Digital Humanities

 Lecture 5 April 12 2024

$x \quad y \quad r \quad g \quad b$ $\square(9,14,245,133,167)$

US-ASCII Code Chart. Scanner

 copied from the material delivered with TermiNet 300 impact type printer with Keyboard, February 1972, General Electric Data communication Product Dept., Waynesboro, Virginia.USASCII code chart

$\mathrm{b}_{7} b_{6} b_{5}$					${ }^{0}{ }_{0}$	${ }^{0}{ }_{1}$	$\begin{array}{llll}0 & & \\ & 1 & \\ & & 0\end{array}$	$0^{0} 1$	${ }^{1} 0$	${ }^{1} 0_{1}$	${ }^{1} 10$	${ }^{1} 1$
	${ }^{b_{3}}$	b_{2}	$\overline{b_{1}}$		0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	DLE	SP	0	a	P	,	p
0	0	0	1	1	SOH	DC1	!	1	A	0	0	9
0	0	1	0	2	STX	DC2	"	2	8	R	b	r
0	0	1	1	3	ETX	DC3	\#	3	C	S	c	3
0	1	0	0	4	EOT	DC4	8	4	D	T	d	1
0	1	0	1	5	ENQ	NAK	\%	5	E	U	e	u
0	1	1	0	6	$\triangle C K$	SYN	8	6	F	V	f	\checkmark
0	1	1	1	7	BEL	ETB	,	7	6	w	9	w
1	0	0	0	8	BS	CAN	1	8	H	X	n	\times
1	0	0	1	9	HT	EM	$)$	9	1	Y	i	y
1	0	1	0	10	LF	SUB	*	:	J	Z	j	2
1	0	1	1	11	VT	ESC	+	;	K	[k	(
1	1	0	0	12	FF	FS	,	$<$	L	1	1	,
1	1	0	1	13	CR	GS	-	$=$	M	3	m	\}
1	1	1	0	14	So	RS	.	>	N	\wedge	n	\sim
1	1	1	1	15	S1	US	,	?	0	-	0	DEL

$3+2$
352

János Lajos Neumann

Nuclear bomb test (Bikini Atoll, Micronesia, 1946)

Honeymoon in Kyoto

Kyoto is an incredibly romantic city. With intimate restaurants, atmospheric lanes, superb accommodations and a thousand quiet gardens and temples, it's the perfect place to spend time with someone you love. Here's our full guide to honeymooning in Kyoto.

THE STORED PROGRAM

Both operations and

 operands can be stored in the same place.
THE STORED PROGRAM

Both operations and

 operands can be stored in the same place.
operations operands

$3+2$

operations operands

352

operations
 operands

place 352

$\left.\begin{array}{c}1 \\ 2 \\ 2 \\ 2\end{array} \begin{array}{cccc}1 & 2 & \ldots & n \\ a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ a_{31} & a_{32} & \ldots & a_{3 n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$

57681349

06789011 28354576 98087739

The image can be put in a system of coordinates, so that each pixel's position is determined by a pair of numbers (x, y)
$\square(9,14)$

$$
\begin{array}{|l|l|}
\hline 57681349 \\
\hline 06789011 \\
\hline 28354576 \\
\hline 98087739
\end{array}
$$

bit
 0

Byte 01101010

Why is 1 Byte

 made of 8 bits?

operations operands

352

Again, choices.

THE STORED PROGRAM

Both operations and

 operands can be stored in the same place.
THE STORED PROGRAM

Both operations and

 operands are bits stored inside words.
THE STORED PROGRAM

We manipulate
operands with
operations.
decrease

THE STORED PROGRAM

We can manipulate
operations with change operations, too.
into "double" decrease

THE STORED PROGRAM

We can manipulate operations with operations, too.

double

operations
 operands

place 352

0000 | 01101010 |
| :--- | :--- | :--- |
| 11001110 |
| 11011011 |
| 10001011 |

0000 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

operations

operands

place

THE STORED PROGRAM

- We manipulate operands.
- We manipulate operations.
- We manipulate addresses.

THE STORED PROGRAM

- We elaborate data.
- We create and modify programs.
- We transfer data and programs.

The Digital in
Digital A...ion.docx

The Digital in
Digital A...ion.docx

PROGRAM

DATA

A file cabinet.

Smiling Vintage Secretary ... 123rf.com

Female secretary or assistant checking alamy.com

Classic Solid Wood Secretar. dutchcrafters.com - In stock

Secretary filing cabinet Sto... masterfile.com

Smiling secretary searchi... canstockphoto.com

Secretary desks, File cabinet desk pinterest.pt

Female secretary or assistant checking alamy.com

2 Drawer File Cabinet Solid Oak amazon.com

Free Filing Cabinet Drawer ... stockunlimited.com

File cabinet desk. pinterest.com

Female secretary or assist.. alamy.com

Oak secretary, file cabinet... pinterest.it

Where is $W ?$

Where is W ?

\square

From word 10200 to word 35704.

35704

PROGRAM
 DATA

 FILES
FILES

- A file is a group of bits that are logically treated as a unit.
- A file may be comprised of data, program instructions, or addresses.

FILES

- A file is a group of bits that are logically treated as a unit.
- A file may be comprised of data, program instructions, or addresses.
Where is W?

From word
10200 to word
24000 and from
word 27000 to
35704.

10200	
	24000
	2700
	35704

FILES

- A file is a group of bits that are logically treated as a unit.
- A file may be comprised of data, program instructions, or addresses.

Digital Humanities @UniBG

Digital Humanities @UniBG

FOLDER

Memory < (Greek) Mimnesko < mnè < men [the mind]


```
Memory < (Greek) Mimnesko < mnè < men [the mind]
Record < (Latin) Re-cordis < cor < [the heart]
```


Memory < (Greek) Mimnesko < mnè < men [the mind]
Record < (Latin) Re-cordis < cor < [the heart]

Memory < (Greek) Mimnesko < mnè < men [the mind]
Record < (Latin) Re-cordis < cor < [the heart]

Re

What "Re" is about.

What "Re" is about.

What "Re" is about.

What "Re" is about.

What "Re" is about.

What "Re" is about.

past event

remembering
now

What "Re" is about.

- An event

What "Re" is about.

- An event

- A description of the event

What "Re" is about.

- An event

- A description of the event

- A person who accesses the description

What is this, really?

- An event

- An event

- A description of the event

On this slide, they are both descriptions of an event.

- An event

- A description of the event

The only event here is that I am showing this slide.

- An event

An event happens.
There are people in a place, with their bodies, their faces, their voices.
There is music, there is dancing. There is food, there are flowers. There are tastes, there are smells.

- A description of an event

An event happened.
There were people in a place, with their bodies, their faces, their voices.
There was music, there was dancing. There was food, there were flowers. There were tastes, there were smells.

What "Re" is about.

- An event

- A description of the event

- A person who accesses the description

What about the person?

- An event

- A description of the event

- A person who accesses the description

"If a tree were to fall on an island where there were no human beings would there be any sound?"

"If a Polaroid picture were to be on an island where there were no human beings would there be any memory?"

1. There is a relation between the person accessing the description and the content of the description

Memories are not only about a single person. Memories can be about a family, a nation, a culture, the human race.

past
event

remembering
now

remembering
in the future

remembering
in the far future

2. There is a relation between the person accessing the description and the container of the description

time

Is a person still able to access the description of an event? Will the container of that description stand the test of time?

Digital Memory Devices

Digital Memory Devices

USASCII code chart

$\mathrm{B}_{7} b_{6} b_{5}$					${ }^{0} \mathrm{O}_{0}$	0_{0}		$0^{0} 1$	${ }^{1} 0$	${ }^{1} 0$	${ }^{1} 10$	$\begin{array}{lll}1 & \\ & 1 \\ & \\ & \\ & \\ \end{array}$
$\sim \underbrace{\mathrm{b}_{4}}_{4}$	${ }^{\text {b }}$	b_{2}	$\left[\begin{array}{c} b_{1} \\ 1 \end{array}\right.$	Row	0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	DLE	SP	0	O	P	,	P
0	0	0	1	1	SOH	DC1	!	1	A	0	0	9
0	0	1	0	2	STX	DC2	"	2	8	R	b	r
0	0	1	1	3	ETX	DC 3	\#	3	C	S	c	5
0	1	0	0	4	EOT	DC4	1	4	D	T	d	1
0	1	0	1	5	ENQ	NAK	\%	5	E	U	e	u
0	1	1	0	6	ACK	SYN	8	6	F	V	1	v
0	1	1	1	7	BEL	ETB	,	7	G	W	9	w
1	0	0	0	8	BS	CAN	1	8	H	X	h	x
1	0	0	1	9	HT	EM)	9	1	Y	i	y
1	0	1	0	10	LF	SUB	*	:	J	Z	j	2
1	0	1	1	11	VT	ESC	+	;	K	[k	(
1	1	0	0	12	FF	FS	,	$<$	L	1	1	1
1	1	0	1	13	CR	GS	-	$=$	M	了	m	\}
1	1	1	0	14	SO	RS	.	$>$	N	へ	n	\sim
1	1	1	1	15	S 1	US	1	?	0	$=$	0	DEL

USASCII code chart

$\mathrm{P}_{6} 6_{5} \square$					${ }^{\circ}{ }_{0}$	0_{0}	${ }^{0} 1$.	0,	10^{1}	'0,	'1。	${ }^{1} 1$,
~15					0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	DLE	SP	0	ρ	P	,	ค
-	0	0	1	,	SOH	DC1	!	1	A	0	-	9
-	0	1	0	2	STX	DC2	-	2	8	R	b	.
	0	1	1	3	ETX	OC3	\#	3	c	s	c	5
-	1	0	0	4	EOT	DC4	1	4	0	τ	${ }^{\circ}$,
\bigcirc	1	0	1	5	ENO	NAK	\%	5	E	\checkmark	-	\checkmark
0		1	0	6	ACK	SYN	a	6	F	v	t	\checkmark
		1	1	7	8EL	ETB		7	6	*	9	
	0	-	0	8	BS	CAN	1	8	H	${ }^{x}$	-	
1	0	0	1	9	HT	EM	1	9	1	r	i	y
1	0	1	0	10	Lf	Sub	*	:	J	2	;	2
1	10	1	1	11	VT	ESC	$+$:	κ	c	k	
1	1	0	0	12	Ff	FS		$<$	L	1	1	1
1	1	0	1	13	CR	65	-	$=$	m	3	m)
		1	0	14	so	is		>	N	\wedge	n	\sim
1	11	1	1	15	S1	us	,	?	\cdots	a	\bigcirc	OEL

USASCII code chart

time

time

10000 years

