geography,

addressing the question of what is special about the

new flood of georeferenced data. The ‘‘Data-driven

geography: challenges’’ section of this paper dis-

cusses major challenges facing data-driven geogra-

phy; these include dealing with populations (not

samples), messy (not clean) data, and correlations

(not causality). The ‘‘Theory in data-driven geogra-

phy’’ section discusses the role of theory in data-

driven geography. ‘‘Approaches to data-driven geog-

raphy’’ identifies ways to incorporate Big Data into

geographic research. The final section concludes this

paper with a summary and some cautions on the

broader impacts of data-driven geography on society.

Big data and data-driven geography

Humanity’s current ability to acquire, process, share,

and analyze huge quantities of data is without prec-

edent in human history. It has led to the coining of such

terms as the ‘‘exaflood’’ and the metaphor of ‘‘drinking

from a firehose’’ (Sui et al. 2013; Waldrop 1990). It is

also led to the suggestion that we are entering a new,

fourth phase of science that will be driven not so much

by careful observation by individuals, or theory

development, or computational simulation, as by this

new abundance of digital data (Hey et al. 2009).

It is worth recognizing immediately, however, that

the firehose metaphor has a comparatively long history

in geography, and that the discipline is by no means

new to an abundance of voluminous data. The Landsat

program of satellite-based remote sensing began in the

early 1970s by acquiring data at rates that were well in

excess of the analytic capacities of the computational

systems of the time; subsequent improvements in

sensor resolution and the proliferation of military and

civilian satellites have meant that four decades later

data volumes continue to challenge even the most

powerful computational systems.
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Volume is clearly not the only characteristic that

distinguishes today’s data supply from that of previous

eras. Today, data are being collected from many

sources, including social media, crowd sourcing,

ground-based sensor networks, and surveillance cam-

eras, and our ability to integrate such data and draw

inferences has expanded along with the volume of the

supply. The phrase Big Data implies a world in which

predictions are made by mining data for patterns and

correlations among these new sources, and some very

compelling instances of surprisingly accurate predic-

tions have surfaced in the past few years with respect

to the results of the Eurovision song contest (O’Leary

2012), the stock market (Preis et al. 2013), and the flu

(Butler 2008). The theme of Big Data is often

associated not only with volume but with variety,

reflecting these multiple sources, and velocity, given

the speed with which such data can now be analyzed to

make predictions in close-to-real time.

Ubiquitous, ongoing data flows are a big deal

because they allow us to capture spatio-temporal

dynamics directly (rather than inferring them from

snapshots) and at multiple scales. The data are

collected on an ongoing basis, meaning that both

mundane and unplanned events can be captured. To

borrow Nassim Taleb’s metaphor for probable and

inconsequential versus improbable but consequential

events (Taleb 2007): we do not need to sort the white

swans from the black swans before collecting data: we

can measure all swans and then figure out later which

are white or black. White swans may also combine in

surprising ways to form black-swan events.

Big Data is leading to new approaches to research

methodology. Fotheringham (1998) defines geocom-

putation as quantitative spatial analysis where the

computer plays a pivotal role. The use of the computer

drives the form of the analysis rather than just being a

convenient vehicle: analysts design geocomputational

techniques with the computer in mind. Similarly, data

play a pivotal role in data-driven methods. From this

perspective data are not just a convenient way to

calibrate, validate, and test but rather the driving force

behind the analysis. Consequently, analysts design

data-driven techniques with data in mind–and not just

large volumes of data, but a wider spectrum of data

flowing at higher speeds from the world. In this sense

wemay indeed be entering a fourth scientific paradigm

where scientific methods are configured to satisfy data

rather than data configured to satisfy methods.

Data-driven geography: challenges

In Big Data: A Revolution That Will Transform How

We Live, Work, and Think, Mayer-Schonberger and

Cukier (2013) identify three main challenges of Big

Data in science: (1) populations, not samples; (2)

messy, not clean data, and; (3) correlations, not

causality. We discuss these three challenges for

geographic research in the following subsections.

Populations, not samples

Back when analysis was largely performed by hand

rather than by machines, dealing with large volumes of

data was impractical. Instead, researchers developed

methods for collecting representative samples and for

generalizing to inferences about the population from

which they were drawn. Random sampling was thus a

strategy for dealing with information overload in an

earlier era. In statistical programs such as theUSCensus

of Population it was also a means for controlling costs.

Random sampling works well, but it is fragile: it

works only as long as the sampling is representative. A

sampling rate of one in six (the rate previously used by

the US Bureau of the Census for its more elaborate

Long Form) may be adequate for some purposes, but

becomes increasingly problematic when analysis

focuses on comparatively rare subcategories. Random

sampling also requires a process for enumerating and

selecting from the population (a sampling frame),

which is problematic if enumeration is incomplete.

Sample data also has a lack of extensibility for

secondary uses. Because randomness is so critical, one

must carefully plan for sampling, and it may be

difficult to re-analyze the data for purposes other than

those for which it was collected (Mayer-Schonberger

and Cukier 2013).

In contrast, many of the new data sources consist of

populations, not samples: the ease of collecting,

storing, and processing digital data means that instead

of dealing with a small representation of the popula-

tion we can work with the entire population and thus

escape one of the constraints of the past. But one

problem with populations is that they are often self-

selected rather than sampled: for example, all people

who signed up for Facebook, all people who carry

smartphones, or all cars than happened to travel within

the City of London between 8 a.m.–11:00 a.m. on 2

September 2013. Geolocated tweets are an attractive
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source of information on current trends (e.g., Tsou

et al. 2013), but only a small fraction of tweets are

accurately geolocated using GPS. Since we do not

know the demographic characteristics of any of these

groups, it is impossible to generalize from them to any

larger populations from which they might have been

drawn.

Yet geographers have long had to contend with the

issues associated with samples and their parent

populations. Consider, for example, an analysis of

the relationship between people over 65 years old and

people registered as Republicans, the case studied by

Openshaw and Taylor in their seminal article on the

modifiable areal unit problem (Openshaw and Taylor

1979). The 99 counties of Iowa (their source of data)

are all of the counties that exist in Iowa. They are not

therefore a random sample of Iowa counties, or even a

representative sample of counties of the US, so the

methods of inferential statistics that assume random

and independent sampling are not applicable. In

remote sensing it is common to analyze all of the

pixels in a given scene; again, these are not a random

sample of any larger population.

However, the cases discussed above are where we

can be assured that the entire population of interest is

included: we are interested in all of the land cover in a

scene, or all of the people over 65 and Republicans in

Iowa. This is often not true with many new sources of

data. A challenge is how to identify the niches to

which monitored population data can be applied with

reasonable generality. This inverts the classic sam-

pling problemwhere we identify a question and collect

data to answer that question. Instead, we collect the

data and determine what questions we can answer.

Another issue concerns what people are volunteer-

ing when they volunteer geographic and other infor-

mation (Goodchild 2007). Social media such as

Facebook may have high penetration rates with

respect to population, but do not necessarily have

high penetration rates into peoples’ lives. Checking in

at an orchestra concert or lecture provides a noble

image that a person would like to promote, while

checking in at a bar at 10am is an image that a person

may be less keen to share. In the classic sociology text

The Presentation of Self in Everyday Life, Erving

Goffman uses theater as a metaphor and distinguishes

between stage and backstage behaviors, with stage

behaviors being consistent with the role people wish to

play in public life and backstage behaviors being

private actions that people wish to keep private

(Goffman 1959). While there are certainly cases of

over-sharing behavior (especially among celebrities)

we cannot be assured that the information people

volunteer is an accurate depiction of their complete

lives or just of the lives they wish to present to the

social sphere. Several geographic questions follow

from these observations. What is the geography of

stage versus backstage realms in a city or region? Does

this distribution vary by age, gender, socioeconomic

status, or culture? What do these imply for what we

can know about human spatial behavior?

In addition to selective volunteering of information

about their lives, there also may be selection biases in

the information people volunteer about environments.

Open Street Map (OSM) is often identified as a

successful crowdsourced mapping project: many cities

of theworld have beenmapped bypeople on a voluntary

basis to a remarkable degree of accuracy. However,

some regions get mapped quicker than others, such as

tourist locations, recreation areas, and affluent neigh-

borhoods, while locations of less interest to those who

participate in OSM (such as poorer neighborhoods)

receive less attention (Haklay 2010). While biases exist

in official, administrative maps (e.g., governments in

developing nations often do not map informal settle-

ments such as favelas), the biases in crowdsourcedmaps

are likely to be more subtle. Similarly, the rise of civic

hackingwhere citizens generate data, maps, and tools to

solve social problems tends to focus on the problems

that citizens with laptops, fast internet connections,

technical skills, and available time consider to be

important (Townsend 2013).

Messy, not clean

The new data sources are often messy, consisting of

data that are unstructured, collected with no quality

control, and frequently accompanied by no documen-

tation or metadata. There are at least two ways of

dealing with such messiness. On the one hand, we can

restrict our use of the data to tasks that do not attempt

to generalize or to make assumptions about quality.

Messy data can be useful in what one might term the

softer areas of science: initial exploration of study

areas, or the generation of hypotheses. Ethnography,

qualitative research, and investigations of Grounded

Theory (Glaser and Strauss 1967) often focus on using

interviews, text, and other sources to reveal what was
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otherwise not known or recognized, and in such

contexts the kinds of rigorous sampling and docu-

mentation associated with Scarce Data are largely

unnecessary. We discuss this option in greater detail

later in the paper.

On the other hand, we can attempt to clean and verify

the data, removing as much as possible of the messi-

ness, for use in traditional scientific knowledge con-

struction. Goodchild and Li (2012) discuss this

approach in the context of crowdsourced geographic

information. They note that traditional production of

geographic information has relied on multiple sources,

and on the expertise of cartographers and domain

scientists to assemble an integrated picture of the

landscape. For example, terrain information may be

compiled from photogrammetry, point measurements

of elevation, and historic sources; as a result of this

process of synthesis the published result may well be

more accurate than any of the original sources.

Goodchild and Li (2012) argue that that traditional

process of synthesis, which is largely hidden from

popular view and not apparent in the final result, will

become explicit and of critical importance in the new

world of Big Data. They identify three strategies for

cleaning and verifying messy data: (1) the crowd

solution; (2) the social solution; and (3) the knowledge

solution. The crowd solution is based on Linus’ Law,

named in honor of the developer of Linux, Linus

Torvalds: ‘‘Given enough eyeballs, all bugs are

shallow’’ (Raymond 2001). In other words, the more

people who can access and review your code, the

greater the accuracy of the final product. Geographic

facts that can be synthesized from multiple original

reports are likely to be more accurate than single

reports. This is of course the strategy used by

Wikipedia and its analogs: open contributions and

open editing are evidently capable of producing

reasonably accurate results when assisted by various

automated editing procedures.

In the geographic case, however, several issues

arise that limit the success of the crowd solution.

Reports of events at some location may be difficult to

compare if the means used to specify location (place

names, street address, GPS) are uncertain, and if the

means used to describe the event is ambiguous.

Geographic facts may be obscure, such as the names

of mountains in remote parts of the world, and the

crowd may therefore have little interest or ability to

edit errors.

Goodchild and Li (2012) describe the social

solution as implementing a hierarchical structure of

volunteer moderators and gatekeepers. Individuals are

nominated to roles in the hierarchy based on their track

record of activity and the accuracy of their contribu-

tions. Volunteered facts that appear questionable or

contestable are referred up the hierarchy, to be

accepted, queried, or rejected as appropriate. Schemes

such as this have been implemented by many projects,

including OSM and Wikipedia. Their major disad-

vantage is speed: since humans are involved, the

solution is best suited to applications where time is not

critical.

The third, the knowledge solution, asks how one

might know if a purported fact is false, or likely to be

false. Spelling errors andmistakes of syntax are simple

indicators which all of us use to triage malicious email.

In the geographic case, one can ask whether a

purported fact is consistent with what is already

known about the geographic world, in terms both of

facts and theories. Moreover such checks of consis-

tency can potentially be automated, allowing triage to

occur in close-to real time; this approach has been

implemented, although on a somewhat unstructured

basis, by companies that daily receive thousands of

volunteered corrections to their geographic databases.

A purported fact can deviate from established

geographic knowledge in either syntax or semantics,

or both. Syntax refers to the rules by which the world is

constructed, while semantics refers to the meaning of

those facts. Syntactical knowledge is often easier to

check than semantic knowledge. For example, Fig. 1

Fig. 1 Syntactical geographic knowledge: Highway on-ramp

feature geometry
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illustrates an example of syntactical geographic

knowledge. We know from engineering specifications

that an on-ramp can only intersect a freeway at a small

angle (typically 30 degrees or less). If a road-network

database appears to have on-ramp intersections of[30

degrees we know that the data are likely to be wrong;

in the case of Fig. 1, many of the apparent intersec-

tions of the light-blue segments are more likely to be

overpasses or underpasses. Such errors have been

termed errors of logical consistency in the literature of

geographic information science (e.g., Guptill and

Morrison 1995).

In contrast, Fig. 2 illustrates semantic geographic

knowledge: a photograph of a lake that has been linked

to the Google Earth map of The Ohio State University

campus. However, this photograph seems to be located

incorrectly: we recognize the scene as Mirror Lake, a

campus icon to the southeast of the purported location

indicated on the map. The purported location must be

wrong, but can we be sure? Perhaps the university

movedMirror Lake to make way for a new Geography

building? Or perhapsMirror Lake was so popular that

the university created a mirror Mirror Lake to handle

the overflow? We cannot immediately and with

complete confidence dismiss this empirical fact with-

out additional investigation since it does not violate

any known rules by which the world is constructed:

there is nothing preventing Mirror Lake from being

moved or mirrored. Of course, there are some

semantic facts that can be dismissed confidently as

absurd—one would not expect to see a lake scene on

the top of Mt. Everest or in the Sahara Desert.

Nevertheless, there is no firm line between clearly

absurd and non-absurd semantic facts—e.g., one

would not expect to see Venice or New York City in

the Mojave Desert, but Las Vegas certainly exists.

A major task for the knowledge solution is formal-

izing knowledge to support automated triage of

asserted facts and automated data fusion. Knowledge

can be derived empirically or as predictions from

theories, models, and simulations. In the latter case,

we may be looking for data at variance with predic-

tions as part of the knowledge-discovery and con-

struction processes.

There are at least two major challenges to

formalizing geographic knowledge. First, geographic

concepts such as neighborhood, region, the Midwest,

and developing nations can be vague, fluid, and

contested. A second challenge is the development of

explicit, formal, and computable representations of

geographic knowledge. Much geographic knowledge

is buried in formal theories, models, and equations

that must be solved or processed, or in informal

language that must be interpreted. In contrast,

knowledge-discovery techniques require explicit

representations such as rules, hierarchies, and con-

cept networks that can be accessed directly without

processing (Miller 2010).

Fig. 2 Semantic

geographic knowledge:

Where is Mirror Lake?

(Google Earth; last accessed

24 September 2013 10:00am

EDT)
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Correlations, not causality

Traditionally, scholarly research concerns itself with

knowing why something occurs. Correlations alone

are not sufficient, because the existence of correlation

does not imply that change in either variable causes

change in the other. In the correlation explored by

Openshaw and Taylor cited earlier (Openshaw and

Taylor 1979), the existence of a correlation between

the number of registered Republicans in a county and

the number of people aged 65 and over does not imply

that either one has a causal effect on the other. Over the

years, science has adopted pejorative phrases to

describe research that searches for correlations with-

out concern for causality or explanation: ‘‘curve-

fitting’’ comes to mind. Nevertheless correlations may

be useful for prediction, especially if one is willing to

assume that an observed correlation can be general-

ized beyond the specific circumstances in which it is

observed.

But while they may be sufficient, explanation and

causality are not necessary conditions for scientific

research: much research, especially in such areas as

spatial analysis, is concerned with advancing method,

whether its eventual use is for explanation or for

prediction. The literature of geographic information

science is full of tools that have been designed not for

finding explanations but for more mundane activities

such as detecting patterns, or massaging data for

visualization. Such tools are clearly valuable in an era

of data-driven science, where questions of ‘‘why’’ may

not be as important. In the next section we extend this

argument by taking up the broader question of the role

of theory in data-driven geography.

Theory in data-driven geography

In a widely discussed article published in Wired

magazine, Anderson called for the end of science as

we know it, claiming that the data deluge is making the

scientific method obsolete (Anderson 2008). Using

physics and biology as examples, he argued that as

science has advanced it has become apparent that

theories and models are caricatures of a deeper

underlying reality that cannot be easily explained.

However, explanation is not required for continuing

progress: as Anderson states ‘‘Correlation supersedes

causation, and science can advance even without

coherent models, unified theories, or really any

mechanistic explanation at all.’’

Duncan Watts makes a similar argument about

theory in the social sciences, stating that unprece-

dented volumes of social data have the potential to

revolutionize our understanding of society, but this

understanding will not be in the form of general laws

of social science or cause-and-effect social relation-

ships. Although Watts suggests the limitations of

theory in the era of data-driven science, he does not

call for the end of theory but rather for a more modest

type of theory that would include general propositions

(such as what interventions work for particular social

problems) or how more obvious social facts fit

together to generate less obvious outcomes. Watts

links this approach to calls by sociologist Robert

Merton in the mid-twentieth century for middle-range

theories: theories that address identifiable social

phenomena instead of abstract entities such as the

entire social system (Watts 2011). Middle-range

theories are empirically grounded: they are based in

observations, and serve to derive hypotheses that can

be investigated. However, they are not endpoints:

rather, they are temporary stepping-stones to general

conceptual schemes that can encompass multiple

middle-range theories (Merton 1967).

Data-driven science seems to entail a shift away

from the general and towards the specific—away from

attempts to find universal laws than encompass all

places and times and towards deeper descriptions of

what is happening at particular places and times. There

are clearly some benefits to this change: as Batty

(2012) points out, urban science and planning in the

era of Scarce Data focused on radical and massive

changes to cities over the long-term, with little

concern for small spaces and local movements.

Data-driven urban science and planning can rectify

some of the consequent urban ills by allowing greater

focus on the local and routine. However, over longer

time spans and wider spatial domains the local and

routine merges into the long-term; a fundamental

scientific challenge is how local and short-term Big

Data can inform our understanding of processes over

longer temporal and spatial horizons; in short, the

problem of generalization.

Geography has long experience with partner-

ships—and tensions—between nomothetic (law-seek-

ing) and idiographic (description-seeking) knowledge

(Cresswell 2013). Table 1 provides a summary. The
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early history of geography in the time of Strabo (64/63

BCE–24 CE) and Ptolemy (90-168 CE) involved both

generalizations about the Earth and intimate descrip-

tions of specific places and regions; these were two

sides of the same coin. Bernhardus Varenius

(1622–1650) conceptualized geography as consisting

of general (scientific) and special (regional) knowl-

edge, although he considered the latter to be subsidiary

to the former (Warntz 1989; Goodchild et al. 1999).

Alexander von Humboldt (1769–1859) and Carl Ritter

(1779–1859), often regarded as the founders of

modern geography, tried to derive general laws

through careful measurement of geographic phenom-

ena at particular locations and times. In more recent

times, the historic balance between nomothetic and

idiographic geographic knowledge has become more

unstable. The early twentieth century witnessed the

dominance of nomothetic geography in the guise of

the environmental determinism in the early 1900s,

followed by a backlash against its abuses and the

subsequent rise of idiographic geography in the form

of areal differentiation: Richard Hartshorne famously

declared in The Nature of Geography that the only law

in geography is that all areas are unique (Hartshorne

1939). The dominance of idiographic geography and

the concurrent crisis in American academic geography

(in particular, the closing of Harvard’s geography

program in 1948; Smith 1992) led to the Quantitative

Revolution of the 1950s and 1960s, with geographers

such as Fred Schaefer, William Bunge, Peter Haggett,

and Edward Ullman asserting that geography should

be a law-seeking science that answers the question

‘‘why?’’ rather than building a collection of facts

describing what is happening in particular regions.

Physical geographers have—perhaps wisely—disen-

gaged themselves from these debates, but the tension

between nomothetic and idiographic approaches per-

sists in human geography (see Cresswell 2013;

DeLyser and Sui 2013; Schuurman 2000; Sui 2004;

Sui and DeLyser 2012).

However, attempts to reconcile nomothetic and

idiographic knowledge did not die with Humboldt and

Ritter. Approaches such as time geography seek to

capture context and history and recognize the roles of

both agency and structure in human behavior (Cres-

swell 2013). In spatial analysis, the trend towards local

statistics, exemplified by Geographically Weighted

Regression (Fotheringham et al. 2002) and Local

Indicators of Spatial Association (Anselin 1995),

represents a compromise in which the general princi-

ples of nomothetic geography are allowed to express

themselves differently across geographic space.

Goodchild (2004) has characterized GIS as combining

the nomothetic, in its software and algorithms, with

the idiographic in its databases.

In a sense, the paths to geographic knowledge

engendered by data-intensive approaches such as time

geography, disaggregate spatial statistics and GI-

Science are a return to the early foundation of

geography where neither law-seeking nor descrip-

tion-seeking were privileged. Geographic generaliza-

tions and laws are possible but space matters: spatial

dependency and spatial heterogeneity create local

context that shapes physical and human processes as

they evolve on the surface of the Earth. Geographers

have believed this for a long time, but this belief is also

supported by recent breakthroughs in complex sys-

tems theory, which suggests that patterns of local

interactions lead to emergent behaviors that cannot be

understood in isolation at either the local or global

levels. Understanding the interactions among agents

within an environment is the scientific glue that binds

the local with the global (Flake 1998).

In short, data-driven geography is not necessarily a

radical break with the geographic tradition: geography

has a longstanding belief in the value of idiographic

knowledge by itself as well as its role in constructing

nomothetic knowledge. Although this belief has been

tenuous and contested at times, data-driven geography

Table 1 A brief history of partnerships and tensions between

nomothetic (law-seeking) and idiographic (description-seek-

ing) knowledge in geographic thought

Path to geographic

knowledge

Advocates

Nomothetic $ idiographic Strabo

Ptolemy

Nomothetic ? idiographic Varenius

Nomothetic / idiographic Humboldt

Ritter

Idiographic Hartshorne

Nomothetic Schaefer

Nomothetic $ idiographic Hägerstrand (time geography)

Fotheringham/Anselin (local

spatial statistics)

Tomlinson/Goodchild

(GIScience)
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may provide the paths between idiographic and

nomothetic knowledge that geographers have been

seeking for two millennia. However, while complexity

theory supports this belief, it also suggests that this

knowledge may have inherent limitations: emergent

behavior is by definition surprising.

Approaches to data-driven geography

If we accept the premise—at least until proven

otherwise—that Big Data and data-driven science

harmonize with longstanding themes and beliefs in

geography, the question that follows is: how can data-

driven approaches fit into geographic research? Data-

driven approaches can support both geographic

knowledge-discovery and spatial modeling. However,

there are some challenges and cautions that must be

recognized.

Data-driven geographic knowledge discovery

Geographic knowledge-discovery refers to the initial

stage of the scientific process where the investigator

forms his or her conceptual view of the system,

develops hypotheses to be tested, and performs

groundwork to support the knowledge-construction

process. Geographic data facilitates this crucial phase

of the scientific process by supporting activities such

as study-site selection and reconnaissance, ethnogra-

phy, experimental design, and logistics.

Perhaps the most transformative impact of data-

driven science on geographic knowledge-discovery

will be through data-exploration and hypothesis

generation. Similar to a telescope or microscope,

systems for capturing, storing, and processing massive

amounts of data can allow investigators to augment

their perceptions of reality and see things that would

otherwise be hidden or too faint to perceive. From this

perspective, data-driven science is not necessarily a

radically new approach, but rather a way to enhance

inference for the longstanding processes of explora-

tion and hypothesis generation prior to knowledge-

construction through analysis, modeling, and verifi-

cation (Miller 2010).

Data-driven knowledge-discovery has a philo-

sophical foundation: abductive reasoning, a form of

inference articulated by astronomer and mathemati-

cian C. S. Peirce (1894–1914). Abductive reasoning

starts with data describing something and ends with

a hypothesis that explains the data. It is a weaker

form of inference relative to deductive or inductive

reasoning: deductive reasoning shows that X must

be true, inductive reasoning shows that X is true,

while abductive reasoning shows only that X may be

true. Nevertheless, abductive reasoning is critically

important in science, particularly in the initial

discovery stage that precedes the use of deductive

or inductive approaches to knowledge-construction

(Miller 2010).

Abductive reasoning requires four capabilities: (1)

the ability to posit new fragments of theory; (2) a

massive set of knowledge to draw from, ranging from

common sense to domain expertise; (3) a means of

searching through this knowledge collection for

connections between data patterns and possible expla-

nations, and; (4) complex problem-solving strategies

such as analogy, approximation, and guesses. Humans

have proven to be more successful than machines in

performing these complex tasks, suggesting that data-

driven knowledge-discovery should try to leverage

these human capabilities through methods such as

geovisualization rather than try to automate the

discovery process. Gahegan (2009) envisions a

human-centered process where geovisualization

serves as the central framework for creating chains

of inference among abductive, inductive, and deduc-

tive approaches in science, allowing more interactions

and synergy among these approaches to geographic

knowledge building.

One of the problems with Big Data is the size and

complexity of the information space implied by a

massive multivariate database. A good data-explora-

tion system should generate all of the interesting

patterns in a database, but only the interesting ones to

avoid overwhelming the analyst. Two ways to manage

the large number of potential patterns are background

knowledge and interestingness measures. Background

knowledge guides the search for patterns by repre-

senting accepted knowledge about the system to focus

the search for novel patterns. In contrast, we can use

interestingness measures a posteriori to filter spurious

patterns by rating each pattern based on dimensions

such as simplicity, certainty, utility, and novelty.

Patterns with ratings below a user-specified threshold

are discarded or ignored (Miller 2010). Both of these

approaches require formalization of geographic

knowledge, a challenge discussed earlier in this paper.
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Data-driven modeling

Traditional approaches to modeling are deductive: the

scientist develops (or modifies or borrows) a theory

and derives a formal representation that can be

manipulated to generate predictions about the real

world that can be tested with data. Theory-free

modeling, on the other hand, builds models based on

induction from data rather than through deduction

from theory.

The field of economics has flirted with data-driven

modeling in the form of general-to-specific modeling

(Miller 2010). In this strategy, the researcher starts

with the most complex model possible and reduces it

to a more elegant one based on data, founded on the

belief that, given enough data, only the true specifi-

cation will survive a sufficiently stringent battery of

statistical tests designed to pare variables from the

model. This contrasts with the traditional specific-to-

general strategy where one starts with a spare model

based on theory and conservatively builds a more

complex model (Hoover and Perez 1999). However,

this approach is controversial, with some arguing that

given the enormous number of potential models one

would have to be very lucky to encompass the true

model within the initial, complex model. Therefore,

predictive performance is the only relevant criterion;

explanation is irrelevant (Hand 1999).

Geography has also witnessed attempts at theory-

free modeling, also not without controversy. Stan

Openshaw is a particularly strong advocate for using

the power of computers to build models from data:

examples include the Geographical Analysis Machine

(GAM) for spatial clustering of point data, and

automated systems for spatial interaction modeling.

GAM uses a technique that generates local clusters or

‘‘hot spots’’ without requiring a priori theory or

knowledge about the underlying statistical distribu-

tion. GAM searches for clusters by systematically

expanding circular search from locations within a

lattice. The system saves circles with observed counts

greater than expected and then systematically varies

the radii and lattice resolution to begin the search

again. The researcher does not need to hypothesize or

have any prior expectations regarding the spatial

distribution of the phenomenon: the system searches,

in a brute-force manner, all possible (or reasonable, at

least) spatial resolutions and neighborhoods (Charlton

2008; Openshaw et al. 1987).

GAM is arguably an exploratory technique, while

Openshaw’s automated system for exploring a uni-

verse of possible spatial interaction models leaps more

into the traditional realm of deductive modeling. The

automated system uses genetic programming to breed

spatial interaction models from basic elements such as

the model variables (e.g., origin inflow and destination

outflow totals, travel cost, intervening opportunities),

functional forms (e.g., square root, exponential),

parameterizations, and binary operators (add, subtract,

multiply and divide) using goodness-of fit as a

criterion (Diplock 1998; Openshaw 1988).

One challenge in theory-free modeling is that it

takes away a powerful mechanism for improving the

effectiveness of a search for an explanatory model—

namely, theory. Theory tells us where to look for

explanation, and (perhaps more importantly) where

not to look. In the specific case of spatial interaction

modeling, for example, the need for models to be

dimensionally consistent can limit the options, though

the possibility of dimensional analysis (Gibbings

2011) was not employed in Openshaw’s work. The

information space implied by a universe of potential

models can be enormous even in a limited domain

such as spatial interaction. Powerful computers and

clever search techniques can certainly improve our

chances (Gahegan 2000). But as the volume, variety,

and velocity of data increase, the size of the informa-

tion spaces for possible models also increases, leading

to a type of arms race with perhaps no clear winner.

A second challenge in data-driven modeling is that

the data drive the form of the model, meaning there is

no guarantee that the same model will result from a

different data set. Even given the same data set, many

different models could be generated that fit the data,

meaning that slight alterations in the goodness-of-fit

criterion used to drive model selection can produce

very different models (Fotheringham 1998). This is

essentially the problem of statistical overfitting, a

well-known problem with inductive techniques such

as artificial neural networks and machine learning.

However, despite methods and strategies to avoid

overfitting, it appears to be endemic: some estimate

that three-quarters of the published scientific papers in

machine learning are flawed due to overfitting (The

Economist 19 October 2013).

A third challenge in theory-free modeling is the

complexity of resulting models. Traditional model

building in science uses parsimony as a guiding
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principle: the best model is the one that explains the

most with the least. This is sometimes referred to as

‘‘Occam’s Razor’’: given two models with equal

validity, the simpler model is better. Model interpre-

tation is an informal but key test: the model builder

must be able to explain what the model results say

about reality. Models derived computationally from

data and fine-tuned based on feedback from predic-

tions can generate reliable predictions from processes

that are too complex for the human brain (Townsend

2013; Weinberger 2011). For example, Openshaw’s

automated system for breeding spatial interaction

models has been known to generate very complex,

non-intuitive models (Fotheringham 1998), many of

which are also dimensionally inconsistent. Figure 3

illustrates some of the spatial interaction models

generated by Openshaw’s automated system; as can

be seen, they defy easy comprehension.

The knowledge from data-driven models can be

complex and non-compressible: the data are the

explanation. But if the explanation is not understand-

able, do we really have an explanation? Perhaps the

nature of explanation is evolving. Perhaps computers

are fundamental in data-driven science not only for

discovering but also for representing complex patterns

that are beyond human comprehension. Perhaps this is

a temporary stopgap until we achieve convergence

between human and machine intelligence as some

predict (Kurzweil 1999). While we cannot hope to

resolve this question (or its philosophical implica-

tions) within this paper, we can add a cautionary note

from Nate Silver: telling stories about data instead of

reality is dangerous and can lead to mistaking noise for

signal (Silver 2012).

A final challenge in data-driven spatial modeling is

de-skilling: a loss of modeling and analysis skills.

While allocating mundane tasks to computers frees

humans to perform sophisticated activities, there are

times when mundane skills become crucial. For

example, there are documented cases of airline pilots,

due to a lack of manual flying experience, reacted

badly in emergencies when the autopilot shuts off

(Carr 2013). Although rarely life-threatening, one

could make a similar argument about automatic model

building: if a data-driven modeling process generates

anomalous results, will the analyst be able to deter-

mine if they are artifacts or genuine? With Open-

shaw’s automated spatial interaction modeling

system, the analyst may become less skilled at spatial

interaction modeling and more skilled at combinato-

rial optimization techniques. While these skills are

valuable and may allow the analyst to reach greater

scientific heights, they are another level removed from

the empirical system being modeled. However, the

more anomalous the results, the deeper the thinking

required.

A solution to de-skilling is to force the skill: require

it as part of education and certification, or design

software that encourages or requires analysts to

maintain some basic skills. However, this is a difficult

case to make compared to the hypnotic call of

sophisticated methods with user-friendly interfaces

Fig. 3 Three of the spatial

interaction models

generated by Openshaw’s

automated modeling system

(Openshaw 1988)
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(Carr 2013). Re-reading Jerry Dobson’s prescient

essay on automated geography thirty years later

(Dobson 1983), one is impressed by the number of

the activities in geography that used to be painstaking

but are now push-button. Geographers of a certain age

may recall courses in basic and production cartogra-

phy without much nostalgia. What skills that we

consider essential today will be considered the pen,

ink, and lettering kits of tomorrow? What will we

lose?

Conclusion

The context for geographic research has shifted from a

data-scarce to a data-rich environment, in which the

most fundamental changes are not the volume of data,

but the variety and the velocity at which we can

capture georeferenced data. A data-driven geography

may be emerging in response to the wealth of

georeferenced data flowing from sensors and people

in the environment. Some of the issues raised by data-

driven geography have in fact been longstanding

issues in geographic research, namely, large data

volumes, dealing with populations and messy data,

and tensions between idiographic versus nomothetic

knowledge. However, the belief that spatial context

matters is a major theme in geographic thought and a

major motivation behind approaches such as time

geography, disaggregate spatial statistics, and GI-

Science. There is potential to use Big Data to inform

both geographic knowledge-discovery and spatial

modeling. However, there are challenges, such as

how to formalize geographic knowledge to clean data

and to ignore spurious patterns, and how to build data-

driven models that are both true and understandable.

Cautionary notes need to be sounded about the

impact of data-driven geography on broader society

(see Mayer-Schonberger and Cukier 2013). We must

be cognizant about where this research is occurring—

in the open light of scholarly research where peer

review and reproducibility is possible, or behind the

closed doors of private-sector companies and govern-

ment agencies, as proprietary products without peer

review and without full reproducibility. Privacy is a

vital concern, not only as a human right but also as a

potential source of backlash that will shut down data-

driven research. We must be careful to avoid pre-

crimes and pre-punishments (Zedner 2010):

categorizing and reacting to people and places based

on potentials derived from correlations rather than

actual behavior. Finally, we must avoid a data

dictatorship: data-driven research should support, not

replace, decision-making by intelligent and skeptical

humans. Some of the other papers in this special issue

explore these challenges in depth.
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