
Information Technology for
Digital Humanities

Lecture 8
Mario Verdicchio

Università degli Studi di Bergamo
Academic Year 2023-2024

Lecture 8 (October 18 2023)
• Electronic circuits for arithmetic, logic, and

control
• Computer science subfields

01101010
11001110
11011011
10001011
11011110

0000

0001

0010

0011

?
Where are the addresses stored? We have seen that, as data, they can be
stored inside the memory itself. But how are they used as addresses?

How memories are addressed

0
1
2
3

CU

2

This is our mental model of a computer memory:
each word is tagged with a numerical address, which
we use to access a specific word. In this example, we
want to address word 2.

In reality, what happens is as follows.
No word is tagged with a number, but each
word is physically connected to the Control
Unit. In the early days of computers, such
connection was a cable; nowadays it is an
eletronic circuit trace.
When we want to access word 2, we send 2
as an input to the CU, which activates the
relevant connection, thus grantic access to
the word. Our choice (input 2) is translated
into a physical activation.

To understand how human choice maps
onto parts of an electronic circuit, we must
take a dive into the basic electronic
components that constitute a computer
hardware.

This technology dates back to the 1950s,
when american scientists Bardeen, Brattain
and Shockley invented the transistor, a
small device based on a special property of
semiconductive materials.

Semiconductive materials are particular: at
rest, they do not allow electricity to flow, but
if electrically stimulated they become
conductive.

Hence, transistors are a special kind of
switches: very small and electronic, that is,
not mechanical but controlled by means of
electricity.

William Shockley

Walter Brattain

John Bardeen

cb e

a transistor from the 1950s how it works

A more abstract description of a transistor

“high” tension (in current computers 5V or 3V)

Ground: no tension here. Electricity flows from points of high
tension to points of low tension.

The transistor acts like a switch controlled by vin.
If vin is low, electricity does not flow through the transistor
and vout is like va, that is, high.
If vin is high, electricy flows through the transistor
and vout becomes like vt, that is, low.

The fundamental encoding inside a computer

We interpret the high tension
inside a computer like a “1”, and

the low tension like a “0”.
This is an encoding: it maps two
entities in the real world onto a

set of natural numbers (0 and 1).

With such encoding in mind, a
single transistor acts like a

system which replies with “1”
when we give it “0”, and

viceversa.

!𝑐𝑎𝑠𝑒 1𝑐𝑎𝑠𝑒 2

!01 !10

We will use this graphical
organization of multiple cases.
Case 1 is when we give the
system “0” in input and obtain “1”
in output.
Case 2 is when we give “1” in
input and obtain “0” in output.

What to do with a
system with this

behavior?

Let’s introduce another encoding
on top of the fundamental one.

false

true

If we use ‘0’ to encode the
concept of “false”, and ‘1’ to
encode “true”, we are moving
from arithmetic with numbers
to logic with truth values.

Logic is the discipline that
formalizes reasoning, that is,
aims at making reasoning
(e.g. “all men are mortal;
Socrates is a man; hence,
Socrates is mortal”) rigorous
by transforming sentences in
sequences of symbols (called
formulas) that are
manipulated by means of
rules.

“False” and “true” are “truth
values” that we assign to
formulas. Logic does not help
us establish the truth values
of hypotheses from the real
world (e.g. “does God exist?”)
but it supports us in checking
whether a certain way of
reasoning is correct or not.

!𝑐𝑎𝑠𝑒 1𝑐𝑎𝑠𝑒 2

!𝑓𝑎𝑙𝑠𝑒𝑡𝑟𝑢𝑒 !
𝑡𝑟𝑢𝑒
𝑓𝑎𝑙𝑠𝑒

Let’s take a look at the
system again, with the logic-
oriented encoding in mind.

When we give it “false”, it replies with “true”.
When we give it “true”, it replies with “false”.

The system acts like a “not”.
Indeed, “not false” is the same as
“true”, and “not true” is the same

as “false”.

false

false

true

true

A transistor can then be seen as
the electronic embodiment of the

“negation” operator in logic.

This is how a system that negates,
also known as “NOT gate” (”gate”
because the electric signal goes
through it), is represented in the
graphical standard for circuit
design.

input1

input2

output

Let’s build more complex systems,
by using more than one transistor.
This system has two inputs and
one output.

The transistors are said to be in a
“serial” configuration, because they
are one after the other (i.e. in a
series) between the high tension
and the ground.

The tension in the output point is
high only when the point is directly
connected to the high tension
above. This means that both
transistors must be conductive,
which means that both inputs must
be high.

In numerical terms, since we have
2 inputs, we have 4 cases (4 = 22),
and the output is 1 only in one case
(input1 = 1 and input2 = 1)

input1 input2 output
0 0 0
0 1 0
1 0 0
1 1 1

input1

input2

output

In logical terms, the output is “true”
only when both inputs are “false”. In
other words, just one false input is
enough to make the output false.

input1 input2 output
false false false
false true false
true false false
true true true

The two inputs are put together in
the same way we use the “AND”
conjunction: “the Sun is cold AND
one plus one is two” is false,
whereas “water is a liquid AND
seven is an odd number” is true.
This circuit may be seen as the
electronic version of the AND
logical operator.

This is how an “AND gate” is
represented in the graphical
standard for circuit design.

In this other system, the two
transistors are said to be in a
“parallel” configuration, because
they are one next to the other (i.e.
on parallel lines) between the high
tension and the ground.

The tension in the output point is
high in more cases here, because
for the output point to be connected
to the high tension we just need
one transistor to be condictive. This
means that only when both
transistors are off the output is low
tension.

In numerical terms, the output is 0
only in one case (input1 = 0 and
input2 = 0)

input1 input2 output
0 0 0
0 1 1
1 0 1
1 1 1

input1 input2

output

In logical terms, the output is “false”
only when both inputs are “false”
and “true” in all other cases. We
need one true input to make the
output true as well.

input1 input2 output
false false false
false true true
true false true
true true true

The two inputs are put together in
the same way we use the “OR”
conjunction (also known as
“disjunction”): “the Sun is cold OR
one plus one is three” is false,
whereas “water is a liquid OR the
Earth if flat” is true.
This circuit may be seen as the
electronic version of the OR logical
operator.

This is how an “OR gate” is
represented in the graphical
standard for circuit design.

input1 input2

output

CU

2

Let’s now see how these gates
can be combined to operate the

selection of a specific path.

Let’s focus on a simpler case than
the one depicted in the figure,

where the CU chooses among 4
different paths.

In what follows, we see how to
build a circuit to choose between 2

paths.

i is the input signal, which can be
sent on either of two paths.

o0 is the output on one possible
path to which i can be sent.

o1 is the output on the other path to
which i can be sent.

s is the selection signal: its value
determines where i is sent.

i can be any value

o0 is the same as i because the
other input of the AND gate is 1.
Notice that i AND 1 is the same as i
(whether i is 0 or 1 does not make
a difference).

whatever the value of i, o1 is 0
because one of its inputs (s) is 0.
Notice that any input value that
goes through an AND gate with 0
as the other input yields 0 as
output.

if s is 0…

0

0

0

0

1

1

i

i

i

…then o0 = i.
In other words, i is sent to the first path.

i can be any value

o0 is 0 no matter the value of i,
because the other input of the AND
gate is 0.

o1 = i because the inputs of the
AND gate that produces o1 are i
and 1, and (i AND 1) = 1, whatever
the value of i.

if s is 1…

1

1

1

i

0

0

i

i

0

…then o1 = i.
In other words, i is sent to the second path.

i can be any value

This
means…

i

i

…that it is as if s selects where i goes.

!01

This is the circuit design style for
representing such a system, which
is called “demultiplexer” (also
known as “DEMUX”).
Since the choice is between 2
paths, this one is called a 1:2
DEMUX. In a 1:2 DEMUX, the
selection signal is just 1 bit.

CU

In our original example, the choice
is between 4 paths, so we actually
need a 1:4 DEMUX, with 2 bits for
the selection signal (s0 and s1,
enabling the selection among 4
paths: o00, o01, o10, and o11). The
electronics is a bit more
complicated, but the principles are
the same as the ones guiding the
design of the 1:2 DEMUX.

The story so far
• With all these considerations around logic, and the

construction of electronic circuits that embody
logical operators like NOT, AND, and OR, we have
focused on the L in ALU

• Moreover, we have combined NOT and AND gates
to create a DEMUX device, to enable the selection
of a path among many, by which the CU can send
signals where they are needed

• But what about the A in ALU?
• Aren’t computer built to compute, that is, do

arithmetics after all?

Back to basics of arithmetic
• Numbers work as input for arithmetic

operations no matter the numerical system
they are expressed in

• We can do 3 + 4 and obtain 7 (base 10)
• In the same way, we can do 011 + 100 and

obtain 111 (base 2)

Simple arithmetics in binary
• Given two bits in input, the rules for adding

them are very simple:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10, that is 0 with carry 1

• Since + applies to 2 bits and yields 1 bit in
output (possibly with a carry) just like AND
and OR, we can imagine to build a system
with logical gates that manipulate bits in a
way that coincides with what + does

Addition in electronics
• Let’s ignore the carry in the last case for

now, and focus on what happens with the
bits:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

input1 input2 output
0 0 0
0 1 1
1 0 1
1 1 1

} }The output of + is
almost ideantical
to the output of OR

Except for the last
case, where both
input bits are 1 and
the output is 0
instead of 1.

So, given two bits in input, b1 and b2,
b1 + b2 is like b1 OR b2 but not if they
are both 1.

Given two bits in input, b1 and b2,
b1 + b2 is like b1 OR b2 but not if
they are both 1.

To design a system that electronically realizes
this behavior, we can combine the outputs of:
b1 OR b2
AND
NOT (b1 AND b2),
as shown in the system in the figure (taken
from ”Che cos’è un computer” by Mario
Verdicchio, published by Carocci, 2023).

Let’s see who this system works in
the following slide.

b1 b2 A B C b0

0 0 0 0 1 0
0 1 1 0 1 1
1 0 1 0 1 1
1 1 1 1 0 0

A

B
C

The system uses the inputs b1 and b2 to compute (b1 OR b2) (which we called A) on the one side, and the negation of (b1
AND b2) on the other. The negation of (b1 AND b2) is computed by means of an AND gate (obtaining B) and then a NOT gate
(obtaining C).
The final computation, which gives the output, combines A and C with an AND, which corresponds to setting the final
result to 1 in all cases when (b1 OR b2) is 1, except for when (b1 AND b2) is 1: in that case C is 0 and, through the last AND
gate, sets the final result to 0.

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0
b1 b2 A B C b0

0 0 0 0 1 0
0 1 1 0 1 1
1 0 1 0 1 1
1 1 1 1 0 0

That electronic circuit, comprised of one OR gate, one NOT gate, and two AND gates combined as previously shown, yields
the same output as the addition applied to two single-bit inputs. Thus, it can work as an ADDER.
From a physical perspective, it is just a circuit that manipulates electric tensions, but with the fundamental encoding in
mind, we can see its (electric) operation as an (arithmetic) operation of addition.

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

0 + 0 = 00
0 + 1 = 01
1 + 0 = 01
1 + 1 = 10

We must not
forget about the
carry.

The carry is
another bit that
is part of the
final result. It is
0 in the first 3
cases, and 1 in
the last. The
output bits are
exactly like the
output of (b1
AND b2).

So to build the circuit
that computes the carry,
we just need to put the
two inputs through an
AND gate.

The bit in output from
the first system (in black,
printed) is saved in a 1-
bit memory space that
represents how many
units (20) are in the final
result.
The bit in output from
the second system (in
red, handwritten) is
saved in another
memory unit, indicating
how many twos (21) are
in the final result.

Since we have built an arithmetic system by combining a logical system of AND, OR, and NOT, does this mean that
arithmetic is based on logic?

Absolutely not. In the real world, arithmetic and logic have a very distinct origin. Actually, since counting with fingers
came before formalizing reasoning, if anything, arithmetic should be considered the basis of a way of thinking that
lead humanity to conceive logic at a later stage, but these are questions for historians and philosophers of science.

It is just that, in the material world of electronic circuits built my means of transistors, logical operators are much
simpler to implement than arithmetic operations. You can see it by noticing that we need only one transistor to build a
NOT gate, whereas an ADDER has a much more complex structure.

Computer Science gives us extremely useful devices, but those devices are the result of discoveries in science (e.g.
semiconductors) and socio-political agreements (e.g. encodings like RGB, standards like JPG). They should not be
taken as an indication of somem fundamental principles regarding how the universe works or how our thinking and
reasoning work.

And yet, there are some subfields of this discipline whose experts forget about this. You must not.

Let’s take a look at the most important subfields of Computer Science.

COMPUTER SCIENCE
is not the best name for the
discipline. It makes it sound like
the science of computers.
However, computers are only one
part of computer science.
Computers are hardware, but there
is a lot about software in this
discipline.

Indeed, the subfields that deal with
hardware and the ones that are the
farthest from Computer Science,
because they may even be
considered entirely different fields.

We have ELECTRONICS that deals
with the design and construction
of the circuits computers are made
of, and let’s not forget PHYSICS
that allowed us to discover
semiconductors.

PHYSICS is involved also in the
construction of the systems that
connect computers to one another
by means of cables, antennas,
satellites, etc.
When physical systems are used
for transmission of data over long
distances, the discipline is called
TELECOMMUNICATIONS (TLC).
A lot of the theory behind
encodings comes from the early
studies in telecommunications
(think of the Morse code).

It is great to build computers, but
they exist to be used.
SOFTWARE ENGINEERING (SE) is
the subfield of computer science
that is aimed at the creation of
software, in terms of programs
and programming languages
(artificial languages used to write
programs).

Programs make the computer world go around,
but we know that programs are based on
algorithms, and that algorithms are much more
abstract concepts that can be described in
mathematical terms or even natural languages
like English, Italian or Japanese. THEORETICAL
COMPUTER SCIENCE is the subfield that deals
with algorithms: to understand what kind of real
life problems can be tackled by means of
algorithms and computation, and to understand
what kind of resources (in terms of time and
memory space) they would need to be brought to
completion.

The connectivity ensured by
telecommunications and the
Internet has notably increased the
quantity of data that computers
have to deal with. DATABASE
MANAGEMENT (DBMS) is a
traditional subfield that is aimed at
the organization and analysis of
the data inside a computer.
Typically, data are organized in the
form of tables (also known as
relational databases), but the more
and more dynamic nature of data
coming from the Internet is
pushing for more flexibility, and in
many systems a graph-like
structured is preferred over tables
(non-relational) for databases.
Searches (like when you google
stuff you don’t know) and big data
(massive amounts of data that are
collected not only through the
Internet but also by means of
digital devices like smartphones,
smartwatches, credit cards) are
strongly emerging as key topics in
this context, up to the point hat
they might become independent
subfields themselves.

Table in a database

Graph-based database

Whatever is happening inside a computer, for us
human users it is fundamental that its outside or,
more precisely, that part of a computer’s outside
with which we interact works well. The point (or
rather surface) of contact between a computer
and its user is called “interface”, and an
appealing, captivating, easy-to-use interface
needs to be designed to ensure a successful IT
product. There are many disciplines that
gravitate in this area (User Experience,
Interaction Design, Graphic Design, etc.), which
is genrally known as HUMAN-COMPUTER
INTERACTION (HCI).

Finally, the hottest subfield of the moment:
ARTIFICIAL INTELLIGENCE (AI). In its traditional
form (it was born in the 1950s), AI was about
“automated reasoning”, that is, trying to capture
in computational form the rules of logic that
sustain human reasoning, to make computers do
the reasoning. After decades of minor successes
and major failures, another form of AI emerged,
called “machine learning” (ML), which has a
radically different approach: no more formal
logical reasoning, but statistical analysis of great
quantities of data, in search for correlations and
recurrent patterns. ML is considered a major
success because it just works, mainly thanks to
the abundant quantities of data available on the
Internet, which ML-programmed computers can
analyse. The most successful applications are
image analysis and classification (e.g. in the
medical field to detect cancer from x-ray images),
or text generation (e.g. ChatGPT) and image
generation (e.g. Midjourney , DALL-E).

This background image itself is the output of DALL-E, to which this input
was given: “image in neat minimal graphical style with pastel colors
depicting a person working in front of a desktop computer with a big screen
showing the interface of a very complex word processing software, while
the computer is connected to a cable that goes outside the room, connected
to a parabolic antenna.”

Where do DIGITAL HUMANITIES (DH) stand in all this? Are DH a subfield of
Computer Science? They are not: they are rather an interdisciplinary effort,
where problems in the humanities are analysed to understand whether they
can be solved by means of a computer, and where enhancements offered by
digital technology are explored to see whether they can impact traditional
methodologies and operations in the humanities. It is a two-way street that
is not confined within the realm of Computer Science, but it crosses it and
takes us around in still unexplored and not entirely meaningful lands.

