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Introduction  
 
Affective Computing (AC) is an interdisciplinary field at the intersection of Computer Science, 
Psychology, and Cognitive Science. The aim is to design, develop, and analyze computational 
apparatuses capable of detecting, processing, interpreting, and simulating human emotion. Since 
Affective Computing pursues its goals from a computational perspective, it relies on the core 
assumption that significant aspects of human emotion are amenable to a numerical description that is 
compatible with computing machines. Thus, questions arise regarding such compatibility, among 
which perhaps the most critical is about how to reconcile emotion’s central feature of subjectivity, i.e., 
the first-person quality generated in and experienced by a human mind, with the nature of 
computational devices, which are objects in the external world.  
Is there a way to study first-person experiences with a computational approach? This kind of enquiry 
has been dealt with for decades after the rise of Artificial Intelligence (AI) in the 1950s (McCarthy et 
al. 2006). Back then, the focus was not emotion but intelligence, and the question was whether 
machines could entertain intelligent thoughts the way humans do. The project of creating intelligent 
machines based on the rules of logic failed; however, a debate is still ongoing in this research field, 
where neural networks and Machine Learning (ML) systems based on statistics have taken center stage 
in cutting-edge AI technology (Ghahramani 2015). Such debate is about the boundaries of what can 
be achieved with computing machines with respect to capabilities that are traditionally attributed 
exclusively to humans. From this perspective, AC and AI seem to be similar, since both endeavors are 
about computational approaches to phenomena (emotion and intelligence, respectively) that are so 
intrinsic to a person’s life as they are difficult to grasp and explain from an objective, scientific, and 
computational point of view. 
However, there also seems to be a significant distinction: emotion and intelligence appear to coexist 
inside a human mind in a way that does not characterize computing machines. A recent achievement 
in AI sheds light on this difference. Computers are now able to best humans at poker (Brown and 
Sandholm 2019), but a machine does not seem to win at poker in the same way a consummate human 
poker player does: of course they both must follow the rules of the game to win it, but if the former 
only needs to perform probabilistic evaluations to achieve such goal, the latter also needs to keep 
emotions at bay and hide them from the other players by means of a “poker face”. To be able to 
follow the rules of poker and to take probabilities into account is a facet, although a very narrow one, 
of what one may call “intelligence” and, in this specific sense, a computer winning at poker could be 
considered intelligent; the emotion-related side of the game, however, is missing from the machine.  
This distinction between emotion-less machines and emotion-laden humans is reflected in two 
movements in AI research. “Strong AI” claims that one day AI technology will be able to overtake 
such distinction: computing machines will entertain thoughts in the same way humans do, with full-
fledged, first-person, subjective, qualitative experience, also of emotion. “Weak AI”, on the other 
hand, relies on the conviction that there is an ontological barrier between the phenomena occurring 
in a human brain and the workings of a computing machine, and AI must be content with reproducing 
only the appearance and the results of human actions, giving up the ambitious goal of creating the 
subjective experience of human thought inside a machine.  



Despite the alarmist warnings of some scholars about sentient machines taking over humanity (Müller 
2016), there is no evidence for the claims of strong AI, and machines that entertain thoughts the way 
humans do belong in science fiction. Indeed, many of the machines featured in Sci-Fi movies are not 
only intelligent, but they also seem to entertain emotions. Computer HAL 9000 in “2001: A Space 
Odyssey”, for instance, says that it is afraid and begs astronaut Dave Bowman to stop unmounting its 
components (Kubrick 1968); Samantha, the intelligent operating system from the movie “Her”, falls 
in love with its human user Theodore (Jonze et al. 2014); humanoid robot Ava finally achieves its goal 
of escaping the lab where it was built and can be seen smiling at the end of the movie “Ex Machina” 
(Garland et al. 2014).  
All these fictional examples of strong AI have this in common: they express emotions by means of 
words, actions, and appearance, exactly how a human would do. This constitutes the foundations of 
Affective Computing today: it does not matter whether computing can eventually become affective 
or not, it does not matter whether machines will one day entertain thoughts the way humans do 
because whether we are dealing with humans or machines or even fictional machines, the only 
emotions we can feel are our own, and when it comes to the emotions of others, human or not, real 
or not, we can only rely on our capability to make inferences based on the words and tones of voice 
we hear, and the actions and the appearances we see. Since we are given access only to the expressions 
of the emotions of others, if computation in AC is to detect, process, interpret, and simulate 
something, that something is not emotion but expressions of emotion. Getting back to the game of 
poker, whether or not the machines of the future will have to put up a poker face, AC may help them 
already today read through ours. 
The following sections will illustrate the computational technology behind the latest AC endeavors, 
how such technology is used to analyze expressions of emotion, and the different kinds 
(sociotechnical, automation- and ML-related) caveats that come with it. 
  
 
 
The Computing Behind Affective Computing  
 
AC is a relatively recent research field. What is universally considered its foundational book was 
published in 2000 (Picard 2000), and its first international conference and flagship journal came to be 
about a decade after that (Picard 2010). This decade is also the time during which the foundations for 
the latest AI peak, the one based on neural networks and ML, were laid. It may be fortuitously good 
timing or a synergistic convergence, but it is clear that computing in AC is significantly connected with 
the latest developments in ML.  
Such relation, as with any other endeavor that adopts a computational approach, relies on one 
fundamental and essential requirement: whatever the phenomenon with which we are dealing, for 
computing to be of any use, it must be possible to describe such phenomenon in discrete numerical 
terms, because this is the only kind of input that computing machines are able to elaborate. From the 
simplest pocket calculator to the most advanced supercomputer, all computing machines share the 
same basic principles of binary arithmetic: 0 + 0 = 0; 0 + 1 = 1; 1 + 1 = 10. Computing cannot escape 
its nature, and even the experimental machines based on quantum computing obey these rules while 
promising an exponentially more efficient way to perform computation.  
Keeping these simple yet often forgotten considerations in mind, the claims of strong AI appear to 
be even more difficult to realize because they would entail that there exists a way to organize numbers 
and their functions that yields a sentient mind, endowed with thoughts and emotions. How our mind 
is created inside our biological brain is still a deep mystery, even for the most knowledgeable 



neuroscientists. How such a result can be achieved by means of a computing machine is building 
another mystery on top of it.  
Yet, computing has been and still is one of the biggest scientific and technological successes in the 
modern history of humanity, thanks to the fact that, despite the limitations imposed by the intrinsically 
numerical nature of this endeavor, engineers, physicists, and mathematicians have made discoveries 
and inventions that allow for the encoding of very important physical phenomena and data types, like 
images, sounds, texts, etc. Encoding these phenomena means obtaining a relevant numerical 
description so that computing machines can transmit, elaborate, and transform these numbers. Of 
course, numbers alone are not enough to complete useful tasks: computing machines need to be 
accompanied by relevant encoding/decoding apparatuses that work as an interface between the 
physical world and the numerical world, creating numerical descriptions of physical phenomena on 
the one side, and transforming numerical data into physical phenomena on the other. A computer 
monitor, for example, transforms the numerical output of a computer into images on the screen, 
whereas a digital camera captures light from the external environment through its sensor and creates 
a numerical description of the captured view in the form of a digital image.  
Emotions that AC aims at studying are treated along the same lines. At its core, the computation in 
AC is based on the processing of digital signals, only this time, the signals are about how people 
express their emotions (Pentland 2007). Capturing affective expressions in the form of digital signals 
and transforming them into numbers can create a massive amount of data, and this is where ML comes 
into play. There is a 180-degree paradigm shift between traditional, logic-based, symbolic AI (the one 
called GOFAI, “good old-fashioned AI”, Haugeland 1989) and ML. In the former, a top-down 
approach is taken, where axioms and general laws are encoded into a computing machine that is given 
the task of performing deductive reasoning; in the latter, computing machines are used with a bottom-
up, data-driven approach where patterns, schemes, and laws are searched among a vast amount of 
data by means of statistical inductive processes. There are subtle differences between statistics and 
ML (Dangeti 2017), but they are not significant for the purposes of AC. 
 
The basic idea underlying ML is to “train” a neural network, which is a complex mathematical function 
that is comprised of a network of “artificial neurons,” that is, simple functions connected to each 
other in the sense that the output of some of them is the input of others (see Figure 1).  

 
Figure 1: An artificial neuron (above) and a neural network (below). 

  
An artificial neuron (Figure 1, above) is a mathematical function S that takes k different inputs Ii, each 
of which is weighted, multiplied by a factor Wi, and yields output O = S(W1I1,…,WkIk). The inputs for 



a neural network (Figure 1) come from the data set we want to analyze, and the network outputs are 
the results of such analysis. “Training” in this context means that, following algorithmic rules, the 
weights of the neurons in the network are tweaked depending on the network's output. What is the 
network trained for? What is its output about? One very common aim for which a neural network is 
trained is classification. Given an array of categories predetermined by human trainers and a set of 
data that are meant to be classified (i.e., each datum is to be put into one of the categories), training 
the network means that by a series of trial-and-error, its weights are changed in a way that after a 
possibly very large number of attempts, the network satisfactorily classifies data, with the number of 
misclassifications below a certain threshold set by its trainers. At the beginning of this process, the 
attempts at classification by the network appear random. Every time the network makes an attempt, 
such attempt is verified against the correct answer previously provided by the trainers, also known as 
“tagged data,” where the “tag” is the correct classification: The difference between the correct answer 
and the actual output of the network is taken as a basis to modify the weights throughout the network, 
starting from the weights that are the closest to the output, with a technique that is called 
“backpropagation.”  
In what is referred to in the field as “supervised” learning, the network trainers use only a part of the 
data for the training phase and then test the resulting function on the rest of the data. If everything 
works well, the network correctly determines the categories of the new data instances, those that were 
not used for the training. This happens when the neural network has “learned” to generalize from the 
training data to all available data. At this point, the network is ready to be deployed, and the 
classification task can be considered reliably automatized. In the context of AC, this method might be 
used to automatically analyze photographic portraits of people to classify them with respect to the 
emotion shown by the portraited person. The emotion categories (e.g., happiness, anger, sadness) and 
the correct classification of the images are given by the human trainers, and once the training phase is 
completed successfully, the network should be able to classify new data correctly, that is, it should be 
able to “recognize” the emotion of people in photographs. If we do an image search with a search 
engine with the input “happy person” and check the results, we notice that all images have some visual 
features in common (e.g., smiles, mouths open in laughter, thumbs up, fist pumps). These are the 
features that are “learned” by the mathematical function of the neural network. The network does not 
recognize a smile the way a human being does. Still, the shape and color of visible teeth and the 
contours of lips curved in a smile correspond to specific numerical patterns created in the image when 
translated into numbers (i.e., a digital image) to be fed to the network. Through training, the network 
shapes its function so that whenever such patterns are found in the input data, the probability for the 
output to be “happiness” (more precisely, the numerical encoding of that category) increases.  
Considering how easy it is for a human being to recognize the smile of a happy person, involving ML 
in such a task may seem overkill, but the usual advantages provided by automation hold: once trained, 
a neural network can perform a task in less time than a human being (speed). Moreover, provided that 
computing machines are endowed with the proper sensors and encoders, a neural network can analyze 
many more phenomena than a human observer (power). Finally, given the possibility to analyze 
encoded data at the smallest scale of numerical bits, a neural network can detect patterns even where 
human perception usually fails (precision).  
Let us focus on what aspects of affect a computing machine can “observe.” Starting from the widely 
accepted premise that emotion is built by internal processes of a person within the context of that 
person’s interaction with the external environment (Lewis 2005),  emotional states are to be considered 
multifaceted and comprised of neurobiological, physiological, bodily, action-oriented, cognitive, and 
phenomenological aspects (D’Mello et al. 2018). If we want to analyze these aspects with a computing 
machine, we need sensors to capture the relevant phenomena and encoders that create a numerical 
representation of such phenomena. The output of the encoders will work as input to the computing 



machine, which will perform an analysis of the data, possibly to classify them by means of a trained 
neural network, as discussed before. Since the input to the machine is comprised of numerical data, 
whatever the emotive phenomenon under observation, one very significant task becomes evident: 
every effort in AC requires the construction of a computational model that is aimed at bridging the 
gap between the above-mentioned neurobiology, physiology, embodiment, physical actions, 
cognition, and phenomenology on the one side, and computable numerical data on the other.  
However, this is not the only chasm researchers working with emotions must deal with. Computing 
machines are not the only entity unable to directly access the affective dimension of a subject: other 
human beings suffer from the same limitation. This is why it is not very difficult to suspend disbelief 
in front of machines (like Samantha or Ava) that act emotionally like humans: we observe affective 
expressions very similar to those of other humans, and we get tricked.  
When it comes to research with real humans, what are the data, and how can observers gather them? 
Non-subjective data are literally “given” (from the Latin verb “dare,” to give) about a phenomenon, 
and they are not the phenomenon itself. The closest data to what a subjective affective experience is 
would have to be descriptions provided by the subjects themselves. Even in this case, we are dealing 
with qualitative verbal or textual descriptions of emotions, not the emotions themselves. The subject 
is not the only source of affective descriptions in an experimental setting, where methodological 
characteristics such as objectiveness, repeatability, measurability, and others are required. More often, 
external observers are involved in gathering data, possibly with the use of machines and, in AC, also 
with computing machines.  
Data collection, with or without computing machines, is guided by a simple and fundamental principle: 
observers need to gather data relevant to the affective states they are trying to analyze. Such relevance 
originates from all the disciplines that include affective analyses in their theories and practices, like 
psychology, cognitive science, and psychiatry, to name a few. ML comes at a later stage to enhance 
effective data analysis, but we cannot rely on computing machines to discover links between emotions 
and their relevant expressions. We need to remember how supervised learning works: a neural network 
is trained by means of data already correctly classified by human researchers beforehand. Nothing new 
can be discovered: Only new data can be classified according to criteria established by humans and 
“learned” by machines.  
There are ML paradigms that are not based on training with data preprocessed by humans, like 
“unsupervised” learning. In unsupervised learning, the neural network can only find patterns based 
on the data’s values in terms of numerical relative distance in search of clusters of similar instances or 
outliers. Without any correspondence to the phenomena from which the data are obtained, a 
computing machine can only indicate quantitative similarities or differences among data. This 
confirms that, whatever the paradigm adopted, ML in AC still fundamentally relies on knowledge 
acquired by researchers in disciplines in affective science where humans attribute meaning and names 
to emotions. Thus, the latest achievements in AI are extraordinary in automatizing and enhancing 
human capabilities of detection and classification, but they cannot be considered as a replacement for 
traditional analysis of emotions based on a variety of non-computational devices like films, pictures, 
music, and dialogue (Coan and Allen 2007).  
Suppose one wants to harness the power of the latest computing machines in the context of AC. In 
that case, they need to keep in mind the inherent numerical nature of these devices: any phenomenon 
for which there exists a sensor and an encoder that provide a numerical description is a phenomenon 
that potentially lends itself to computational analysis. Images, videos, audio recordings, texts, and any 
phenomenon (like a heart’s electrical activity) that can be described in the form of a curve in a 
Cartesian coordinate system, are all candidates. There have already been a great number of 
experiments in AC, where different emotion expressions like facial expressions, heart rates, gestures, 
and voice tones were captured by sensors, transformed into numerical data, and analyzed and classified 



by computing machines (Calvo and D’Mello 2010, D’Mello and Kory 2015). In the next section, we 
will focus on one proposal in particular that points to the most critical aspects of applying ML in 
Affective Science.  
  
An Application of Affective Computing  
 
Mindstrong is a startup founded in the mid-2010s in Palo Alto, California, by three doctors, Paul 
Dagum, Tom Insel, and Rick Klausner. Insel is the former director of the U.S. National Institute of 
Mental Health, where he worked for 13 years before moving to Google-Alphabet’s life sciences 
division in 2015. In 2016 Insel had several meetings with Dagum, who came up with the core idea of 
Mindstrong, and the startup’s seed was sown (Metz 2018). The goal of Mindstrong is to help treat 
medical problems related to mental health, including depression, schizophrenia, and bipolar disorder, 
by means of a platform used by the startup’s clinical team to deliver “evidence-based therapy and 
psychiatry in structured, goal-oriented messaging sessions” with the aim of “lowering the inpatient 
readmission rate, E.R. admission rate, mental health costs, and physical costs.” (Mindstrong Health 
2020a).  
The basic idea is to “measure” human-computer interactions on a smartphone and analyze those 
measurements using ML to monitor the users’ mental health. The assumption is that how a person 
uses their smartphone provides significant indications of their mental state. In particular, Mindstrong 
is an app that monitors how the person types, taps, and scrolls while using other apps. In his patent, 
Dagum claims the system can be expanded to include more data (Dagum 2016). Data could be 
recorded from the smartphone’s GPS, accelerometer, and gyroscope to infer characteristics of the 
user’s daily activities, including activity intensity, mobility and methods of travel, social engagement, 
and travel destinations. The patented invention can also include the option to record data from the 
device’s phone, email, texting, and chat applications to capture incoming and outgoing calls, emails 
and texts, the length of conversations and messages, and possible differences between the number of 
emails received and those opened.  
Despite the limitations on the types of data a smartphone, the possibilities appear to be ever-
expanding: the patent points to the further step of recording data from an app used to scan the 
barcodes of purchased groceries and of consumed food and beverages to be matched against 
nutritional facts databases. With further wearable devices, even more phenomena can be turned into 
data, including heart rate, blood oximetry, body temperature, and even the brain’s electrical activity. 
The system is also open to record data in terms of visited websites on the phone’s browser or books 
read on its e-book reader, with further possibilities for content classification and complexity analysis.  
All these data are gathered by the mobile device and sent in encrypted form to the company’s servers, 
where they are analyzed using ML, and the results are sent back to the app on the phone. This analysis 
is meant to provide insights about a person’s lifestyle, including their social engagements, level of 
activity, dietary habits, and cognitive functions, which can be indicative of good mental health or a 
problem. However, this is a vision of possible future developments of the app. Let us focus on the 
data types that the current version of Mindstrong is gathering, centered on human-computer 
interaction: the user’s gestures on the phone’s screen.  
The app is based on ML, so if it is supposed to analyze such data and classify them as indications of 
good mental health or otherwise, this means that the neural network used for analysis and classification 
needs to “know” the connections between users’ gestures and their mental state. In other words, there 
must be a computational model that describes those gestures in numerical terms (e.g., spatial 
coordinates of taps and swipes on screen, temporal measurements of the speed of typing, etc.) and 
relates them to emotions, moods, and states of mind. Where does that knowledge come from? In ML 
terms, how was the neural network of Mindstrong trained?  



The starting point was a study based in the San Francisco Bay Area to verify the possibility of 
measuring a smartphone user’s cognitive ability (or lack thereof) by means of checking how they use 
their device. Based on the assumption that higher-order brain functions are weakened in people with 
mental illnesses (McTeague et al. 2016), 150 research subjects were assessed with standardized 
neurocognitive and neuropsychological tests with respect to episodic memory and executive functions 
(e.g., impulse control, time management, focus). After the test, an app was installed on the subjects’ 
phones that tracked and measured how they interacted with their phone’s display regarding swipes, 
taps, and typing on the on-screen keyboard. The subjects were sent back to their normal lives, and for 
one year, the app ran in the background, recorded and encoded their behavior on their mobile devices, 
and sent the relevant data to the Mindstrong servers. After that, the subjects went back for another 
round of neurocognitive tests. What the researchers had at their disposal for their study were the 
results of the first round of tests, the results of the second round after one year, and all the data on 
the subjects’ smartphone usage. All the ingredients for a successful attempt at ML-based AC were 
there:  
 

• Previous knowledge from psychology, cognitive studies, and psychiatry in the form of tests, 
which allow for the measurement of expressions of  emotions and mental health by the subjects;  

• New data acquired on smartphone usage by the subjects through Human-Computer Interaction 
techniques;  

• An experiment designed to keep track of the subjects and the correspondence between the state 
of their mental health (assessed through traditional tests) and their smartphone usage  
(captured through the app);  

• Finally, a neural network ready to be trained and aimed at “learning” what patterns in 
smartphone usage correspond to what aspects of a user’s mental health.  

 
Human researchers and their interdisciplinary hypotheses provide the lion’s share of the work, 
mapping mental health issues onto specific smartphone usage patterns. For example, speed of 
keystrokes, frequency of use of the “delete” key, speed of scrolling down the contacts list are all 
considered connected with memory problems, which are in turn considered an indication of brain 
disorders; another keyboard usage pattern emerges from how quickly the user is able to switch 
between keyboards to insert punctuation or special characters in their text. This amounts to a switch 
of tasks that is thought to be connected with the user’s ability to focus, another hallmark of mental 
health.  
The researchers at Mindstrong first determined the subjects’ baseline by capturing their smartphone 
usage and combining the found patterns with the results of their neurocognitive and 
neuropsychological tests and the average measures from the literature. According to Dagum (2018), 
this process was extremely successful. It cemented his intentions to go on with the startup because 
not only were the data collected showing strong correlations with the results of the first round of tests, 
but they also allowed for successful predictions on the results of the second round. At Mindstrong, 
thus, smartphone usage patterns were considered a viable computational model of some aspects of 
mental health, able to support the investigation of human cognition and behavior over time. Such 
investigation, thanks to the exploitation of ML and mobile technology, benefits from all the 
enhancements mentioned in the previous section: the speed at which Mindstrong’s servers can analyze 
usage patterns, the power of being able to continuously analyze gestures of millions of smartphone 
users at the same time, and the precision of quantified data that allows for the detection of the slightest 
deviation from usual behaviors. These enhancements go beyond the natural limitations of traditional 
psychological treatments: the time constraints of a regular schedule at a therapist or of a trial with new 



medications. Dagum and his team claim that brain-disorder treatment has stalled partly because 
doctors become aware of someone’s problems with mental health only when they are well advanced 
and that the Mindstrong app can provide much earlier detection and continuous monitoring.  
  
Issues with Affective Computing  
 
We have already seen a significant limitation in trying to enhance any detection, classification, or 
analysis of phenomena with computing machines: their intrinsically numerical nature allows only 
working on phenomena amenable to computational modeling. This also entails that we need to enrich 
computing machines with the appropriate tools, such as sensors, encoders, and decoders, to 
meaningfully translate real-world phenomena into numbers to enable computational analysis and vice 
versa to make the results useful for human users. In case computing machines are endowed with neural 
networks to harness the power of ML, additional requirements need to be met, because the networks 
need to be trained with tagged data to “learn” previous knowledge that the computing machines are 
meant to embody, automatize, speed up, and spread worldwide via telecommunication infrastructures. 
The Mindstrong initiative seems to check all the boxes: there is a computational model of the 
phenomena they are trying to tackle that seems to be working, and that computational model is based 
on a device that is ubiquitous and ensures a constant flow of data that can be used not only to detect 
problematic behavior, but also to improve the model itself with further training of the neural networks 
in the system.  
Is everything good then? Not really. Can anything go wrong with this kind of AC system? It depends 
on the scope of our observation. Suppose we focus strictly on the experiments and the processes 
within the startup. In that case, we might agree that the founder’s vision has become true and that his 
intuitions on a connection between smartphone usage and mental health proved correct. Indeed, there 
seems to be scientific proof of this success, with randomized tests on the app’s efficacy among college 
students (Melnyk et al. 2020). However, if we widen the scope and include some possible social 
ramifications of an initiative like Mindstrong, we need to paint a different, more complete, and less 
perfect picture. There are several interconnected issues, forming a complex network of problematic 
dependencies. We can try to shed some light by roughly dividing the issues into three main categories. 
Here listed from more general to more specific: sociotechnical, automation, and ML-specific issues.  
  
Sociotechnical issues  
 
By borrowing a concept from the field of Science and Technology Studies (STS), an ML-based AC 
system like Mindstrong could be considered a “sociotechnical” system (Bijker 1997), that is, a 
technological system in tight connection with its human designers and users, who make the technology 
useful and meaningful. Indeed, a technological artifact does not work in isolation: for it to be 
successful in the real world, it has to exist in a context where humans work with it to reach their goals. 
In some of the sociotechnical contexts in which Mindstrong exists, the app turns out to be 
problematic.  
First and foremost, this private initiative has relied on and still relies on significant investments on 
which investors expect a return. This a very general problem technological endeavors incur: 
technology comes with a cost that needs to be covered for the initiative to be financially sustainable. 
In the case of Mindstrong, the startup guarantees “no extra costs, no copays, no coinsurance” by 
“partnering directly” with the user’s insurance company (Mindstrong Health 2020b). This is a US-
centric way to deal with the issue of the cost of healthcare; the management at Mindstrong is not 
responsible for it, and a discussion on the decades-long debate on public vs private healthcare is 
outside the scope of this work.  



However, this points to a general issue with technological innovation: very often, if not always, it 
comes with a cost, and that cost leads to the exclusion of those segments of the population who are 
not able to afford it. Exclusionary phenomena happen at all levels in the context of technology and 
medicine. Simply put, an AC initiative based on smartphone usage excludes all those people who are 
not able, for one reason or another, to use a smartphone. More in general, despite the rhetoric on a 
globalized, “flat” world, a truly global phenomenon like the COVID-19 pandemic has shed light, once 
again, on very stark differences in access to healthcare not only between different countries around 
the world but even inside a single American state (Bibbins-Domingo 2020). An app like Mindstrong 
adds to such differences.  
When technology is deployed in society, another issue arises with respect to ownership: who owns the 
technology and, thus, has the right to use it, manage it, and exploit its results. Contrary to before, this 
problem does not affect the excluded, but those who are included. For the app to be successful, the 
Mindstrong servers need to collect data on smartphone usage of their users, which the system maps 
onto mental health parameters. This process entails that a single company creates, hosts, and manages 
a huge database comprised of sensitive personal data, destined to become even more sensitive if the 
company’s vision of using GPS, browser history, email, heart rate, and electroencephalogram data is 
implemented. Privacy is the main concern here, but with this ML-based, data-driven approach, there 
are several facets to this issue. 
Mindstrong guarantees that they “protect your personal information and medical records like any 
other doctor’s office or hospital” (Mindstrong Health 2020b), which is what patients normally expect 
from their therapists and clinics. However, there is a key difference in the number of users from whom 
a successful app that is as widespread as smartphone technology can collect data, compared to what a 
single therapist or hospital can do. Moreover, the data collection with a smartphone app is continuous 
and uninterrupted, and with the envisioned expansion of involved smartphone apps, accessories, and 
peripherals, it can expand its reach to aspects of the users’ lives normally inaccessible to therapists and 
doctors. This is the main point of Mindstrong: exploiting Information Technology to have a quicker, 
more powerful, and more precise analysis of the patients.  
When privacy is considered, it becomes clear that this is a double-edged sword. One may contend that 
the contact-tracing apps recently deployed for the COVID-19 pandemic suffer from the same 
problem, as several lawmakers tried to argue (Birnbaum and Spolar 2020). Still, there is a fundamental 
difference: contact tracing is performed via Bluetooth technology in a way that preserves personal 
identity (Ferretti et al. 2020), whereas in the case of Mindstrong, smartphone usage data are explicitly 
associated with a user exactly for the objective of an automated mental health check for which the app 
was conceived. The privacy issue does not depend on the fact that a private company manages these 
data. There are hotly debated controversies also regarding a similar ML-based initiative implemented 
by the government in China to experiment with metrics and quantification of the value and virtue of 
its citizens (Wong 2019). Even with a fair, privacy-aware, law-abiding manager, a huge database full 
of sensitive data about the population is affected by the inherent risk of falling into the wrong hands 
(Véliz 2020). We are not talking about a single malevolent hacker, identity thief, or profiler. A new 
authoritarian regime could install itself and exploit data on the users’ location, political beliefs, religious 
background, and, in the case of AC systems like Mindstrong, mental health.  
  
Automation issues  
 
Other issues originate from another significant aspect of this AC project: automation, that is, the goal 
of automatizing a number of tasks that humans traditionally perform. This is not about the 
displacement of humans due to the introduction of machines in the job market, which is an issue in 
other sectors (Acemoglu and Restrepo 2020). Mindstrong does not provide automated therapy but 



offers a more efficient detection of specific mental health hallmarks meant to support therapists in 
their activities. When a human operator is not substituted but assisted by a machine in their tasks, 
there is nevertheless a risk of other, more subtle issues to the detriment of the quality of the service 
provided.  
What is arguably the most common issue is called “automation bias”: the tendency to over-rely on 
automated systems. Studies on automation bias started in the aviation sector, to investigate the effects 
of autopilot systems on the performance of pilots (Wiener and Nagel 1988). More recently, research 
on automation bias in healthcare also developed since early studies showed that clinicians may drop 
their own correct decisions in favor of erroneous advice from computer-based clinical decision-
making systems (Friedman et al. 1999). In particular, there are two kinds of pitfalls: errors of 
commission, in which the human user follows incorrect advice coming from the computer, and errors 
of omission, where the human user fails to act because the computer did not prompt them to do so 
(Goddard et al. 2012).  
In the context of AC-enhanced mental health checks and therapy, an error of commission may mean 
that unnecessary or even counterproductive drugs are prescribed because of a warning from the 
system that does not correspond to an actual condition in the patient; in turn, an error of omission 
may happen when a therapist neglects some possible telltale signs of psychological discomfort and 
fails to address the issue with the patient because their computational profile does not trigger an alert. 
These risks are significantly limited in the current version of the Mindstrong app because the automatic 
detection of deviations from the baseline is meant to help the therapist within the context of a regular 
cycle of sessions with their patient. This means that the human-to-human component of the 
interaction is still playing a major role, and the therapist is still invested with full responsibility in their 
professional activity.  
Interestingly, studies have shown that automation bias is reduced in those working environments 
where human users feel more responsible and accountable for their actions (Skitka et al. 2000). 
However, if smartphone-usage-based initiatives become very successful, one might imagine that the 
whole endeavor gets scaled up in some facets, like the number of downloaded apps, users and ML-
enhanced computing machines, and less so in others, like the number of employed therapists and 
clinicians. In a scenario where each therapist has a greater quantity of patients to attend to, it is 
reasonable to fear that therapists might give in to the temptation to trust the computational machine 
more and more to increase productivity, and automation bias might increase as a result.  
Strictly connected to over-reliance on automated systems is another issue: “deskilling.” This term 
refers, in general, to the reduction or even complete loss of the capacity to perform a task due to the 
habit of relying on technological tools that automatize that task. In the healthcare context, doctors 
depend more and more on technology for obtaining patient information and performing diagnoses 
and treatments, and there is evidence showing negative effects on doctor-patient communications, 
physical examination skills, and development of clinical knowledge (Lu 2016).  
At first glance, there seems to be no need to worry about deskilling in therapists due to the current 
version of Mindstrong because the app adds a new kind of phenomenon that can be considered 
indicative of mental health problems, smartphone usage in terms of swipes, taps, and keystrokes, that 
therapists could not detect before. In other terms, one might consider this the opposite of deskilling 
since technology augments the therapist’s view of their patients. However, a connection with 
automation bias exists: a therapist might tend to trust the computational system’s automated 
detections and notifications rather than their active observations in the context of traditional, human-
to-human therapy sessions. Even if technology does not directly interfere with the traditional tasks a 
therapist is called to, automation bias might still shift the therapist’s focus towards the new automated 
tasks, causing deskilling in the old ones and, ultimately, a lowering in the overall quality of the therapy.  
  



Machine Learning issues  
 
The most specific issues of AC systems are imported from ML: they are not intrinsic to the attempt 
to build computational models of emotion expression but to the choice of building and processing 
those models by means of neural networks. For a neural network to “learn” the task for which it has 
been built, training with a great amount of tagged data is necessary. We have already seen that such a 
need entails privacy issues that may dangerously lean toward population control and surveillance. 
Sociotechnical considerations aside, within the context of ML, there are more technical issues 
connected with how the data used for the training can affect the learning process and the resulting 
characteristics of the neural network.  
Two major Information Technology companies lost face because of training data issues. Microsoft 
deployed a chatbot on Twitter, a piece of software with the persona of a young woman called Tay that 
was supposed to exchange messages with other users, learn from those messages, and post relevant 
tweets. Some malicious users fed the chatbot with racist messages, and the software eventually started 
posting tweets in a similar tone, and it had to be taken down (Hunt 2016). Google’s automatic image 
labeling service deployed in the company’s online photo albums created another racially charged case. 
User Jacky Alciné, a black man, noticed that in his photo album, the pictures he had taken with his 
girlfriend were being sorted into a folder tagged “gorilla.” No other images but those of him and his 
girlfriend appeared in that folder, according to Alciné. (Griffin 2015).  
Both cases point to problems from training a neural network with inadequate data. In the Microsoft 
case, the connection between training data and network output is evident and, in a rather twisted way, 
speaks to the good operation of their ML system: it was fed racist messages, and it learned to make 
racist tweets. The Google case is more complex because the training data was selected and used within 
the company’s walls. Still, we can refer to experimental evidence that limited exposure to diverse races 
and age groups by training only on data belonging to a specific category creates biased neural networks 
(Nagpal et al. 2019).  
These considerations bring our focus back to the experiments that laid the ground for developing the 
Mindstong app: standardized neurocognitive and neuropsychological tests were used with 150 
research subjects from the Bay Area to assess their mental health parameters and map them to their 
smartphone usage. Some questions arise: was this group of subjects well-chosen in terms of 
representation of the general population? Is there a risk that the neural network at the foundations of 
the app was instead trained with biased data so that it has developed a biased way to operate? A neural 
network can always evolve with new training sessions, so the more customers Mindstrong acquires, 
the more chances the company has to expose its ML system to new, diverse smartphone usage patterns 
to reduce a possible initial Bay-Area-centered bias. However, doubt remains: Who or what is in charge 
of determining whether a newly observed smartphone usage pattern, which presents significant 
differences from what was “learned” by the network as corresponding to a healthy emotional state, is 
to be interpreted as a new healthy pattern or an unhealthy one?  
This sheds light on the fact that not only is population sampling critical, but there is also a fundamental 
need for constant supervision and interpretation by human trainers with both in-depth knowledge of 
the field where they intend to apply ML and a breadth of scope with respect to varieties in habits 
among different populations whose data are to be used. Human intervention in the context of ML is 
not easy, and the way the companies managed the above-mentioned racism incidents points to this 
issue: neural networks work following a “black box” paradigm, that is, only their input and output are 
visible, and meaningful to the trainers and the users, whereas the internal parameters, the weights 
associated with the connections between the artificial neurons that are modified during the training 
phase, do not provide any understandable indication on which parts of the network attend to which 
features of the performed task. When a neural network that has been trained to tweet starts tweeting 



in a racist way, even its creators and trainers are not able to determine in which part of the network 
racist characteristics are encoded. When a neural network that is meant to tag images starts mistagging 
only images of a specific group of people, even the computer scientists that supervised its learning 
phase cannot immediately shut down the specific components of the network making the mistakes. 
This is why Microsoft had no other choice than retiring the chatbot altogether, and Google had to 
disable the “gorilla” tag for all image classifications (including the correct ones) while attending to 
their neural networks, presumably with some extra training with images of people of colour.  
This is a general problem with “black boxes”: all is well when they work well, but when faulty behavior 
happens, given the complexity and non-explicit knowledge inside, correction is far from simple or 
immediate. The above-mentioned cases were easy to detect, thanks to the clear evidence. Still, machine 
error detection might be much less straightforward in case of more subtle deviations from expected 
behavior. In the context of an app like Mindstrong, where therapist-patient sessions still play a major 
role, classification and detection errors of the ML system may not have a great impact since the 
therapist can have a direct reassessment with the patient. However, in future scenarios where the 
automated computational part gets increasingly important in the overall healthcare service, the 
possibility of misdiagnoses and wrong treatments may increase should there be a negative synergy 
between automation bias and the limitations of the black box paradigm.  
  
 
 
 
Conclusions  
 
Excluding subjective experience of emotion from the context of Affective Computing moves the field 
away from the unproven claim of strong AI that a properly complex computational system can create 
a mind with consciousness, thoughts, and emotions. However, even with the decision to give up on 
the imaginings deriving from a computational theory of the mind, AC is left with a lot to deal with 
about emotion in terms of behavior: how a person acts when experiencing a certain kind of emotion. 
By adopting a behavioristic perspective, AC can be interpreted as aimed at creating devices that detect, 
process, interpret, and simulate human behavior in terms of emotion. AC needs to rely on 
sophisticated devices with the appropriate sensory and reasoning apparatuses to build a computational 
model that creates and holds correspondence between the numerical data encoded by the captured 
human behaviors and the psychological and neurophysiological theories that map those behaviors 
onto emotions. The sensory part can be considered a technological evolution of tools that have been 
long used in the tradition of emotion elicitation and assessment in psychology, whereas the reasoning 
apparatuses are connected with a radical change that AI has undergone in the last decade, when ML 
has taken over traditional logic and rule-based reasoning systems. With an approach based on massive 
quantities of data and statistical analysis, ML has already shown that computational machines fare 
much better than the best humans in a number of contexts where classification and detection tasks 
are automated, augmented, and enhanced. Given a platform that allows for the collection of data from 
human subjects and a theory that connects data to the affective states of those subjects, ML seems to 
offer just the right approach and technology for deploying AC on a massive scale.  
This work has focused on the issues in ML that AC imports by adopting this technological approach 
for its endeavors: exclusion, privacy, social control, automation bias, deskilling, and biased output are 
some of the problems that impact data-driven systems based on neural networks and that will become 
a permanent fixture of AC if the two disciplines become inextricably linked. We have analyzed the 
case of an AC app that depends at its very core on massive data analysis, since not only is it based on 
ML, but also smartphone usage data. Given the nature of this endeavor, the above-mentioned issues 



might be inevitable and a necessary evil that the proponents have the moral duty to contain with as 
many countermeasures as possible to ensure that their project accomplishes all the beneficial goals for 
which it seems to have the potential.  
Those countermeasures have already been discussed for some years in many circles, including the AI 
community, where all the downsides of a purely data-driven approach have become clear. The more 
technological the issues are, the more focused the efforts. For instance, now there exists a subfield of 
AI called Explainable AI (XAI), dedicated to countering the problem of the black-box paradigm by 
means of an enhancement of ML with symbolic-AI based systems that are meant to make the inner 
workings of neural networks more explicit and understandable to their designers, so that the designers 
have more control on how to train them and correct them, if necessary (Adadi and Berrada 2018). 
The mission of XAI is not at all trivial from a technological perspective; moreover, it seems to become 
even more complex from a socio-technological perspective. ML is deployed in so many contexts on a 
global scale that we have not fully comprehended its socio-economic impact yet, but there are already 
many social groups that are negatively affected in terms of inequality, and there is potential for even 
greater harm on a more general societal level (O’Neil 2016).  
Is this what AC is about? Will computational models of emotional expression become a use case of 
the latest developments in AI and ML and cater to all the relevant debates involving social injustice 
and human rights? These are questions that all researchers, scholars, and therapists in the field need 
to ask every time they engage in AC that is enhanced with ML techniques. Depending on the context, 
this technology may just bring in the benefits of computation: speed, power, and precision. Or, it may 
usher in problems that not only were not generated in the field of Affective Science but may also 
strengthen the issues Affective Science was called to solve. Despite the speed at which technology 
seems to be evolving, the reins of Affective Science are still in the hands of human experts. These 
experts now face both the opportunity of harnessing the power of computing and the risk of being 
harnessed by computing machines.  
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