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Abstract (150 words) 
Artificial Intelligence (AI) has the goal of recreating human intelligence by means of 
computers. Despite significant successes in specific contexts, this endeavour is problematic 
in a number of ways, which can be all illustrated with the metaphor of marking lines: lines to 
circumscribe and define, lines to connect and make comparisons, lines to separate and 
make distinctions, and, finally, lines to trace a path towards the future. 
In AI, these lines are blurred, because without a clear definition of intelligence AI is also 
difficult to define, the analogies between humans and machines are weak, the reliance on 
digital computers makes it hard to distinguish AI from the rest of Computer Science, the 
future of AI is often illustrated by means of Sci-Fi scenarios with little connection with 
reality. This work is meant as a call for more attention on behalf of those who use, research, 
write, and talk about AI. 
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Introduction 
 
One may mark a line for many purposes: delimiting an area, connecting two points, 
separating two sectors, tracing a path, and so on.  
I will here adopt this versatile graphic gesture as a metaphor to discuss a number of aspects 
of Artificial Intelligence (AI): how it is defined as a discipline; how, as its very name seems to 
suggest, it stems from an attempt to recreate human intelligence by means of artificial 
entities; how it is distinguished from other efforts in Computer Science; finally, what we may 
expect from it in the future.   
All these efforts are meant to provide a better understanding of AI but, as I will try to show 
in what follows, the lines that are meant to circumscribe, connect, separate and orient AI 
are rather blurred, which should serve as a call for more attention on behalf of those who 
use, research, write, and talk about AI.  
 
 



 

Marking the lines as definition 
 
The very definition of AI has raised several debates ever since the term “Artificial 
Intelligence” was first used in 1955 in a proposal for a summer workshop at Dartmouth 
College (New Hampshire, USA) by those who are considered today the founders of the 
discipline. In that proposal, it is written that “The study is to proceed on the basis of the 
conjecture that every aspect of learning or any other feature of intelligence can in principle 
be so precisely described that a machine can be made to simulate it.” (McCarthy et al., 
2006, p.12). This conjecture seems to lay the ground for a definition of AI as the discipline 
dedicated to a precise description of features of intelligence, so to enable the simulation of 
those features by a machine.  
I will get back to the meaning and implications of a “simulation by a machine” in the next 
section. Let us start with the concept of intelligence used in the proposal. There is an 
assumption that “learning” is a feature of intelligence, which is not controversial, since it is 
accepted in many other fields than AI, such as psychology (Piaget, 2003) or pedagogy (Novak 
& Gowin, 1984). Much more problematic is the other assumption on intelligence, according 
to which intelligence is amenable to precise, machine-compatible descriptions. The first 
author of the proposal, Prof. John McCarthy, has stood by this assumption his whole life, as 
shown by a manifesto in the form of a Q&A he first published in 2004 and last revised in 
2007, in which his answer to the question “what is intelligence?” is the following: 
 
“Intelligence is the computational part of the ability to achieve goals in the world. Varying 
kinds and degrees of intelligence occur in people, many animals and some machines. 
(McCarthy, 2007, p. 2)” 
 
This is, indeed, marking a strong line around the concept of “intelligence,” which is deemed 
inherently computational by McCarthy. Agents have the ability to achieve goals in the world. 
Intelligence is the computational part of such ability, that is, that part of an agent’s action 
plan that consists of operations on numbers. This is such a bold statement that the very 
document begins with the disclaimer: “The opinions expressed here are not all consensus 
opinion among researchers in AI.” Discussions on what intelligence is range from anecdotal 
recounts to common sense to full-fledged scientific theories. Would a person who is able to 
perform computational operations at remarkable speed without ever making a mistake be 
considered intelligent if they are not able to learn the most basic rules for living in society? 
Among the most famous theories on intelligence that include more than computation, there 
is psychologist Howard Gardner’s theory of multiple intelligences (Gardner, 1983), which 
differentiates human intelligence into eight specific modalities: visual-spatial, linguistic-
verbal, logical-mathematical (presumably the one McCarthy is after), bodily-kinesthetic, 
musical, interpersonal, intrapersonal, and naturalistic. 
These two views on intelligence, one solely computational and the other multi-faceted, 
seem to set up two different scenarios, each with a definition of intelligence that defines the 
scope of AI as a discipline. In the first scenario, McCarthy is wrong or at least narrow-minded 
on intelligence, which exists in modalities that are not computational. Rather than Artificial 
Intelligence (AI), we should call his efforts Artificial Computational Intelligence (ACI). In the 
second scenario, McCarthy is right, and all forms of intelligence can be traced back to 



computational processes, and psychologists like Gardner propose a framework with 
multiple forms of intelligence because their underlying computational foundations have not 
been discovered yet.  
Who is right? Which scenario is real? There is no definitive answer to these questions, but 
surely a lot of energy is devoted in the context of AI research to pursue either vision. In 
particular, many researchers who believe McCarthy’s definition of intelligence are part of a 
subfield of AI in which the aim is to build machines that perform any task that a human 
being is capable of. Since the range of human intellectual capabilities is so vast and general, 
this research effort is called Artificial General Intelligence (AGI, Goertzel & Pennachin, 2006). 
Whether AGI will one day succeed remains to be seen. What is interesting now in AGI, at 
least within the scope of this analysis, is its focus on the comparison between human 
intelligence and machine intelligence. 

 

Marking the lines as comparison 
 
Formally, an analogy between two entities A and B is a one-to-one mapping between 
objects, properties, relations, and functions in A and those in B. Not everything in A must be 
put in correspondence with relevant items in B: an analogy is comprised of correspondences 
only between a subset of characteristics (Bartha, 2022). Clearly, the analogy underlying AI is 
between a human being and a computational machine. However, which aspects are to be 
involved in the analogy is disputed and this leads to different variations of AI: general, 
narrow, strong, and weak.   
The general vs narrow and the strong vs weak contrapositions are orthogonal but not 
completely independent, and their connection takes us back to McCarthy’s reference to 
simulating human intelligence with a machine. Indeed, a simulation imitates one process by 
another process (Hartmann, 1996), that is, a simulation is inherently based on analogies 
between two processes, the one that is simulated and the one that simulates. If human 
intelligence is to be simulated by means of a computational machine, what aspects are to be 
reproduced inside the simulating machine? This is where the abovementioned 
contrapositions show their orthogonality. 
AGI and narrow AI (sometimes called Artificial Narrow Intelligence, ANI, Fjelland 2020) are 
about quantity, that is, the quantity of tasks that an AI machine must be able to perform. In 
AGI, the goal is the most ambitious: all tasks a human can perform, across the whole range 
theorized by Gardner, must be described in computational terms so that a machine can 
execute them. In ANI, the context is, indeed, narrower: a machine is built to execute one 
specific task, or a very small set of tasks. If AGI’s realizability is still debated among 
researchers, there have been several extremely successful ANI projects in a number of 
fields, including games (Schrittwieser et al., 2020) and medicine (Kourou et al., 2015). 
Strong and weak AI, on the other hand, are about quality, not in terms of perfect executions 
and lack of errors by the machine, but in its original meaning of “quale,” of how a certain 
situation feels like for the agent in it, as a subject capable of perceiving the features of that 
situation. Proponents of strong AI believe that it is in theory possible to build a machine that 
entertains conscious experiences the way humans do, whereas advocates of weak AI believe 
that there is a deep ontological difference between human brains and computing machines, 
and only the former have the characteristics that make them capable of perceiving qualia. 



Scientists agree that the human nervous system makes the perception of qualia possible, 
but how that first-hand, subjective sensation emerges from human physiology remains a 
mystery so deep that it is called the “hard problem” in philosophy of mind (Chalmers, 2007).  
In weak AI, this is where the analogy stops: we can build more and more sophisticated 
computing machines that perform more and more tasks that have been traditionally 
performed by humans, but consciousness will forever remain an elusive feature of the 
human experience that escapes computational modeling.  
An analogy is indeed the most famous attack against the idea of strong AI, provided by 
philosopher John Searle, who proposed the thought experiment of the “Chinese room” 
(Searle, 1980), in which he imagined himself inside a room, processing messages from the 
outside written in Chinese ideograms on the sole basis of their appearance (since Searle 
does not understand Chinese), formulating answers following visual message-reply rules 
written in a ledger, and sending out replies that make sense in Chinese, thus giving the 
impression that the room understands Chinese to the people on the outside. In this analogy, 
Searle designed a limited human experience, that is, processing only the signs a message is 
comprised of but not its meaning, to give us an idea of how computing machines work: they 
crunch signs, i.e. numbers, in accordance with their values and some rules, but they do not 
have a mind that can associate ideas and concepts to those signs.  
Another philosopher, Hubert Dreyfus, uses similar arguments to attack AGI: the subjective 
experience that humans have thanks to their consciousness is not only necessary for 
humans to entertain meanings, but it is also a fundamental ingredient to form what is 
known as common sense. Based on their past experiences, humans are able to draw 
analogies, tackle new situations successfully and master the complex game of life. Not 
everybody is successful in the same way, but everybody has the potential to learn any kind 
of task that is compatible with human nature. This general intelligence is possible only to 
conscious human beings, whereas coding all possible real-life situations in a computing 
machine is unfeasible (Dreyfus, 1992). Here, quality and quantity meet: we need the 
qualitative experience of consciousness to unlock the power to learn a potentially infinite 
quantity of tasks. 
Years after the introduction of the Chinese room, when asked whether he considered strong 
AI a logical impossibility, Searle left the door open, again relying on an analogy:  
 
“(…) the human brain is a machine, a biological machine, and it produces consciousness by 
biological processes. We will not be able to do that artificially until we know how the brain 
does it and we can then duplicate the causal powers of the brain. (…) at present we do not 
know enough about the brain to build an artificial brain.” (Turello, 2015) 
 
His attack against the idea of conscious computers can be thus framed in a technological 
context: in the way computers are built today no emergence of consciousness is possible 
because the analogy is leaving some key features out. Of course, this is not a problem for 
those who pursue the less ambitious but still potentially very impactful goals of weak, 
narrow AI. However, focusing on the electronic, digital computing machines in use 
nowadays sheds light on another threat for AI, strong, weak, general, or narrow: the lines 
indicating its borders and distinguishing it as a discipline seem to disappear. 
 
 



Marking the lines as distinction 
 
Computing machines are a good example of multiple realizability: to perform computation 
we have different choices on what kind of physical devices to build to represent numbers 
and perform operations on them. These choices have expanded through the centuries.  
The abacus, as it appears today, made of wood and metal reinforcements, was first 
chronicled in 13th century China. To support his father’s activities as a tax accountant, Blaise 
Pascal invented the first mechanical calculator with rotating metal gears, known as the 
Pascaline, in 17th century France. Charles Babbage modified a Jacquard loom and 
transformed it into the Difference Engine, a machine capable of raising numbers to the 
second and third powers and calculating the solution to specific quadratic equations in 19th 
century England. A much more sophisticated mechanical computing machine was created 
by Konrad Zuse in early 20th century Germany, with the groundbreaking additional feature 
of programmability, i.e. not only the data but also the operations to be performed on the 
data can be stored in the machine, with dramatically increased possibilities for automation. 
At the same time, with the invention of the vacuum tube by John Ambrose Fleming, 
controlling the flow of electricity through electronic components became possible, and led 
the way to the first electronic computers, like the one by John Vincent Atanasoff, conceived 
in 1937 and released 5 years later at the Iowa State College, USA. The discovery of 
semiconducting materials, that is, materials that enable or block the flow of electricity 
depending on the voltage they are stimulated with changed the computing game forever: 
American physicists John Bardeen, Walter Brattain and William Shockley invented the 
transistor in 1947, thus enabling an unprecedented miniaturization of the switches 
controlling the flow of electrons inside a computing machine. Their invention, which won 
them the Nobel Prize in Physics in 1956, is the reason why we can carry very powerful 
computers in our pockets today. (Campbell-Kelly et al., 2016) 
Despite the enormous technological variety, in terms of design, materials, physical 
phenomena involved, there is a general paradigm, guiding the construction and use of a 
computing machine, which characterizes all the above-mentioned devices, including abaci 
and the latest, fastest digital computers. There are obviously radical differences in 
performance and levels of automation, however, the principle of operation is the same: 
whatever task is at stake, it needs to be encoded, that is, described in the form of numbers; 
some components of the machine are used to represent those numbers; the numbers are 
processed by the computing machine, that is, the components representing the numbers 
are modified in accordance with some operations on the machine (and by the machine 
itself, if it is programmable); finally, when the operations are over, the machine reaches an 
end state, and the numerical quantities represented in it are the numerical output that 
needs to be decoded, that is, translated back into results for the task. 
From this very general perspective, using a computer to sort a list of names or using it to 
simulate human intelligence do not seem to make a significant difference, since both 
activities boil down to the same kind of encode-execute-decode sequence of operations. 
What, then, distinguishes AI from other branches of Computer Science, like Software 
Engineering (SE) or Database Theory (DB)? Indeed, should Computer Science even have 
subfields to begin with?  
The traditional distinction in Computer Science between hardware and software may be a 
good starting point. Hardware is physical: it is the material machinery we build to perform 
computation. Software is more abstract because it is the description of the configurations to 



give the hardware to perform computation. The characteristics of the hardware determine 
its possible configurations and hence limit the scope of the software. For instance, we 
cannot look at a digital image on an abacus, because the abacus is missing the hardware to 
produce the luminous and colourful pixels that constitute an image.1 Keeping in mind the 
brief and non-exhaustive sketch on the history of computing machines given above, we 
appreciate at least two lines along which computing hardware can improve: it can allow for 
new kinds of operations (e.g. processing digital images) and it can allow for a faster 
execution of those operations (e.g. as of March 2022, the fastest mass-market computer 
chips work at a frequency of 5.5 GHz, which means they can perform 5.5 billion elementary 
operations per second, Chacos, 2022). 
Since all computer scientists, be them AI, SE, or DB researchers, use the same kind of 
hardware, the distinction between their subfields, if it exists, must come from the software, 
that is, the operations they chose to make their hardware perform. We need to look for 
criteria to classify some operations as AI software to distinguish them from SE software and 
DB software. We are circling back to the issue of defining what AI is.  
If we look at definitions that came after McCarthy’s, we notice that the focus on what 
humans do is always there. According to the Encyclopedia Britannica:  
 
“The term is frequently applied to the project of developing systems endowed with 
the intellectual processes characteristic of humans” (Copeland, 2022).  
 
Computer Science professor Wolfgang Ertel is rather critical of this kind of definition, 
because it fails at distinguishing AI from the rest of Computer Science: after all, 
remembering large quantities of text and computing numbers itself are intellectual 
processes entertained by humans, and hence according to this definition every computer 
would be an AI system (Ertel, 2017). Ertel considers the following definition by Elaine Rich 
far superior: 
 
“Artificial Intelligence is the study of how to make computers do things at which, at the 
moment, people are better” (Rich, 1983). 
 
I join Ertel in praising Rich’s definition because it introduces so many dimensions in the 
discourse on AI with so few words. First of all, it refers to a comparison or rather 
competition between humans and machines that was first introduced by Alan Turing (an 
ante litteram pioneer of AI) in his attempt with the “imitation game,” a thought experiment 
where a chatbot makes a person believe they are talking with a human, to define a criterion 
to recognize intelligent machines (Turing, 1950). Secondly but no less importantly, this 
definition frames AI as a moving target, where the movement is not only determined by the 
technological development of computing hardware, but also by the change in what is 
considered an inherently human intellectual activity. That change is significantly influenced 
by the very technological developments of AI. 
From this perspective, memorizing texts and computing were inherently human activities at 
a time when computers did not exist or were extremely rudimentary and slow machines, 
but not anymore. Now that, in these tasks, computers outperform humans by the billions, 
something else is considered inherently human, and the focus of AI has shifted accordingly. 

 
1 In general, for digital images the encoding is based on standards that create a correspondence between numbers and the levels of red, 
green and blue of each pixel, and between a system of numerical coordinates and the position of each pixel within the image. 



Thus, we can distinguish AI from other branches of Computer Science because of its 
dynamic nature: always at the forefront of computational modelling of human intellectual 
activities and tasks, AI tackles yet unsolved problems, only to crack them and transform 
them into ordinary Computer Science software and move on. Trying to understand where AI 
is moving towards leads us to the last metaphor with a line: a path to the future. 
 

Marking the lines as extrapolation 
 
Trying to predict the future of AI is an integral part of AI itself: the research efforts are 
inherently future-directed under the sign of an ever more comprehensive computational 
modelling of human intelligence. After all, AGI and strong AI are subfields about intelligent 
machines that do not exist, or do not exist yet. The risk here is to write science fiction rather 
than predicting future developments of AI research. Indeed, a significant amount of Sci-Fi 
stories involve AI entities that have reached sentience and help humans or rebel against 
them. Obviously, these stories never provide a scientific explanation on how computational 
machines have reached the ultimate human feature of full consciousness, but it is 
interesting to notice that Sci-Fi writers have imagined both software-based and hardware-
based ground-breaking discoveries: in the TV series “Humans”, for instance, humanoid 
robots become fully conscious thanks to a special code that is uploaded on the Internet 
(Brozel, 2016), whereas in the “Terminator” franchise, machines make that leap thanks to a 
particular chip (Cameron, 1991). 
Unfortunately, there is a non-negligible amount of futuristic AI research that focuses on 
those fictional end results without providing solid justifications for such a jump. Books like 
“Superintelligence” (Boström, 2014) go into the details of how a super intelligent computer 
that achieves sentience might elaborate a strategy to overtake the world without providing 
any indication on how such super intelligence might come to be in the first place. Another AI 
endeavour that is undistinguishable from Sci-Fi is the concept of “singularity”, proposed by 
Ray Kurzweil (2014), according to whom the pace of technological change will increase to 
such an extent that biological and machine intelligence will merge in the next step in 
human-machine co-evolution, where human life will be irreversibly transformed.  
Many of these imaginings are built on top of extrapolations over the extraordinary 
development of computing technologies during the 20th century. One of the most famous 
examples is Moore’s law, named after Intel’s co-founder Gordon Moore, who observed in 
1965 that the number of transistors in a chip doubled every year thanks to improvements in 
miniaturization technology (Moore, 1965). Despite some adjustments in the following 
decades, the pattern detected by Moore seems to hold. What can we make of this? There 
are at least three observations that should prevent us from jumping to apocalyptic or 
utopistic conclusions about the future of AI. 
Firstly, there are physical limits to hardware given by the laws of physics all material entities 
are subject to. It is true that transistors can become smaller and smaller, but they cannot be 
smaller than one atom. The curve of the number of transistors per chip can be modeled as 
an exponential, but there is a cap (Kish, 2002). More generally, we must not take a 
mathematical model as a realistic depiction in all its parts, so even if AI technology and 
digital technology have shown exceptional growth in the past decades, this may not be the 
case in the future. 



Secondly, we must not forget about the quantity vs quality dichotomy: an increase in 
transistor density surely leads to faster computing machines, which in turn means that a 
greater quantity of computational operations can be carried out per unit of time, but this 
does not entail that certain tasks will become amenable to machine simulation. There is a 
distinction between unfeasible and impossible tasks: an unfeasible task is one for which 
there is a computational solution, but it requires so many computational resources that it is 
not reasonable to tackle it; an impossible task is one for which there is no (known) 
computational solution. Breaking a cryptography-based protection is currently unfeasible, 
but it may become much easier once quantum computing, i.e. computation exploiting 
quantum mechanics phenomena, becomes available thanks to a technological breakthrough 
(Denning, 2019). Computing consciousness is, instead, an impossible task, since we do not 
know how consciousness is produced in the brain, nor whether that mechanism can be 
simulated via computation. Increasing the number of operations that a computing machine 
performs in a unit of time will not change this. 
Thirdly, we must not forget that computers and AI systems are, like any other technological 
endeavor, an industrial product, entangled in a world-wide network of supply chains, 
economic interests, political strategies and, ultimately, people (Crawford & Joler, 2018). 
Computing machines might become more and more sophisticated and able to service 
humanity in ways that are today only in the realm of Sci-Fi, but who will be the real 
beneficiary of such technological enhancements? There are futurologists who envision a 
future where humans and robots coexist, the latter taking over all the heavy lifting of labor 
(Bastani, 2019) or even substituting other humans as perfect love companions (Hauskeller, 
2016). Apart from the usual lack of any scientific explanation on how such results might be 
achieved, these authors fail at telling us who is going to finance the enormous technological 
efforts needed to build such machines, and who is going to be able to afford to enjoy those 
machines, if one can even imagine enjoying living in such a particular world. 
To avoid encroaching on Sci-Fi, a more down-to-earth approach to imagine the future of AI 
may be to observe the present of AI, which, despite an apparent focus on “learning”, is 
profoundly different from what McCarthy had envisioned in 1955. The AI of the origins, now 
known as GOFAI, good old-fashioned AI (Haugeland 1989), was characterized by a rule-
driven, top-down approach that aimed at encoding knowledge into a computer in the form 
of axioms and inference rules that simulated deductive reasoning in humans. Nowadays the 
dominant paradigm in AI is the data-driven, bottom-up approach of Machine Learning (ML, 
Jordan & Mitchell, 2015). In ML, computers are programmed to search for patterns, 
schemes, and general laws among vast quantities of data by means of statistical inductive 
processes. These processes are implemented in the form of complex mathematical 
functions whose parameters are modified in accordance with how well their outputs meet 
the goals for which the system was built in the first place. These goals are usually the 
completion of tasks of data classification (e.g., of digital medical images), clustering (e.g., of 
viewers of a streaming service), and outlier detection (e.g., of suspicious credit card 
purchases). The role of AI researchers has radically changed in this paradigm shift from 
GOFAI to ML: they do not program data and operations into computing machines, but feed 
data to mathematical functions until they are able to process data in accordance with the 
goals. In GOFAI, humans make the rules to achieve goals, whereas in ML humans only set 
the goals, while the rules are developed automatically inside the mathematical functions 
running in the computing machines. The operations in an ML system are too complex for 
human programmers to keep in check. The only facet humans can control is whether the ML 



system has reached the goal. Therefore, ML systems are called “black boxes”: humans can 
only see what goes in and what comes out, but not what happens in-between. When it 
comes to ML, there is a significant decrease in the direct involvement of AI researchers, 
which has important implications on responsibility in AI: who is responsible when a fully 
automated ML system misclassifies data and people are harmed? So far, incidents caused by 
ML systems have been isolated cases of machine-based racism (Grush, 2015) and deadly 
overreliance on autonomous driving (Baruch, 2016). However, if ML is the (near) future of AI 
with a more widespread adoption in different contexts and fields, one might fear that such 
harmful cases are going to increase as well. 
 

Conclusions 
 
AI aims at simulating human intelligence by means of computational models running on 
digital computers. This endeavour is rife with blurred areas: we do not have a clear 
definition of intelligence, we do not agree on what aspects of intelligence are really 
amenable to computational modelling, we do not have specific goals that distinguish AI 
from other computer-based efforts, AI seems to be a moving target that keeps on changing 
what we consider to be inherently human, and, finally, we do not have a clear idea on 
where AI is moving towards, although there are well-founded suspicions that more and 
more people are going to be harmed. These considerations are not meant to scare the 
reader away from AI, or to turn them into a technophobe. There are undeniable benefits 
that we can reap from the development of AI. However, I strongly believe that shedding 
light on the blurred lines of AI is and will always be a fundamental way to understand and 
contain its dangers, may they be ill-conceived metaphors or life-threatening automation 
failures. 
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