
Information Technology for
Digital Humanities

Lecture 7
Mario Verdicchio

Università degli Studi di Bergamo
Academic Year 2024-2025

Lecture 7 (October 15 2024)
• More gates
• Automated Reasoning

CU

2

Let’s now see how these gates
can be combined to operate the

selection of a specific path.

Let’s focus on a simpler case than
the one depicted in the figure,

where the CU chooses among 4
different paths.

In what follows, we see how to
build a circuit to choose between 2

paths.

i is the input signal, which can be
sent on either of two paths.

o0 is the output on one possible
path to which i can be sent.

o1 is the output on the other path to
which i can be sent.

s is the selection signal: its value
determines where i is sent.

i can be any value

o0 is the same as i because the
other input of the AND gate is 1.
Notice that i AND 1 is the same as i
(whether i is 0 or 1 does not make
a difference).

whatever the value of i, o1 is 0
because one of its inputs (s) is 0.
Notice that any input value that
goes through an AND gate with 0
as the other input yields 0 as
output.

if s is 0…

0

0

0

0

1

1

i

i

i

…then o0 = i.
In other words, i is sent to the first path.

i can be any value

o0 is 0 no matter the value of i,
because the other input of the AND
gate is 0.

o1 = i because the inputs of the
AND gate that produces o1 are i
and 1, and (i AND 1) = 1, whatever
the value of i.

if s is 1…

1

1

1

i

0

0

i

i

0

…then o1 = i.
In other words, i is sent to the second path.

i can be any value

This
means…

i

i

…that it is as if s selects where i goes.

!01

This is the circuit design style for
representing such a system, which
is called “demultiplexer” (also
known as “DEMUX”).
Since the choice is between 2
paths, this one is called a 1:2
DEMUX. In a 1:2 DEMUX, the
selection signal is just 1 bit.

CU

In our original example, the choice
is between 4 paths, so we actually
need a 1:4 DEMUX, with 2 bits for
the selection signal (s0 and s1,
enabling the selection among 4
paths: o00, o01, o10, and o11). The
electronics is a bit more
complicated, but the principles are
the same as the ones guiding the
design of the 1:2 DEMUX.

The story so far
• With all these considerations around logic, and the

construction of electronic circuits that embody
logical operators like NOT, AND, and OR, we have
focused on the L in ALU

• Moreover, we have combined NOT and AND gates
to create a DEMUX device, to enable the selection
of a path among many, by which the CU can send
signals where they are needed

• But what about the A in ALU?
• Aren’t computer built to compute, that is, do

arithmetics after all?

Back to basics of arithmetic
• Numbers work as input for arithmetic

operations no matter the numerical system
they are expressed in

• We can do 3 + 4 and obtain 7 (base 10)
• In the same way, we can do 011 + 100 and

obtain 111 (base 2)

Simple arithmetics in binary
• Given two bits in input, the rules for adding

them are very simple:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10, that is 0 with carry 1

• Since + applies to 2 bits and yields 1 bit in
output (possibly with a carry) just like AND
and OR, we can imagine to build a system
with logical gates that manipulate bits in a
way that coincides with what + does

Addition in electronics
• Let’s ignore the carry in the last case for

now, and focus on what happens with the
bits:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

input1 input2 output
0 0 0
0 1 1
1 0 1
1 1 1

} }The output of + is
almost ideantical
to the output of OR

Except for the last
case, where both
input bits are 1 and
the output is 0
instead of 1.

So, given two bits in input, b1 and b2,
b1 + b2 is like b1 OR b2 but not if they
are both 1.

Given two bits in input, b1 and b2,
b1 + b2 is like b1 OR b2 but not if
they are both 1.

To design a system that electronically realizes
this behavior, we can combine the outputs of:
b1 OR b2
AND
NOT (b1 AND b2),
as shown in the system in the figure (taken
from ”Che cos’è un computer” by Mario
Verdicchio, published by Carocci, 2023).

Let’s see who this system works in
the following slide.

b1 b2 A B C b0
0 0 0 0 1 0
0 1 1 0 1 1
1 0 1 0 1 1
1 1 1 1 0 0

A

B
C

The system uses the inputs b1 and b2 to compute (b1 OR b2) (which we called A) on the one side, and the negation of (b1
AND b2) on the other. The negation of (b1 AND b2) is computed by means of an AND gate (obtaining B) and then a NOT gate
(obtaining C).
The final computation, which gives the output, combines A and C with an AND, which corresponds to setting the final
result to 1 in all cases when (b1 OR b2) is 1, except for when (b1 AND b2) is 1: in that case C is 0 and, through the last AND
gate, sets the final result to 0.

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0
b1 b2 A B C b0
0 0 0 0 1 0
0 1 1 0 1 1
1 0 1 0 1 1
1 1 1 1 0 0

That electronic circuit, comprised of one OR gate, one NOT gate, and two AND gates combined as previously shown, yields
the same output as the addition applied to two single-bit inputs. Thus, it can work as an ADDER.
From a physical perspective, it is just a circuit that manipulates electric tensions, but with the fundamental encoding in
mind, we can see its (electric) operation as an (arithmetic) operation of addition.

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

0 + 0 = 00
0 + 1 = 01
1 + 0 = 01
1 + 1 = 10

We must not
forget about the
carry.

The carry is
another bit that
is part of the
final result. It is
0 in the first 3
cases, and 1 in
the last. The
output bits are
exactly like the
output of (b1
AND b2).

So to build the circuit
that computes the carry,
we just need to put the
two inputs through an
AND gate.

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

0 + 0 = 00
0 + 1 = 01
1 + 0 = 01
1 + 1 = 10

We must not
forget about the
carry.

The carry is
another bit that
is part of the
final result. It is
0 in the first 3
cases, and 1 in
the last. The
output bits are
exactly like the
output of (b1
AND b2).

So to build the circuit
that computes the carry,
we just need to put the
two inputs through an
AND gate.

The bit in output from
the first system (in black,
printed) is saved in a 1-
bit memory space that
represents how many
units (20) are in the final
result.
The bit in output from
the second system (in
red, handwritten) is
saved in another
memory unit, indicating
how many twos (21) are
in the final result.

Since we have built an arithmetic system by combining a logical system of AND, OR, and NOT, does this mean that
arithmetic is based on logic?

Absolutely not. In the real world, arithmetic and logic have a very distinct origin. Actually, since counting with fingers
came before formalizing reasoning, if anything, arithmetic should be considered the basis of a way of thinking that
lead humanity to conceive logic at a later stage, but these are questions for historians and philosophers of science.

It is just that, in the material world of electronic circuits built my means of transistors, logical operators are much
simpler to implement than arithmetic operations. You can see it by noticing that we need only one transistor to build a
NOT gate, whereas an ADDER has a much more complex structure.

Computer Science gives us extremely useful devices, but those devices are the result of discoveries in science (e.g.
semiconductors) and socio-political agreements (e.g. encodings like RGB, standards like JPG). They should not be
taken as an indication of some fundamental principles regarding how the universe works or how our thinking and
reasoning work.

And yet, there are some subfields of this discipline whose experts forget about this. You must not.

Reasoning

Logic is the discipline that aims
at the formalization of reasoning
processes.

Some logic definitions:
conditional and its
equivalence to a
combination of negation
and disjunction.

Automated Reasoning

¬A ∨ B Automation, in this
context, means to
transform the task into
something that can be
executed by the computer
(as usual, it is symbol
processing).

Davis, Martin; Putnam, Hilary (1960).
“A Computing Procedure for Quantification Theory”
J. ACM. 7 (3): 201–215.

Robinson, J. Alan (1965).
“A Machine-Oriented Logic Based on the Resolution Principle”.
J. ACM. 12 (1): 23–41

