Information Technology for Digital Humanities

 Lecture 5

 Lecture 5}

Mario Verdicchio
Università degli Studi di Bergamo Academic Year 2023-2024

Lecture 5 (October 10 2023)

- Binary system exercises

Binary encoding of numbers

Numbers with base 10: $215=2 \times 10^{2}+1 \times 10^{1}+5 \times 10^{0}$

[^0]

Exercise 1

Convert the following numbers from base 2 to base 10: 101, 1000, 11011.

$$
\begin{aligned}
& \underbrace{101_{2}}_{1} \rightarrow ?_{10} \\
& \begin{array}{ccc}
\mathbf{b}^{2} & \vdots & 0 \\
1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}= \\
4 & \\
\hline
\end{array} \\
& 4+0+1=5_{10}
\end{aligned}
$$

$$
\underbrace{1}_{\begin{array}{c}
1 \\
3 \\
3 \\
2000_{2}
\end{array}=?_{10}} \begin{aligned}
& 0 \\
& 1 \cdot 2^{3}=8_{10}
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{11011_{2}}_{43210}=?{ }_{10} \\
& 4^{4}+2^{3}+2^{1}+2^{0}= \\
& 16+8+2+1=27_{10}
\end{aligned}
$$

Assigning a number to the positions of the binary number (also known as "indexing", that is, establishing an index) may look like a trivial task, but it presents significant differences whether it is done by a human or by a computer.

Notations to express this operation:

X++ $x \leftarrow x+1$

Exercise 2

Convert the following numbers
from base 10 to base 2:
$8,23,144,201$.

While the definition of a binary system helps us solve Exercise 1, we must find new methods to solve Exercise 2. There are two.

First method:

given the number \mathbf{n} in base 10, we look for the largest power of 2 that is less than or equal to n.
If it is the same, we have solved the problem: we write a 1 in the position corresponding to that power of 2, followed by zeros.
For example, 8 is a power of 2 : 2^{3} to be precise, so its binary encoding will be 1000.

However, if the largest power of 2 that is less than or equal to \mathbf{n} is less than \mathbf{n} (let's call it k), let's set it aside and we calculate the difference n-k.
We repeat the same procedure with n-k, and look for the largest power of 2 that is less than or equal to it.
We continue until we are able to express \mathbf{n} as a sum of powers of 2.
We take the list of powers and write a 1 in the corresponding positions, 0 in the others.
For example, the largest power of 2 contained in 23 is $16\left(2^{4}\right)$. Their difference is 7 , in which $4\left(2^{2}\right)$ is contained. The difference is 3 where there is $2\left(2^{1}\right)$, after which only $1\left(\mathbf{2}^{0}\right)$ remains.
Writing the powers of 2 present in order we get 10111.

While the definition of a binary system helps us solve Exercise 1, we must find new methods to solve Exercise 2. There are two.

First method.

given the number \mathbf{n} in base 10, we look for the largest power of 2 that is less than or equal to n.

This is another task that can be executed in many different ways. Humans that are very acquainted with arithmetic and powers of 2, they do it swiftly, almost unconsciously.
For example, if n is 5 , then it comes immediately to my mind that the largest power of 2 that is less than or equal to 5 is 4 , because I have been working with powers of 2 for a long time.
However, a computer, despite being a calculator, does not have experience, nor intuition, nor a consciousness, not a subconscious mind.
Hence, given n , for a computer to find the largest power of 2 that is less than or equal to n , we need to specify an algorithm like the one in the next slide.

Second method:

we divide the number by 2 and obtain quotient and remainder.
As long as the quotient is not 0 , we take it as the new dividend and continue dividing. When we get zero quotient, we have to write the list of remainders in reverse order to get the binary encoding of the initial number.
Let's take 144 as an example:

$$
\begin{aligned}
& 144: 2=72 \text { with remainder } 0 \\
& 72: 2=36 \text { with remainder } 0 \\
& 36: 2=18 \text { with remainder } 0 \\
& 18: 2=9 \text { with remainder } 0 \\
& 9: 2=4 \text { with remainder } 1 \\
& 4: 2=2 \text { with remainder } 0 \\
& 2: 2=1 \text { with remainder } 0 \\
& 1: 2=0 \text { with remainder } 1
\end{aligned}
$$

144 in base 2 is 10010000 (these bits are the remainders in the reverse order of writing)

Second method:

we divide the number by 2 and obtain quotient and remainder.
As long as the quotient is not 0 , we take it as the new dividend and continue dividing. When we get zero quotient, we have to write the list of remainders in reverse order to get the binary encoding of the initial number.
Let's take 144 as an example:

$$
\begin{aligned}
& 144: 2=72 \text { with remainder } 0 \\
& 72: 2=36 \text { with remainder } 0 \\
& 36: 2=18 \text { with remainder } 0 \\
& 18: 2=9 \text { with remainder } 0 \\
& 9: 2=4 \text { with remainder } 1 \\
& 4: 2=2 \text { with remainder } 0 \\
& 2: 2=1 \text { with remainder } 0 \\
& 1: 2=0 \text { with remainder } 1
\end{aligned}
$$

144 in base 2 is 10010000 (these bits are the remainders in the reverse order of writing)

Encoding of numbers

Numbers with base 10: $215=2 \times 10^{2}+1 \times 10^{1}+5 \times 10^{0}$

Numbers with base 2: $101=1 \times 10^{2}+0 \times 10^{1}+1 \times 10^{0}$

Encoding of numbers

Numbers with base 10:
 $215=2 \times 10^{2}+1 \times 10^{1}+5 \times 10^{0}$

Numbers with base 2: $101=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$

Numbers with base 8: $723=7 \times 8^{2}+2 \times 8^{1}+3 \times 8^{0}=467$

There are also systems

 where the base is greater than 10, like the "hexadecimal" system, where the base is 16 , that is, we have 16 digits:

> Numbers with base 16: $\begin{gathered}3 A F=3 \times 16^{2}+\mathrm{A} \times 16^{1}+\mathrm{F} \times 16^{0} \\ =3 \times 256+10 \times 16+15 \times 1 \\ =768+160+15=943 \\ 3 A F_{16}=943_{10}\end{gathered}$

Often, in the IT world, they use an alternative notation to
n_{16}, that is $0 \times \mathrm{xn}$ (e.g. $0 \times 3 \mathrm{AF}$)

[^0]: Numbers with base 2: $110010111=1 \times 2^{8}+1 \times 2^{7}+$ $0 \times 2^{6}+0 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+$ $1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$

