
Innovations in Systems and Software Engineering manuscript No.
(will be inserted by the editor)

A Model Advisor for NuSMV Specifications

Paolo Arcaini · Angelo Gargantini · Elvinia Riccobene

Received: date / Accepted: date

Abstract Among possible model validation techniques able
to identify defects early in the system development, model
review aims also at determining if a model is of sufficient
quality, since quality is measured as the absence of certain
faults. In this paper, we tackle the problem of automatic
reviewing NuSMV formal specifications by developing a
model advisor which helps to assure given model qualities
for NuSMV programs. Vulnerabilities and defects a devel-
oper can introduce during the modeling activity using NuSMV
are expressed as the violation of formal meta-properties. These
meta-properties are then mapped to temporal logic formu-
las, and the NuSMV model-checker itself is used as engine
of our model advisor to notify meta-properties violations, so
revealing the absence of some quality attributes of the spec-
ification. As a proof of concept, we also report the result of
applying this review process to several NuSMV specifica-
tions.

Keywords Model Advisor ·Model Review · NuSMV

1 Introduction

System validation is an essential activity of any develop-
ment process since it permits detecting faults and assuring
that given requirements are guaranteed by the system under
development. Nowadays, the use of formal methods, based
on rigorous mathematical foundations, is becoming of ex-
tremely importance for system design and development, since

P. Arcaini, E. Riccobene
Dept. of Information Technology, Università degli Studi di Milano, via
Bramente 65, Crema, Italy
E-mail: {paolo.arcaini,elvinia.riccobene}@unimi.it

A. Gargantini
Dipartimento di Ingegneria dell’informazione e metodi matematici,
Università degli Studi di Bergamo, viale Marconi 5, Dalmine, Italy
E-mail: angelo.gargantini@unibg.it

abstract formal models allow detecting faults in the specifi-
cation as early as possible with limited effort. Model valida-
tion should precede the application of more expensive and
accurate verification methods, that should be applied only
when a designer has enough confidence that the specifica-
tion really reflects the user perceptions. Otherwise (right)
properties could be proved true for a wrong specification.

Among validation techniques, model review, also known
as “model walk-through” or “model inspection”, allows to
critically examine modeling efforts to determine if a model
not only fulfills the intended requirements, but also are of
sufficient quality to be easy to develop, maintain, and en-
hance. This process should, therefore, assure a certain de-
gree of quality. The assurance of quality, namely ensuring
readability and avoiding error-prone constructs, is one of the
most essential aspects in the development of safety-critical
reactive systems, since the failure of such systems – often
attributable to modeling and, therefore, coding flaws – can
cause loss of property or even human life [19]. When model
reviews are performed properly, they can have a big pay-
off because they allow to identify defects early in the sys-
tem development, reducing the cost of fixing them. Usu-
ally model review, which comes from the code-review idea,
is performed by a group of external qualified people, often
both technical staff and project stakeholders, who meet to-
gether to evaluate models and documents.

A weak aspect of the review process is that it is usu-
ally done by hand. This requires a great effort that might
be tremendously reduced if performed in an automatic way
by systematically checking specifications for known vulner-
abilities or defects. The question is what to check on and
how to automatically check the model. In other words, it is
necessary to identify classes of faults and defects to check,
and to establish a process by which to detect such deficien-
cies in the model. If these faults are expressed in terms of
formal statements, these can be assumed as a sort of “mea-

2

sure” of the model quality assurance. A tool is also neces-
sary to make the process automatic. It would work as model
advisor to check a model for conditions and configuration
settings that can result in inaccurate or inefficient behavior
of the system that the model represents.

In this paper, we tackle the problem of automatic re-
viewing NuSMV [10,1] formal specifications. We develop
a model advisor for NuSMV programs which helps the de-
velopers to assure given model qualities. We first detect a
family of vulnerabilities and defects a developer can intro-
duce during the modeling activity using NuSMV and we ex-
press such faults as the violation of formal properties. These
properties refer to model attributes and characteristics that
should hold in any NuSMV model, independently from the
particular model to analyze. For this reason they are called
meta-properties. They should be true in order a NuSMV
model to have the required quality attributes. Therefore, they
can be assumed as measures of model quality assurance.
Depending on the meta-property, its violation indicates the
presence of actual faults, or only of potential faults.

These meta-properties are defined in terms of logical op-
erators Always, Sometime, and InitiallyA/InitiallyS to cap-
ture properties that must be true in every state, eventually
true in at least one state, or referring to initial states (always
or sometimes true) of the NuSMV model under analysis.
Then, we map these logical operators to temporal logic for-
mulas and we exploit the NuSMV model checking facilities
to check the meta-property violations.

A similar model reviewing technique was presented in
[6] for the Abstract State Machine (ASM) formal specifi-
cations [9]. We here refer to NuSMV specifications since
NuSMV is widely used as formal specification method, it is
endowed with a simulator and a model checker that makes
possible to handle and to automatize our approach, and there
exists a wide repository of specification case-studies on which
to test our model advisor. In any case, the results obtained
for the ASM and NuSMV models can be adapted to other
state-transition based formal approaches.

The NuSMV formal method and the structure of a for-
mal specification is briefly presented in Section 2. Section 3
defines a function, later used in the meta-properties defini-
tion, that statically computes the assignment condition un-
der which a model variable is updated upon state changing.
Meta-properties able to guarantee certain quality attributes
of a specification are introduced in Section 4. In Section 5,
we describe how it is possible to automatize our model re-
view process by exploiting the use of the NuSMV itself as
a model checker to check the possible violations of meta-
properties. The general architecture of our model advisor is
described in Section 6. As a proof of concept, in Section
7 we report the results of applying our model advisor to a
certain number of benchmark models of various degree of
complexity: some taken from the NuSMV source distribu-

tion, others found on the Internet, other obtained from ASM
models of real case studies and we discuss the fault detec-
tion capability of our analysis. In Section 8, we present other
works related to the model review process. Section 9 con-
cludes the paper and indicates some future directions of this
work.

2 NuSMV

NuSMV [1] is known as a model checker derived from the
CMU SMV [16]. It allows for the representation of syn-
chronous and asynchronous finite state systems, and for the
analysis of specifications expressed in Computation Tree Logic
(CTL) and Linear Temporal Logic (LTL), using Binary De-
cision Diagrams (BDD)-based and SAT-based model check-
ing techniques. Heuristics are available for achieving effi-
ciency and partially controlling the state explosion.

A NuSMV specification describes the behavior of a Fi-
nite State Machine (FSM) in terms of a “possible next state”
relation between states that are determined by the values of
variables. Transactions between states are determined by the
updates of the variables.

According to the model operational description, a NuSMV
specification is made of three principal sections:

– VAR that contains variables declaration. A variable
type can be boolean, Integer defined over intervals or sets,
enumeration of symbolic constants.

– ASSIGN that contains the initialization (by the in-
struction init) and the update mechanism (by the instruction
next) of variables. A variable can be not initialized and in
this case, at the beginning NuSMV creates as many states as
the number of values of the variable type; in each state the
variable assumes a different value.

– CTLSPEC (resp. LTLSPEC) that contains the CTL
(resp. LTL) properties to be verified.
A DEFINE statement can also be used as a macro to syntac-
tically replace an identifier by the expression it is associated
with. The associated expression is always evaluated in the
context of the statement where the identifier is declared.

A state of the model is an assignment of values to vari-
ables. According to the NuSMV language definition, there
exist the following four ways to explicitly assign values to a
variable:

−− simple assignment
ASSIGN identifier := simple expression
−− init value
ASSIGN init(identifier) := simple expression
−− next value
ASSIGN next(identifier) := next expression
−− macro definition
DEFINE identifier := simple expression

3

where identifier is a variable identifier; simple ex-

pressions are built only from the values of variables in the
current state and they cannot have a next operation inside;
next expression relates current and next state variables to
express transitions in the FSM (see the NuSMV User Man-
ual [1] for more details on the assignment syntax and restric-
tion rules for assignments). In both simple- and next- ex-
pressions, a variable can be determined in a straight way, or
in a conditional way1. Conditional expressions can be:

1. An if-then-else expresion

cond1 ? exp1 : exp2

which evaluates to exp1 if the condition cond1 evaluates to
true, and to exp2 otherwise.

2. A condition case expression:

case
left expression 1 : right expression 1 ;
...
left expression N : right expression N ;

esac

which returns the value of the first right expression i

such that the corresponding left expression i condition
evaluates to 1 (TRUE), and the previous i-1 left expressions
evaluate to 0 (FALSE). The type of expressions on the left
hand side must be boolean. An error occurs if all expressions
on the left hand side evaluate to 0. To avoid this kind of
errors, NuSMV performs a static analysis and if it believes
that in some states no left expression may be true, it forces
the user to add a default case with left expression equal
to 1. This kind of analysis is conservative: sometimes the
user must add a default case even if it is not necessary, as
in the following example in which the default case would be
useless but NuSMV requires it.

MODULE main
VAR fooInt : 1..3;
ASSIGN init(fooInt) := 1;

next(fooInt) := case
fooInt = 1: 3;
fooInt = 3: 1;
1: 2;−−useless, but still required

esac ;

In NuSMV it is possible to model non deterministic be-
haviours by (a) do not assigning any value to a variable that,
in this case, can assume any value of its finite domain; (b)
assigning to a variable a value randomly chosen from a set.
It is also possible to specify invariant conditions by the com-
mand INVAR.

NuSMV offers another more declarative way of defin-
ing initial states and transition relations. Initial states can

1 Among the different ways to build NuSMV expressions, we re-
strict our attention to the conditional ones since, for our purposes, we
are interested into computing the conditions under which an assign-
ment is actually performed.

be defined by the keyword INIT followed by characteris-
tic properties that must be satisfied by the variables values
in the initial states. Transition relations can be expressed by
constraints, through the keyword TRANS, on a set of current
state/next state pairs. Since the following equivalences hold,
it is not restrictive to consider only the operational descrip-
tion for states and transitions.

ASSIGN a:=exp; is equivalent to INVAR a in exp;
ASSIGN init(a):=exp; is equivalent to INIT a in exp;
ASSIGN next(a):=exp; is equivalent to TRANS next(a) in exp;

3 Assignment Condition

As stated in Section 2, there exist different ways to assign
values to NuSMV variables. Formally, an assignment is a
pair 〈identifier, expr〉 where identifier is a variable identifier
and expr is a simple or next-expression which provides
the variable value.

We here present a method to compute, for each assign-
ment 〈identifier, expr〉 defined in the specification under re-
view, the list of conditions under which the assignment is
actually performed, and the corresponding expression with-
out conditions in it, which will determine the value assigned
to the variable identifier when computed. For this purpose,
we introduce a function assignment condition

AC : Assignment→ (Condition×ValueExpr)∗

It is defined as AC(〈identifier,expr〉)=CV(expr) in terms of
the function CV : Expression→ (Condition×ValueExpr)∗

which extracts the conditions from a generic expressions by
returning the list of pairs 〈cond,valExpr〉, where cond is the
condition under which the expression takes the value given
by the expression (without conditions) valExpr. CV is de-
fined recursively as follows depending if expr is defined in
terms of a conditional operator or not.

Expression without conditions. In this case expr is a con-
stant, an identifier, a logical/algebraic expression, etc. The
function yields CV(expr) = 〈true,expr〉.

Expression with conditions. In this case expr is expressed
in terms of a case or an if-then-else operator. Before
defining the function CV in these cases, let us introduce two
auxiliary functions.

Let ⊕n
i=1(Li) be the concatenation function among lists

Li, i = 1, . . . ,n.
Let L .

= [〈ci,ei〉]ni=1 be a list of pairs 〈ci,ei〉, i = 1, . . . ,n,
with ci a boolean condition and ei an expression. We define
a function

∧
a(L)

.
= [〈a∧ ci,ei〉]ni=1 returning the list of pairs

obtained from the elements of L by making the conjunction
between the boolean condition a with the condition ci.

4

– If expr is an if-then-else expression, CV holds:

CV(c?e1 : e2) =⊕(∧c(CV(e1)),∧¬c(CV(e2)))

– If expr is a case expression, the CV function yields:

CV(expr)=⊕N
i=1(

∧
left expression i

(CV(right expression i)))

The following is an example of the computation of the func-
tion AC on a next expression.

ASSIGN next(x) := case
a1: case

b1: 2;
b2: 3;

esac ;
a2: c ? 5 : 6;
1: 7;

esac ;

AC(〈x,next expr〉) = CV(next expr) =
[(a1∧b1,2), (a1∧b2,3),(a2∧ c,5), (a2∧¬c,6), (true,7)]

4 Meta-properties

In this section we introduce some properties that should be
proved in order to assure that a NuSMV specification has
some quality attributes. These properties refer to attributes
that are defined independently from the particular NuSMV
specification to be analyzed and they should be true in order
to guarantee certain degree of quality for the NuSMV model.
For this reason we call them meta-properties.

The violation of a meta-property always means that a
quality attribute is not met and may indicate a potential/ac-
tual fault in the model. A further discussion on this is given
in Section 7. We have identified the following categories of
model quality attributes.

– Consistency requires that there are no model state-
ments (variable assignments, propriety specifications, behav-
iors, etc.) contrasting each others. For instance, MP9 re-
quires that all the specified properties are true. Consistency
of assignments to variables, one of the main goals of other
model review techniques [6,12], is guaranteed in NuSMV
by the semantics of the language. However, one could ask
mutually exclusion of assignment conditions (MP3).

– Completeness requires that every system behavior is
explicitly modeled. This encourages the explicit assignment
of variables (MP7) and that at least one assignment condi-
tion, apart the default condition, is true (MP4).

– Minimality guarantees that the specification does not
contain elements – i.e. variables, assignments, domain el-
ements, etc. – defined or declared in the model but never
used. Minimality of the assignments requires that every as-
signment can be performed (MP1, MP2) and it is really use-
ful (MP5). Every value in the domains should be necessary

(MP6) and every variable used (MP7 and MP8). Minimal-
ity of properties requires that property specifications are not
vacuously satisfied (MP10). These defects are also known
as over specification.

4.1 Meta-property definition

To formally specify the above attributes in terms of meta-
properties we have identified properties that must be true
in every state and properties that must be eventually true in
at least one state of the NuSMV specification under anal-
ysis. Some properties refer only to the initial state (all, or
some). Given a FSM M expressed in NuSMV and a pred-
icate φ over a state of M, we define the operators Always
and Sometime ranging on the whole computational state, and
the operators initially always (InitiallyA) and initially some-
times (InitiallyS) ranging on the set of initial states. They are
defined as follows:

M |= Always(φ) = ∀s0 ∈ S0 ∀s ∈R(s0) : φ(s)
M |= Sometime(φ) = ∃s0 ∈ S0 ∃s ∈R(s0) : φ(s)
M |= InitiallyA(φ) = ∀s0 ∈ S0 : φ(s0)

M |= InitiallyS(φ) = ∃s0 ∈ S0 : φ(s0)

where S0 is the set of initial states of M, and R(s0) is the
set of all the states reachable from s0. In the following we
present the meta-properties we have introduced, currently
support, and use for automatic review of NuSMV models.

Most of the meta-properties are expressed in terms of the
assignment condition function. For notational convenience,
given an assignment α = 〈id,expr〉, we denote by ACα,i the
condition condi of the i-th element 〈condi,vali〉 of the list
AC(α). Moreover, we need to distinguish between assign-
ments α regarding initial values, called αinit assignments,
and not initial ones. For the sake of brevity, all the following
meta-properties containing ACα/αinit,i are universally quan-
tified over assignment α/αinit and condition index i.

MP1 Every assignment condition can be true

We would like that every condition under which a variable is
assigned a value can be eventually true, i.e. the model does
not contain conditions which are always false. We have to
distinguish between initial and not initial assignments.

This meta-property requires that every condition can be
true in at least one initial state, and every condition is even-
tually true:

InitiallyS(ACαinit,i) and Sometime(ACα,i)

In the example 1, the condition f oo = BB is never satis-
fied.

5

MODULE main
VAR foo: {AA, BB, CC};
ASSIGN init (foo) := AA;

next(foo) := case
foo = AA: CC;
foo = BB: AA;−−never satisfied
foo = CC: AA;

esac ;

Example 1 Violation of meta-property MP1

MP2 Every assignment is eventually applied

Even if a condition ϕ can be true by MP1, we like ϕ to be
actually eventually evaluated and not to be masked by other
conditions preceding it. In such case, we may suspect that
the conditions in a case expression are involuntarily listed
in a wrong order. It is guaranteed by proving:

InitiallyS(ACα,i
∧i−1

j=1¬ACα, j) and
Sometime(ACα,i

∧i−1
j=1¬ACα, j)

MODULE main
VAR foo: 1..3;
ASSIGN init (foo) := 1;

next(foo) := case
foo = 1: 2;
foo > 1: {1, 3};
foo = 3: 1;−− never applied

esac ;

Example 2 Violation of meta-property MP2

In the example 2, the condition f oo = 3 is eventually
satisfied but the corresponding assignment is never applied
because the condition is masked by the previous condition
f oo > 1.

MP3 The assignment conditions are mutually exclusive

This meta-property requires that every condition explicitly
and precisely models the conditions under which the assign-
ment is applied. This guarantees that if the condition is true,
then it is applied and it is not masked by another condition
which precedes it.

∀ j j < i InitiallyA(¬(ACαinit i∧ACαinit j))

∀ j j < i Always(¬(ACα,i∧ACα, j))

MODULE main
VAR hour: 0..23;

hour12: 1..12;
amPm: {AM, PM};

ASSIGN init (hour) := 0;
next(hour) := (hour + 1) mod 24;
hour12 := case −−conditions mutually exclusive

hour in {0, 12}: 12;

!(hour in {0, 12}): hour mod 12;
esac ;

amPm := case −−conditions not mutually exclusive
hour < 12: AM;
hour >= 11: PM;

esac ;

Example 3 Violation of meta-property MP3

In the example 3, even if the model is correct, that is the
value of amPm and hour12 are correctly related to the value
of hour, the two conditions of the assignment of the variable
amPm are not mutually exclusive. To remove the violation
we could, for example, change the second condition with the
condition hour > 11.

MP4 For every assignment terminated by a default
condition true, at least an assignment condition is true

We have already discussed in Section 2 that the conditions
in case expression must be complete. However, sometimes
NuSMV forces the user to add a last true condition even
if he/she has already explicitly listed all the conditions in
the case expression. The following meta-property requires
that all the conditions before the last default condition are
already complete. If ACα,n = true, then

InitiallyA(ACαinit ,1∨·· ·∨ACαinit ,n−1)

Always(ACα,1∨·· ·∨ACα,n−1)

This applies only when ACα,n = true, because other-
wise NuSMV already guarantees completeness. If this meta-
property is verified, the ACα,n = true is useless and the con-
ditions already cover every case.

MODULE main
VAR foo: 2..4;
ASSIGN init (foo) := 2;

next(foo) := case
foo = 2: 4;
foo = 4: 3;
1: 2; −−default condition useful

esac ;

Example 4 Violation of meta-property MP4

In the example 4 the meta-property is violated, i.e. Always(foo=
2∨ foo = 4) is false, because, in the next expression of vari-
able f oo, the default condition is useful because the previ-
ous conditions do not cover all the cases. The meta-property
would not be violated if the next expression would be rewrit-
ten, for example, in the following way:

next(foo) := case
foo = 2: 4;
foo = 4: 3;
foo = 3: 2;

esac ;

6

MP5 No assignment is always trivial

We say that a next assignment 〈var,expr〉 is trivial if var
is already equal to expr, even before the update is applied.
This property requires that each assignment which is eventu-
ally performed, will not be always trivial, except it is explic-
itly formalized by the assignment 〈var,var〉 which assigns
to var′ its current value. The property

Sometime(ACα,i
∧i−1

j=1¬ACα, j)→
Sometime(ACα,i

∧i−1
j=1¬ACα, j ∧ var′ 6= var)

states that, if eventually updated (see MP2), the variable var
will be updated to a new value at least in one state. The more
simple property Sometime(ACi∧ var′ 6= var) would be false
if the assignment is never applied.

We borrowed the concept of trivial update from the Ab-
stract State Machines [9].

MODULE main
VAR shuffle : boolean;

foo: {AA, BB};
ASSIGN next(foo) := case

! shuffle & foo = AA: AA;−−trivial
! shuffle & foo = BB: BB;−−trivial
shuffle : {AA, BB};

esac ;

Example 5 Violation of meta-property MP5

In the example 5, in the next expression of variable f oo
the first two assignments are always trivial. The next expres-
sion could be rewritten in a more simple equivalent way:
next(foo) := case

shuffle : {AA, BB};
! shuffle : foo;

esac ;

MP6 Every variable can take any value in its domain

This meta-property requires that every variable, except the
module instantiations, takes all the values of its domain. For
each variable var, whose domain values are e1, . . . ,en, the
property

Sometime(var = e1)∧ . . .∧Sometime(var = en) (1)

states that variable var takes all the values of its domain.
Since each Sometime(var = ei) is checked individually, we
can know all the values never taken; these values, if they
are really unnecessary, can be removed from the variable
domain.

MODULE main
VAR foo: {1, 2, 3}; −−never takes value 2
ASSIGN init (foo) := 1;

next(foo) := (foo * 3) mod 4;

Example 6 Violation of meta-property MP6

In the example 6, variable f oo never takes value 2.

MP7 Every variable not explicitly assigned is used

In NuSMV there is no definition of monitored variables, i.e.
variables that are updated by the environment. However, the
variables that are not explicitly defined by a DEFINE state-
ment or by a next assignment, can be considered as moni-
tored, since at every step they can take any value in their do-
main. Monitored variables should be used in other parts of
the specification. We say that a variable is used if it occurs
in an assignment (in another ASSIGN or DEFINE expression)
or in a property (a SPEC clause).

The verification of this meta-property can be performed
statically by analysing the specification without the use of
the proving capabilities of the model checker.

MODULE main
VAR foo: boolean;

fooMU: boolean;−−monitored variable used
fooMEA: boolean;−−variable explicitly assigned
fooMNU: 1..3;−−monitored variable not used

ASSIGN foo := !fooMU;
fooMEA := {0, 1};

Example 7 Violation of meta-property MP7

In the example 7 f ooMU and f ooMNU are both monitored
variables. f ooMU satisfies the meta-property because is used
in the assignment of variable f oo; f ooMNU , instead, vio-
lates the meta-property because is never read. The variable
f ooMEA satisfies the meta-property because it is explicitly
assigned.

MP8 Every independent variable is used

In NuSMV a variable x can be assigned in the next state
to a value which depends only on x. In this case we say that
the variable is independent, since it does not depend on other
variables. Independent variables are generally used to model
monitored variables which however have some constraints
for their behaviour. These variables should be used in other
parts of the model.

MODULE main
VAR foo: boolean;

fooIU: boolean;−−independent variable used
fooINU: 0..4;−−independent variable not used

ASSIGN foo := !fooIU;
init (fooIU) := 1;
next(fooIU) := !fooIU;
init (fooINU) := 0;
next(fooINU) := (fooINU + 1) mod 5;

Example 8 Violation of meta-property MP8

In the example 8 f ooIU and f ooINU are both indepen-
dent variables. f ooIU satisfies the meta-property because is
used in the assignment of variable f oo; f ooINU , instead,
violates the meta-property because is never read.

7

MP9 Every property is proved true

This meta-property simply requires that every property is
proved.

MP10 No property is vacuously satisfied

A well known problem in formal verification is vacuous sat-
isfaction: A property is vacuously satisfied if that property
is satisfied and proved true regardless of whether the model
really fulfills what the specifier originally had in mind or
not. For example, the LTL property G(x→ X(y)) is vacu-
ously satisfied by any model where x is never true. Vacu-
ity is an indication of a problem in either the model or the
property. Several techniques to detect vacuity have been pro-
posed (e.g., [7,15]) and also tools that perform vacuity de-
tection have been developed (e.g.[11]). The general strategy
to detect vacuity employed in [7,15] is to replace parts of
a property and see if this has any effects on the result of
the verification. In order to detect vacuity it is sufficient to
replace a sub-formula φ of property ϕ with True or False
[15], depending on the polarity of φ in ϕ . The polarity of a
sub-formula φ is positive, if it is nested in an even number
of negations in ϕ , otherwise it is negative, and pol(φ) is a
function such that pol(φ) = False if φ has positive polarity
in ϕ and pol(φ) = True otherwise2.

The replacement of sub-formula φ with ψ in formula ϕ

is denoted as ϕ[φ ← ψ].

Definition 1 A property ϕ is completely/partially vacuous
if for every/some of its atomic proposition φ , VCφ = ϕ[φ ←
pol(φ)] is proved true by the model checking.

When the formula VCφ is true, our tool reports the list
of atomic propositions φ that make the property ϕ vacuously
true.

MODULE main
VAR request : boolean;

state : {ready,busy};
ASSIGN request := 0;

init (state) := ready;
next(state) := case

state = ready & request : busy;
1: {ready,busy};

esac ;
CTLSPEC AG(request −> AF state = busy)

Example 9 Violation of meta-property MP10

In the example 9, the CTL property is vacuously true for
subformula state = busy. Indeed the CTL formula is true
regardless of the fact that state is equal to busy or not, since
request is always f alse.

2 As in [15] we assume that all the occurrences of the subformula
φ in ϕ are of a pure polarity (that is, they are either all under an even
number of negations (positive polarity), or all are under an odd number
of negations (negative polarity))

5 Meta-Property Verification by Model Checking

To verify (or falsify) the meta-properties introduced in the
previous section, we translate each meta-property MPk in a
CTL property MPkCT L . We then build a new NuSMV model
MMP obtained by adding to the original model M the set
MPCT L = ∪n

k=1MPkCT L that contains the translations of all
the meta-properties. The verification of the meta-properties
is carried out through the model checking of MMP.

The mapping from a meta-property to a CTL formula
is not straightforward, because of a) the way CTL proper-
ties are verified in NuSMV, b) the fact that next expressions,
which can be used in some meta-properties, can not be con-
tained in CTL formulas.

a) A CTL property φ is true if and only if φ is true in
every initial state of the machine, i.e., given a model M and
a property φ ,

M |= φ iff ∀s0 ∈ S0 (M,s0) |= φ

where S0 is the set of initial states of M.
The operator Always(φ) is translated to AG(φ). Indeed,

MMP |= AG(φ) means that, along all paths starting from each
initial state, φ is true in every state (globally), which corre-
sponds to the definition of Always. Similarly, InitiallyA(φ)
is translated as φ , since MMP |= φ means that in each ini-
tial state φ is true, which corresponds to the definition of
InitiallyA. However, the translation of Sometime(φ) is not
EF(φ), since MMP |= EF(φ) means that there exists at least
one path starting from each initial state containing a state
in which φ is true, while Sometime requires only that there
exists at least an initial state from which φ will eventually
hold. This means that there are cases in which EF(φ) is false,
since not from every initial state φ will eventually be true,
while Sometime(φ) is true. To prove Sometime(φ) we use
the following equivalence:

MMP |= Sometime(φ) ⇔ MMP 6|= AG(¬φ)

that means that Sometime(φ) is true if and only if AG(¬φ)

is false. We run the model checker with the property P =

AG(¬φ) and if a counter example of P is found, then Sometime(φ)
holds, while if P is proved true, then Sometime(φ) is false.
Similarly, to prove InitiallyS we use the equivalence:

MMP |= InitiallyS(φ) ⇔ MMP 6|= ¬φ

b) It is possible that a meta-property contains next expres-

sions 3. In NuSMV such expressions can not be contained
in CTL formulas, but they can occur in invariant specifi-
cations. Invariant specifications are propositional formulas
which must hold invariantly in the model, and are expressed

3 The meta-properties that are defined through the Always or the
Sometime operators (MP1, MP2, MP3, MP4 and MP5 when are ap-
plied to the next assignments) can contain the next operator.

8

as “INVARSPEC next expr;”. They are equivalent to “CTL-
SPEC AG simple expr;” and can be checked by a special-
ized algorithm during reachability analysis.

In conclusion, all the CTL formulas obtained by the trans-
lation described previously, that have the form MPkCT L =

AG(ϕ), with ϕ containing next expressions, are checked as
invariant specifications. All the other CTL formulas, instead,
are checked as CTL specifications.

6 NuSMV Model Advisor

We have implemented a prototype tool, available at [3], writ-
ten in Java to automatixe the model review procces. The tool
is built on top of the NuSVM model checker and required to
develop a new parser to represent the structure of a NuSMV
specification in terms of Java navigable objects that could be
visited to compute the assignment condition functions and
to access other internal syntactical specification elements.
To the purpose of developing this new parser, the Xtext [4]
framework was used. It allows the development of language
infrastructures including compilers and interpreters as well
as full blown Eclipse-based IDE integration. The user must
only provide an EBNF grammar of his language. Starting
from this grammar, the XTEXT generator creates a parser,
a language meta-model (implemented in EMF) as well as a
full-featured Eclipse-based editor.

For our purposes, we have written the EBNF grammar
of NuSMV and through Xtext we have obtained a NuSMV
parser. Parsing a model, an EMF model of the NuSMV spec-
ification is built which allows accessing the structure of the
NuSMV model (otherwise accessible by constructing its ab-
stract syntax tree).

The model advisor works in the following way:

1. the model M one likes to review is parsed by the NuSMV
parser provided by the model checker; if M is not parsed
correctly the tool does not execute any verification and
quits, otherwise it continues as follows;

2. the model M is parsed with our NuSMV parser and an
EMF model of M is internally represented;

3. the CTL properties MPCT L needed for the verification of
the Meta-Properties are built as described in Section 5,
as well as the NuSMV model MMP = M +MPCT L ob-
tained from the original specification M with the CTL
meta-properties;

4. the tool runs the specification MMP with the model checker
NuSMV and reads the output of the execution;

5. it interprets the MPCT L verification results and builds the
meta-properties results that are finally printed (on the
screen or on a file).

7 Experimental results and discussion

We have applied our model review process to three different
sets of NuSMV specifications. The first set, NuSMVsrc, con-
tains the NuSMV examples available in the NuSMV source
distribution: some of these examples are also available in
the example page on the NuSMV site [1]. The Internet

set contains various models that we have found on the In-
ternet: research works, students projects, etc . . . The last set,
AsmetaSMV, contains the models obtained with the tool As-
metaSMV [5], a tool that translates ASM models in NuSMV
models. This last set of examples was chosen to assess the
quality of NUSMV models obtained from models developed
using other formal (high level) notations. Indeed, NuSMV is
often used as a target language for model checking specifi-
cation originally developed using other formal methods. By
translating these other models to NuSMV, the NuSMV code
might not be efficient and redundancies might be introduced.

The results of our experiments are reported in Table 1. It
shows the name of the set, the number of models in it, the
number of models which we were able to analyze4 and, for
each meta-property, the number of violations we detected.

The most violated meta-property is MP6, that is that a
variable does not take all the values of its domain5. Simply
removing the unused values of the variables type (if they are
really not necessary) can dramatically improve the model
performances.

The second most violated property is MP3, that requests
that two conditions are always mutually exclusive. When a
couple of conditions (cond1,cond2) violates this property,
the first condition cond1 masks the second one cond2: some-
times the developer is conscious of this behavior, but some-
times he is not.

The third most violated property is MP4, that requests
that the default condition, if specified, is never taken; this
meta-property is very strong: developers, indeed, often use
the default condition to catch some situations not captured
by the previous conditions. We must remember that our meta-
properties do not signal errors, but violations of some mod-
eling guidelines that the developer would like to follow.

Finally we would like to underline that the violations of
meta-properties MP2 and MP1 (the third and the fourth most
violated meta-properties) signal erroneous models where,
respectively, some conditions are never applied and some
conditions are never satisfied. We can notice that MP1 and
MP2, although similar, are not the same meta-property: more
precisely all MP1 are also MP2, but not viceversa. There are

4 Some models could not be analyzed because a) they were wrong,
that is they did not parse with the NuSMV parser (33 models) b) the
verification of their meta-properties could have been longer than one
hour, the execution time limit we have set (20 models).

5 The high number of violations is also due to the fact that each
value not taken is a violation (the number of variables that do not take
all their values is shown in round brackets).

9

Spec Set # spec. # rev. # not rev. MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10
NuSMVsrc 63 47 3 - 13 178 230 882 683 44 120 (47) 7 3 42 44
Internet 187 151 30 - 6 209 261 392 351 104 2201 (105) 12 8 147 184
AsmetaSMV 34 33 0 - 1 94 121 20 151 34 215 (150) 0 0 1 22
total 284 231 33 - 20 481 612 1294 1185 182 2536 (302) 19 11 190 250

Table 1 Experimental results and violations found

assignments that are never executed, whose conditions are
eventually satisfied: those assignments are never executed
because their conditions are masked by some previous con-
ditions.

Violations in the AsmetaSMV set deserve a particular re-
mark. As expected the AsmetaSMV set contains several vi-
olations concerning the minimality of the model since these
models are obtained using NuSMV as target language to
model checking ASM models. Therefore, the high number
of MP6 violations was expected. However, the violations
of property MP3 (20 violations in 5 models) is, at a first
sight, surprising. The tool AsmetaSMV, indeed, should al-
ways produce conditions mutually exclusive. We have dis-
covered that this violations are produced by ASM models
containing inconsistent updates, namely parallel updates, in
the same state, of the same location (variable in NuSMV) to
two different values. This proves that the analysis done at the
level of NuSMV can give insights about the high level start-
ing models. In the future, we plan to integrate our NuSMV
model advisor with the AsmetaSMV tool, in order to obtain
minimal models from the translation of the ASM models and
check for model consistency.

Fault detection capability An important question about the
technique we propose is what kind of faults it can reveal.
Although a violation of a meta-property does not necessary
mean that the specification is faulty, it is important to link
the automatic analysis we perform to possible faults in the
specifications for two reason: (1) to be sure that the meta-
properties actually measure the quality of the specification
also in terms of its correctness (which can be ultimately
considered as absence of faults) and (2) to provide useful
feedback to the user to suggest which kinds of faults can oc-
cur in the specification given a violation of a specific meta-
property. We have identified the following defects:

– Over specification or missing use of variables is de-
tected by meta-properties like MP7 and MP8 or by MP6
which checks that variable domains are used. These meta-
properties aim at detecting faults either of over specifica-
tions, i.e. useless details are added to the model, or of omis-
sion, i.e. variables that should occur in conditions or expres-
sion but are simply forgotten.

– Faults in assignments can be detected by MP5.
– Missing or misplaced conditions can be detected by

MP1 and MP2. Indeed if conditions are placed in a wrong

order, then an assignment can be masked and this is sig-
naled by our meta-properties. MP3 and MP4 try to prevent
this kind of faults by making the conditional assignment in-
dependent on the order of the conditions.

– Wrong or inaccurate properties are detected by MP9
and MP10.

8 Related work

Typical automatic reviews of formal specifications include
simple syntax checking and type checking. This kind of anal-
ysis is performed by simple algorithms which are able to im-
mediately detect faults like wrong use of types, misspelled
variables, and so on. Some complex type systems may re-
quire proving of real theorems, like the non-emptiness of
PVS types [17].

As already anticipated in the introduction, a similar model
reviewing technique was presented in [6] for the Abstract
State Machine (ASM) formal specifications [9]. The review
we propose in this paper is also similar to the kind of re-
views proposed by Parnas and his colleagues. In a report
about the certification of a nuclear plant, he observed that
“reviewers spent too much of their time and energy check-
ing for simple, application-independent properties” (like our
meta-properties) which distracted them from the more diffi-
cult, safety-relevant issues.” [18]. Tools that automatically
perform such checks can save reviewers considerable time
and effort, liberating them to do more creative work.

Our approach has been greatly influenced by the work
done by the group lead by Heitmeyer with the Software
Cost Reduction (SRC) method. SCR features a tabular nota-
tion which can be checked for completeness and consistency
[12]: completeness guarantees that each function is totally
defined by its table and consistency guarantees that every
value of controlled and internal variables is uniquely defined
at every step. In [13] it is described a method, similar to ours,
to automatically verify the consistency of a software require-
ments specification (SRS) written in an SCR-style; proper-
ties that describe the consistency of the model are defined
structural properties. The SRS document is translated into a
PVS model where, for each structural property, a PVS the-
orem is declared. The verification of structural properties is
carried out through the proof of PVS theorems and, for one
property, through the model checking of a CTL property.

10

Other approaches try to apply similar analysis to non
tabular notations. In [19], the authors present a set of robust-
ness rules (like UML well-formedness rules) that seek to
avoid common types of errors by ruling out certain model-
ing constructs for UML state machines or Statecharts. Struc-
tural checks over Statecharts models can be formulated by
OCL constraints which, if complex, must be proved by the-
orem proving. Their work and ours extend the use of meta-
properties not only to guarantee correctness but also to as-
sure high quality standards in case the models are to be used
for safety critical applications.

Other approaches emphasize the analysis of the proper-
ties specified for a model. For instance, the problem of the
vacuity and coverage of formal requirements is studied in
[14]. In that paper, the authors note the importance of sus-
pecting the system or the specification of containing an error
also in the case model checking succeeds and they proposed
two sanity checks: vacuity (equal to our MP10) and cover-
age. In coverage, the goal is to check if components of the
system are superfluous and it shares the same intent of our
meta-properties MP1 and MP2.

In [8], the authors propose a methodology with the goal
of performing the quality assurance of formal specifications.
Their methodology is supported by a tool (RAT - require-
ment analysis tool) and based on two techniques: property
simulation and property assurance. Property assurance has
the goal of assessing the completeness and the consistency
of formal specification but requires the introduction of asser-
tions (which must be satisfied) and possibilities (which de-
scribe allowed corner-case behavior). Using assertions, a de-
signer can check whether the requirements are strict enough
to exclude any undesired behavior. With possibilities, one
can check that they are not overly strict, and desirable be-
havior is allowed.

9 Conclusions and Future work

We have presented a method to perform automatic model
review of NuSMV specifications and a model advisor as
tool support for this activity. This process has the aim to
guarantee certain quality attributes of models. Given qual-
ity attributes are captured by meta-properties expressed in
terms of CTL formulas. The NUSMV model checker itself
is used to detect possible violation of these meta-properties
and, therefore, the presence of possible defects in the model.
These meta-properties can be assumed as measures of model
quality assurance.

In the future, we plan to study new meta-properties and
integrate our model advisor to the Asmeta toolset [2] (a set
of tool for ASM specifications) in order to achieve minimal-
ity of the NuSMV models obtained by means of AmetaSMV
model checker from ASM specifications.

Acknowledgements We would like to thank Siamak Haschemi for the
initial version of the XTEXT for NuSMV grammar.

References

1. The NuSMV website. http://nusmv.itc.it/.
2. The ASMETA website. http://asmeta.sourceforge.net/,

2010.
3. The NuSMV model advisor site. http://code.google.com/p/

nusmvmodeladvisor/, 2010.
4. The Xtext website. http://www.eclipse.org/Xtext/, 2010.
5. P. Arcaini, A. Gargantini, and E. Riccobene. AsmetaSMV: a way

to link high-level ASM models to low-level NuSMV specifica-
tions. In M. Frappier, U. Glässer, S. Khurshid, R. Laleau, and
S. Reeves, editors, Abstract State Machines, Alloy, B and Z, Sec-
ond Inter. Conference, ABZ 2010, volume 5977 of Lecture Notes
in Computer Science, pages 61–74. Springer, 2010.

6. P. Arcaini, A. Gargantini, and E. Riccobene. Automatic re-
view of abstract state machines by meta property verification. In
C. Muñoz, editor, Proceedings of the Second NASA Formal Meth-
ods Symposium (NFM 2010), NASA/CP-2010-216215, pages 4–
13, Langley Research Center, Hampton VA 23681-2199, USA,
April 2010. NASA.

7. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection
of vacuity in ACTL formulas. In Proc. 9th International Computer
Aided Verification Conference, number 1254 in Lecture Notes in
Computer Science, pages 279–290, 1997.

8. R. Bloem, R. Cavada, I. Pill, M. Roveri, and A. Tchaltsev. Rat:
A tool for the formal analysis of requirements. In W. Damm
and H. Hermanns, editors, CAV, volume 4590 of Lecture Notes
in Computer Science, pages 263–267. Springer, 2007.

9. E. Börger and R. Stärk. Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer Verlag, 2003.

10. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking. In Proc. Inter-
national Conference on Computer-Aided Verification (CAV 2002),
volume 2404 of LNCS. Springer, July 2002.

11. M. Gheorghiu and A. Gurfinkel. Vaquot: A tool for vacuity detec-
tion. In Posters & Research Tools Track, FM 2006, 2006.

12. C. Heitmeyer, R. Jeffords, and B. Labaw. Automated consistency
checking of requirements specifications. ACM Transactions on
Software Engineering and Methodology, 5(3):231–261, July 1996.

13. T. Kim and S. D. Cha. Automated structural analysis of SCR-style
software requirements specifications using PVS. Softw. Test, Verif.
Reliab, 11(3):143–163, 2001.

14. O. Kupferman. Sanity checks in formal verification. In C. Baier
and H. Hermanns, editors, CONCUR, volume 4137 of Lecture
Notes in Computer Science, pages 37–51. Springer, 2006.

15. O. Kupferman and M. Y. Vardi. Vacuity detection in temporal
model checking. International Journal on Software Tools for Tech-
nology Transfer (STTT), 4(2):224–233, 2003.

16. K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, Norwell, MA, USA, 1993.

17. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system. In 11th International Conference on Auto-
mated Deduction (CADE-11), pages 748–752, London, UK, 1992.
Springer-Verlag.

18. D. L. Parnas. Some theorems we should prove. In HUG ’93: 6th
International Workshop on Higher Order Logic Theorem Prov-
ing and its Applications, pages 155–162, London, UK, 1994.
Springer-Verlag.

19. S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden. Analyz-
ing robustness of UML state machines. In Workshop on Modeling
and Analysis of Real-Time and Embedded Systems (MARTES 06),
2006.

