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Tools for data
processing

This lesson focuses on what data/symbols/signs can
be processed using computers.
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symbol symbol

In computer science, the term “symbol” has a much
weaker meaning than in the humanities: by “symbol”
we mean any sign, such as a figure, without any
associated meaning, as happens instead for the lion,
to which we associate by symbolism the concept of
“courage”.
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Having simple numbers on a screen seems a bit
limiting compared to what we usually see happening
on the computers around us.
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Authors, for example, write entire novels on their
computer.



And, certainly, at least these three activities take
place on the computers of the students of the
course: social networks, listening to music, and
watching films.
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Let’s think. 
Premise 1: computers are nothing more than automatic 
executors of operations on symbols. 
Premise 2: with computers we write novels, surf social 
networks, listen to music, watch films.

Conclusion:
writing novels, surfing social
networks, listening to music,
watching films are operations on
symbols.

The reasoning is flawless, but the
conclusion may leave you
perplexed.
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To better understand the conclusion
of the previous reasoning, it is
necessary to clarify the link between
all these activities and the symbols
processed by a computer.



encoding

This link is given by an encoding.



ENCODING
is

EVERYTHING
*in digital technology

*



ENCODING [ɪnˈkəʊdɪŋ]:
biunivocal correspondence
between a set of entities of
any kind and a set of natural
numbers.
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ENCODING
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EVERYTHING
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*

*from a conceptual perspective



A computer.



It only works with numbers.



It cannot work with anything else.



Input needs to be ENCODED.

0

1

2

3



The computer works.

+ − 
× ÷



Output needs to be DECODED.

0

1

2

3



COMPUTER SCIENCE
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Let's see how we can create an encoding for texts.



UTF-8 Universal Character Set 
Transformation Format – 8bit

The encoding of texts is based on the encoding of the characters that compose 
them: if I match each letter and each punctuation mark with a number, I obtain a 
one-to-one correspondence between letters and numbers. For this correspondence 
to be useful, it must be known and shared by all those who want to use a computer 
to exchange the texts thus encoded. 
This table shows a well-known encoding: UTF-8



108927350456345347653845098753094857039
845628765039417538945734589349058340958
447826296204237862386437826178162372762
130487627634780123640237462837467637643
764208701828736347565805656582760278635
082716508217365827136502781356082173656
573802783562387460215606098465246574568
038047569345830948563094563074560384756
038476501837465087314650138746507834560
384756037486578346574658734506183745601
837465018376456758403876573480187364571
088573465783104587134653178451103874650

In order to be processed by a
computer, the words of Jonathan
Franzen’s novel “Freedom” must
be encoded in the form of a
sequence of numbers. Each
number corresponds uniquely to
a character in the text.
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Let's see how social networks
like Facebook can also be
encoded.



What we see on our computer of a social network is nothing more
than a set of texts and images.



We've already dealt with texts, so now let's focus our attention on
images.



Looking at a very detailed photo of sweets from Bergamo, it is
difficult to think that there could be a correspondence with the
natural numbers.



By looking at a low-resolution image of Mario, you can instead
understand how a photo can be encoded.



pixel: 
picture 
element

In the image of Mario, you can recognize basic square elements, characterized by the
positions they occupy, and by their color: they are pixels.



pixel (1/12000000)

This photo is also made of pixels. We just don't see them because they are too small. In
this image there are 12 million of them.



Image encoding is based on the pixels that compose it. In the same way as text is
considered as a sequence of characters to be encoded…

…so we consider a photo a sequence of pixels. If we can encode one pixel, we can
encode an entire image.



0 1 2

encoding of the 
pixel’s position

We said that the first characteristic of a pixel is its position. If we imagine inserting the
image in a Cartesian plane, we are able to identify the position of the pixel via its
numerical coordinates



0 1 2

what about its color?



0 1 2

If we imagine organizing colors in a table, in the same way as pixels we are able to
associate a numerical value with each color, corresponding to the coordinates of the
color in the table.



567872872983093948748974987498748467101
187627862876783546354137676129123621352
413651243873614983502385746754779090939
423847293847283478237492384723894728347
298374283647165155155625465463546354376
473658475984759824757671511019824928493
849340283918091740375474783474736478364
734637843940109134813409463074560384756
038476501837465087314650138746507834560
384756037486578346574658734506183745601
837465018376456758403876573480187364571
088573465783104587134653178451103874650

The pixels that make up
Mario, therefore, can be
coded based on their position
and their color, allowing the
image, a sequence of pixels,
to be expressed in the form of
a sequence of numbers.



108927350456345347653845098753094857039
845628765039417538945734589349058340958
447826296567346374637463349348989810101
029493848374873487394873481761764739487
398473948738471893749183748374837483743
814718397491384791834781347139847183947
318478134718347387483478347384738748738
473483748734873847384738478347834738478
347834791837498137483483138746507834560
384756037486578346574658734506183745601
837465018376456758403876573480187364571
088573465783104587134653178451103874650

We proceed in a similar way
for the 12-million-pixel photo.
It is no coincidence that more
detailed photos take up more
space in a computer memory:
there are simply more
encoded pixels.



0 1 2

As you will have noticed, in the table that allows color coding, not all shades
are present. Just take two adjacent squares and imagine taking the
intermediate color: it is not clearly present in the table, so it is not an encoded
color.



This means that only a small part of the colors in the spectrum can be
encoded. Numerous nuances (infinite, to be precise) remain left out of the
coding. On the other hand, it is unthinkable to have a table of infinite
dimensions to accommodate the infinite shades of colors.



Physical [Analog]
vs.

Digital

This is the problem of the conversion from physical phenomena to “digital”
(i.e. made of digits) descriptions: the encoding of physical phenomena always
involves a loss of information. Drawing a comparison with mathematics,
physical phenomena are characterized by infinitesimal nuances similar to real
numbers, while encodings are correspondences with natural numbers, which,
despite being infinite, are still much smaller than real numbers and cannot act
as references to the aforementioned nuances.

It is like when people say that looking at a photo can never equal seeing the
real thing. In reality, three-dimensionality aside, current color encoding can
capture millions of shades, many of which are indistinguishable to the human
eye. Therefore, albeit with losses, encoding allows us to have more than good
approximations of reality.



Compression

We mentioned before that the detailed photo of the sweets results in a much
longer encoded sequence of numbers than the very simple drawing of Mario.
The length of the encodings naturally depend on what is encoded: the greater
the information to be encoded, the longer the result, and in fact the photo of
the sweets (with all the details and nuances given by the 12 million pixels)
certainly takes up more space in the computer than the Mario drawing (which,
in fact, is a sequence of 16 x 12 pixels).

There are, however, different ways of describing the sequence of encoded
pixels, and, if we choose wisely, we can obtain a shorter description of the
same sequence, so that it takes up less space on the computer, and also
saves time in transmitting it from one computer to another. We call
“compression” a way to obtain sequences of symbols that describe a
particular piece of information in a shorter way than the simple list of
encodings of each element that composes it.



white pixel, green pixel,
green pixel, yellow pixel,
yellow pixel, yellow
pixel, yellow pixel, green
pixel, green pixel, green
pixel, green pixel, white
pixel

1 white pixel,
2 green pixels,
4 yellow pixels,
4 green pixels,
1 white pixel

The description of the Mario
image, for example, can be
compressed by describing its
pixels as shown in the second
red box.

Any type of information that can be encoded can be compressed. The compression
ratio, i.e. how much we can summarize the description, depends on the content of
the information. (Imagine having to describe an all-white 16 x 12 rectangle. How
would you do it?)
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Let's now see how encoding
allows you to have music on
your computer.



frequency / pitch

am
pl

itu
de

 / 
lo

ud
ne

ss
shape / timbre



Sounds, and therefore also music, are due to vibrations of the
air (or of any medium*) which propagate in the form of waves
and which, hitting our eardrums, give rise to what we perceive
with our ears. Sound waves are characterized by an amplitude
(which determines the loudness of the sound: the wider the
wave, the louder the sound), a frequency (which determines
the pitch of the note: high notes correspond to high
frequencies), and by a shape (which determines the timbre of
the sound: my voice, your voice, piano, violin, cymbals, a
doorbell, …)

*sounds do not propagate in a vacuum



Sampling

The encoding of sounds is based on the encoding of the
waves that produce them, which is in turn based on a
procedure called sampling.



Sampling consists in considering the wave that constitutes the sound only in certain
moments of time. Imagine describing the sound wave (with its amplitude, frequency,
and shape) in a Cartesian plane, and considering only certain points of this curve.

These points correspond, in the Cartesian plane, to precise coordinates, whose
numerical value is used as coding of the “sampled” sound. The encoded sequence of
the samples constitutes the encoding of the entire sound data represented by the
wave.



sampling frequency

There is no universal criterion for
establishing the distance between one
sample and the next (or its inverse,
known as “sampling frequency”). It is
easy to imagine that samples that are
closer to each other (higher sampling
frequency) correspond to a longer
encoding, and also a reconstruction that
is more faithful to the original wave. Even
in the case of sound and music
encodings, there are compression
methods to synthesize their description.
The famous MP3 files are called this way
because they take their name from a
specific sound encoding technique with
compression. Even in this context there
are people who say that the sound of an
MP3 on a computer will never equal the
quality of a live concert: it’s all a question
of approximations.



again, physical vs digital

Encoding a sound is used to make it
processable by a computer (for example,
to allow the transfer of a song from the
iTunes online store to our computer).
However, even in the digital age, we
continue to listen with our ears, and to
make our listening possible, we need
sound waves that propagate in the air. A
reconversion from numerical coding to
sound waves is therefore necessary: that
is, we need speakers which, controlled
by the electrical signals produced by the
computer according to the numbers
contained in the coding of the song,
make membranes vibrate which produce
waves that we perceive as sounds and
music.



♬

1. Electric 
signal built out 

of the numerical 
data in the 
computer

2. The signal goes 
through the solenoid 

and its changes 
determine a magnetic 

field in it.

3. The solenoid’s field 
interacts with the 
magnet’s and the 
solenoid moves, 

hitting the membrane

4. The vibrations of 
the membrane 

reproduce sounds and 
music 
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Finally, let's see how to proceed with
video encoding.



+

=

+ …

Actually, having image
and sound encoding
techniques available, it
is easy to imagine that
they can be combined
to create video
encoding.

Additional techniques are
needed to take into account the
synchronization between images
and sounds, and compression
techniques based on the idea of
not describing all the pixels of
each image, but only describing
the initial one and then focusing
on the differences between an
image and the next (better
compression with very similar
frames, worse compression with
scene changes).





As already mentioned, the approximation that occurs when passing
from physical phenomena such as colors and sound waves to
numerical encoding suitable for a computer is reminiscent of the
relationship between real numbers and natural numbers in
mathematics. Perhaps the use of natural numbers to talk about the
concept of encoding may seem limiting and may seem to invite the
involvement of rational numbers, but the underlying argument does
not change: even with rational numbers, the encodings are unable
to faithfully reproduce a physical phenomenon, but they bring with
them inevitable approximations. The number in the previous slide,
for example, represents only a part of the decimal expansion of the
number π . We can approximate it as we like, but part of the
description of π will still be left out and cannot be included, since no
calculator is capable of containing an infinite sequence of digits.
The important thing is that the approximation reaches such detail
that the reconstruction of the physical phenomenon is
indistinguishable from the original to the eyes (or ears) of the
human being who uses the computer to process it.



567872872983093948748974987498748467101
187627862876783546354137676129123621352
413651243873614983502385746754779090939
423847293847283478237492384723894728347
298374283647165155155625465463546354376
473658475984759824757671511019824928493
849340283918091740375474783474736478364
734637843940109134813409463074560384756
038476501837465087314650138746507834560
384756037486578346574658734506183745601
837465018376456758403876573480187364571
088573465783104587134653178451103874650

Let’s consider again the concept of
encoding with the example of the image
of Mario. To be processed by a
computer, it must be transformed into a
sequence of digits.



Actually, these digits must 
themselves be encoded to 

be processed by a 
computer. 

This further encoding 
transforms them into a 
sequence of 0s and 1s.



010101010101010001001110101010101010101
011101010000101010101010111010101010110
101010010011111111010101010101010010101
010101010111111001010001101010100011101
010101011110101101010001010100111010011
010100111000101011101010100010101011010
100011011010101110101001010001010101000
101110101010101110010101010100010101010
101010101110101010100010101010111010101
010110101011111010111000001110001110011
100110101011100111000111000101010101111
000011100001010101010110010101011111000





What is a bit?
It is the basic data unit 

processed by a computer: 
it is 0 or 1.

bit = binary + digit.
8 bit (b) = 1 Byte (B).

The encoding that uses only 0 and 1 
is called binary encoding 

(because it only uses 2 digits).



Why 0 and 1?

High electric voltage: 1
Low electric voltage: 0



The electronic circuits that make up a computer are built
to respond to high or low voltage electrical signals. High
voltage is interpreted as a “1”, while low voltage is
interpreted as a “0”. The restriction to only two values has
no physical reason: it is possible to build circuits that
respond with numerous voltage levels. For example, we
could have 10 different ones, interpretable as the 10 digits
(from “0” to “9”) that are usually used in mathematics.

However, the advantages of having only two signals are
numerous:
the circuits are simpler to make and cost less;
furthermore, the output signals, even in the presence of
disturbances due to natural causes, are easier to interpret,
with less possibility of error. (e.g. 0.8 ≈ 1)



Multiples

1 KB (kilo) = 1000 B
1 MB (mega) = 1 million B
1 GB (giga) = 1 billion B

1 TB (tera) = 1000 billion B



Binary encoding of numbers

Numbers with base 10:
215 = 2×102 + 1×101 + 5×100

Numbers with base 2:
110010111 = 1×28 + 1×27 + 
0×26 + 0×25 + 1×24 + 0×23 +

1×22 + 1×21 + 1×20 



Convert the following numbers
from base 2 to base 10:
101, 1000, 11011.

Exercise



Convert the following numbers
from base 10 to base 2:
8, 23, 144, 201.

Exercise



While the definition of a binary system helps us solve the
first exercise, we must find new methods to solve the
second. There are two.

First method: 
given the number n in base 10, we look for the largest power of 2 that is less 
than or equal to n. 
If it is the same, we have solved the problem: we write a 1 in the position 
corresponding to that power of 2, followed by zeros. 
For example, 8 is a power of 2: 23 to be precise, so its binary encoding will be 
1000. 
However, if the largest power of 2 that is less than or equal to n is less than n 
(let's call it k), let's set it aside and we calculate the difference n-k. 
We repeat the same procedure with n-k, and look for the largest power of 2 
that is less than or equal to it. 
We continue until we are able to express n as a sum of powers of 2. 
We take the list of powers and write a 1 in the corresponding positions, 0 in 
the others. 
For example, the largest power of 2 contained in 23 is 16 (24). Their difference 
is 7, in which 4 (22) is contained. The difference is 3 where there is 2 (21), after 
which only 1 (20) remains. 
Writing the powers of 2 present in order we get 10111.



Second method: 
we divide the number by 2 and obtain quotient and remainder. 
As long as the quotient is not 0, we take it as the new dividend and continue 
dividing. When we get zero quotient, we have to write the list of remainders in 
reverse order to get the binary encoding of the initial number.
Let's take 144 as an example:

144 : 2 = 72 with remainder 0
72 : 2 = 36 with remainder 0
36 : 2 = 18 with remainder 0
18 : 2 = 9 with remainder 0
9 : 2 = 4 with remainder 1
4 : 2 = 2 with remainder 0
2 : 2 = 1 with remainder 0
1 : 2 = 0 with remainder 1

144 in base 2 is 10010000 (these bits are the remainders in the reverse order
of writing)


