
Information Technology for
Digital Humanities

Lecture 5
Mario Verdicchio

Università degli Studi di Bergamo
Academic Year 2023-2024



Lecture 5 (October 10 2023)
• Binary system exercises



Binary encoding of numbers

Numbers with base 10:
215 = 2×102 + 1×101 + 5×100

Numbers with base 2:
110010111 = 1×28 + 1×27 + 
0×26 + 0×25 + 1×24 + 0×23 +

1×22 + 1×21 + 1×20 



Convert the following numbers
from base 2 to base 10:
101, 1000, 11011.

Exercise 1









Assigning a number to the positions of
the binary number (also known as
“indexing”, that is, establishing an index)
may look like a trivial task, but it presents
significant differences whether it is done
by a human or by a computer.



A human can typically use their eyes to
understand how many positions are there
at a glance, and then starts writing the
indexes from right to left, starting with
“0”. A computer cannot do that, because
they do not have a global perception, but
can only treat one data after the other.

In the following slide, there is an
algorithm that guides a computer in the
task of indexing the positions.



go to the 1st position 
on the right

x ← 0

index the position
with x

is there still 
a position to index

on the left?move to the next
position on the left

increase x by 1



go to the 1st position 
on the right

x ← 0

index the position
with x

is there still 
a position to index

on the left?move to the next
position on the left

increase x by 1

Obviously “going to the 1st 
position” is a very abstract, 

metaphorical description of a 
more concerete data access 
operation that the computer 

must execute.



go to the 1st position 
on the right

x ← 0

index the position
with x

is there still 
a position to index

on the left?move to the next
position on the left

increase x by 1

The arrow represents an 
operation of “assignment”, in 
which a value is assigned to 

x, which works as a 
“variable” or “parameter.

This assignment, in 
particular, is the very first 

one and works as a set-up. 
Set-ups in an algorithm are 

called “initializations”.



go to the 1st position 
on the right

x ← 0

index the position
with x

is there still 
a position to index

on the left?move to the next
position on the left

increase x by 1

It is more clever to have 
“index with x” rather than 

“index with 0”, because the 
former is more flexible: it 

does different things 
depending on the value of x, 
whereas the latter has only 

one fixed result. An 
operation whose result 

depends on a parameter in it 
is called “parametric”.



go to the 1st position 
on the right

x ← 0

index the position
with x

is there still 
a position to index

on the left?move to the next
position on the left

increase x by 1

Notations to express this 
operation:

x++
x ← x+1



Convert the following numbers
from base 10 to base 2:
8, 23, 144, 201.

Exercise 2



While the definition of a binary system helps us solve
Exercise 1, we must find new methods to solve Exercise 2.
There are two.

First method: 
given the number n in base 10, we look for the largest power of 2 that is less 
than or equal to n. 
If it is the same, we have solved the problem: we write a 1 in the position 
corresponding to that power of 2, followed by zeros. 
For example, 8 is a power of 2: 23 to be precise, so its binary encoding will be 
1000. 
However, if the largest power of 2 that is less than or equal to n is less than n 
(let's call it k), let's set it aside and we calculate the difference n-k. 
We repeat the same procedure with n-k, and look for the largest power of 2 
that is less than or equal to it. 
We continue until we are able to express n as a sum of powers of 2. 
We take the list of powers and write a 1 in the corresponding positions, 0 in 
the others. 
For example, the largest power of 2 contained in 23 is 16 (24). Their difference 
is 7, in which 4 (22) is contained. The difference is 3 where there is 2 (21), after 
which only 1 (20) remains. 
Writing the powers of 2 present in order we get 10111.



While the definition of a binary system helps us solve
Exercise 1, we must find new methods to solve Exercise 2.
There are two.

First method: 
given the number n in base 10, we look for the largest power of 2 that is less 
than or equal to n. 
If it is the same, we have solved the problem: we write a 1 in the position 
corresponding to that power of 2, followed by zeros. 
For example, 8 is a power of 2: 23 to be precise, so its binary encoding will be 
1000. 
However, if the largest power of 2 that is less than or equal to n is less than n 
(let's call it k), let's set it aside and we calculate the difference n-k. 
We repeat the same procedure with n-k, and look for the largest power of 2 
that is less than or equal to it. 
We continue until we are able to express n as a sum of powers of 2. 
We take the list of powers and write a 1 in the corresponding positions, 0 in 
the others. 
For example, the largest power of 2 contained in 23 is 16 (24). Their difference 
is 7, in which 4 (22) is contained. The difference is 3 where there is 2 (21), after 
which only 1 (20) remains. 
Writing the powers of 2 present in order we get 10111.

This is another task that can be executed in many different ways.
Humans that are very acquainted with arithmetic and powers of 2, they do it 

swiftly, almost unconsciously.
For example, if n is 5, then it comes immediately to my mind that the largest 

power of 2 that is less than or equal to 5 is 4, because I have been working with 
powers of 2 for a long time.

However, a computer, despite being a calculator, does not have experience, nor 
intuition, nor a consciousness, not a subconscious mind.

Hence, given n, for a computer to find the largest power of 2 that is less than or 
equal to n, we need to specify an algorithm like the one in the next slide.



n

x ← 0

k ← 2x

k > n ?x ← x+1 x ← x-1

k ← 2x

k



n

x ← 0

k ← 2x

k > n ?x ← x+1 x ← x-1

k ← 2x

k

This input is parametric: the 
algorithm is meant to work for 
any value n that comes, not 
just a specific one (like 5).



n

x ← 0

k ← 2x

k > n ?x ← x+1 x ← x-1

k ← 2x

k

x is the value of the exponent 
in the power; since the 

computer has the search the 
correct value, the starting 

value is 0, the smallest one, so 
that the search does not miss 

out any value. This is an 
initialization of x to 0.



n

x ← 0

k ← 2x

k > n ?x ← x+1 x ← x-1

k ← 2x

k

We compute the power and 
assign the value of the result 
to a variable that we call “k” (it 

could have been any letter 
except for “n” or “x”, which are 

already used for other 
purposes).



n

x ← 0

k ← 2x

k > n ?x ← x+1 x ← x-1

k ← 2x

k

If k is not bigger than n, we 
search further. Since we have 
worked so far with x, now we 
switch to the next value and 

increase x by 1.



n

x ← 0

k ← 2x

k > n ?x ← x+1 x ← x-1

k ← 2x

k

If k is bigger than n, then we 
went overboard. The previous 

value of x was the right 
exponent that yielded the 

largest power 2x that is smaller 
than or equal to n. To obtain 
the previous value of x, we 
have to decrease x by 1.



n

x ← 0

k ← 2x

k > n ?x ← x+1 x ← x-1

k ← 2x

k

Once we have the exponent x 
we were looking for, we 
recompute the power 2x, 

assign it to k, and send k out 
as the output of the algorithm.



Second method: 
we divide the number by 2 and obtain quotient and remainder. 
As long as the quotient is not 0, we take it as the new dividend and continue 
dividing. When we get zero quotient, we have to write the list of remainders in 
reverse order to get the binary encoding of the initial number.
Let's take 144 as an example:

144 : 2 = 72 with remainder 0
72 : 2 = 36 with remainder 0
36 : 2 = 18 with remainder 0
18 : 2 = 9 with remainder 0
9 : 2 = 4 with remainder 1
4 : 2 = 2 with remainder 0
2 : 2 = 1 with remainder 0
1 : 2 = 0 with remainder 1

144 in base 2 is 10010000 (these bits are the remainders in the reverse order
of writing)



Second method: 
we divide the number by 2 and obtain quotient and remainder. 
As long as the quotient is not 0, we take it as the new dividend and continue 
dividing. When we get zero quotient, we have to write the list of remainders in 
reverse order to get the binary encoding of the initial number.
Let's take 144 as an example:

144 : 2 = 72 with remainder 0
72 : 2 = 36 with remainder 0
36 : 2 = 18 with remainder 0
18 : 2 = 9 with remainder 0
9 : 2 = 4 with remainder 1
4 : 2 = 2 with remainder 0
2 : 2 = 1 with remainder 0
1 : 2 = 0 with remainder 1

144 in base 2 is 10010000 (these bits are the remainders in the reverse order
of writing)

Exercise for you: draw the flowchart for the algorithm that corresponds to the 
second method.



Encoding of numbers
Numbers with base 10:

215 = 2×102 + 1×101 + 5×100

Numbers with base 2:
101 = 1×102 + 0×101 + 1×100



Encoding of numbers
Numbers with base 10:

215 = 2×102 + 1×101 + 5×100

Numbers with base 2:
101 = 1×22 + 0×21 + 1×20

Numbers with base 8:
723 = 7×82+2×81+3×80 = 467



There are also systems 
where the base is greater 

than 10, like the 
“hexadecimal” system, 

where the base is 16, that is, 
we have 16 digits:

0 1 2 3 4 5 6 7 8 9 A B C D E F
it corresponds to 10

it corresponds to 15



Numbers with base 16:
3AF = 3×162+ A×161+ F×160

= 3×256+ 10×16+ 15×1
= 768 + 160 + 15 = 943

3AF16 = 94310

Often, in the IT world, they 
use an alternative notation to 
n16, that is 0xn (e.g. 0x3AF)


