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Abstract. Combinatorial interaction testing (CIT) is an emerging test-
ing technique that has proved to be effective in finding faults due to
the interaction among inputs. Efficient test generation for CIT is still an
open problem especially when applied to real models having meaningful
size and containing many constraints among inputs. In this paper we
present a novel technique for the automatic generation of compact test
suites starting from models containing constraints given in general form.
It is based on the use of Multivalued Decision Diagrams (MDDs) which
prove to be suitable to efficiently support CIT. We devise and experiment
several optimizations including a novel variation of the classical greedy
policy normally used in similar algorithms. The results of a thorough
comparison with other similar techniques are presented and show that
our approach can provide several advantages in terms of applicability,
test suite size, generation time, and cost.

1 Introduction

Combinatorial Interaction Testing (CIT) helps tester to find defects due to the
interaction of components or inputs. It is based on the assumption that faults are
generally caused by interactions among parameters. CIT tests the interaction
in a systematic way. For instance, pairwise testing requires that every pair of
parameter value be tested at least once. It can be generalized by the t-way
testing. CIT has been proved to be very effective in finding faults [20].

A major problem in CIT is the generation of compact test suites, especially
when the cost of executing each test case is high. Suitable tools can produce
very compact test suites. For instance [20], a manufacturing automation system
that has 20 controls, each with 10 possible settings –a total of 1020 combinations
– can be tested by a test suite for the pairwise testing with only 180 tests in
it. Applying CIT to highly configurable software systems is complicated by the
fact that, in many such systems, the parameters are rarely independent from
each other. There exist constraints that model dependencies among parameters
that render certain combinations invalid or some combinations mandatory [12].
The presence of constraints increases the complexity of the test generation task:
if constraints on the input domain are to be taken into account, even finding a
single test or configuration that satisfies the constraints is NP-complete [5], since
it can be reduced in the most general case to a satisfiability problem. Several



works, like this, target explicitly the test generation for CIT in the presence of
constraints, CCIT in brief. In this paper we focus on reaching a good trade-off
between the size of the generated test-suite and its time of generation.

Our algorithm is a classical greedy algorithm which produces a test at the
time [7]. When building a single test, it chooses an optimal parameter and assigns
an optimal value to it until a test is complete. However, we advance with respect
to the state of the art by adopting the following original approaches:

– We employ a data structure, called Multivalued Decision Diagram (MDD),
which is particularly suitable to combinatorial problems in order to represent
inputs, their domains, and constraints over those inputs; MDDs offer several
advantages w.r.t. the classical Binary Decision Diagrams.

– We soften the classical greedy algorithm by reducing the importance of the
number of tuples covered by the test currently built, by weighting parameters
and tuples depending on the constraints in order to reduce the test suite size;

The paper is organized as follows. In Sect. 2 we present some introductory ma-
terial about constrained combinatorial interaction testing, about the framework
called CitLab, and about MDDs. Sect. 3 shows how MDDs are suitable to effi-
ciently represent several aspects of CIT (models, tuples, tests, and constraints).
In Sect. 4 we present our algorithm and several optimizations. Experiments are
reported in Sect. 5. Section 6 presents relevant related work. Future works are
discussed in Sect. 7, which concludes the paper.

2 Background

2.1 Combinatorial Interaction Testing

Combinatorial Interaction Testing (CIT) systematically explores t-way feature
interactions inside a given system, by effectively combining all t-tuples of param-
eter assignments in the smallest possible number of test cases. This allows to
budget-constraint the costs of testing while still having a testing process driven
by an effective coverage metric [19]. The most commonly applied combinatorial
testing technique is pairwise testing, which consists in applying a test suite cov-
ering all pairs of input values (each pair in at least one test case). Many CIT tools
(see [24] for an up to date listing) and techniques have already been developed
[16,19] and are currently applied in practice [4,18].

Combinatorial testing can be applied to a wide variety of problems: highly
configurable software systems, software product lines which define a family of
software, hardware systems, and so on. As an example, Listing 1 reports the input
domain model of a simple smart-phone product line using the CitLab [10]. The
model contains three parameters: the display can have 16 or 8 million colors or be
in black and white (BW), the frontCamera can have 1 or 2 megapixels (1MP and
2MP) or not be present (NOC). The phone can also have an emailViewer. We will
use this simple example throughout the paper to explain our approach. While
testing of all the possible configurations for the phone would require 3 ·3 ·2 = 18
tests, pairwise coverage can be obtained by a test suite containing only 9 tests.



Listing 1: A mobile phone example

Model phone
Parameters:
Enumerative display { 16MC 8MC BW };
Enumerative frontCamera { 2MP 1MP NOC };
Boolean emailViewer;

end
Constraints: # emailViever => display != BW # end

In most configurable systems, constraints or dependencies exist between pa-
rameters. Constraints were first described as being important to combinatorial
testing in [11] and were introduced in the AETG system. In our approach, tests
that do not satisfy the constraints are considered invalid and do not need to be
produced. However, the generation of tests considering constraints is more chal-
lenging than the generation without them, and several test generation techniques
still do not support constraints, at least not in a direct manner.

In CitLab testers are allowed to specify constraints in a general form. For
instance, the constraint that a phone with an email viewer cannot have a black
and white display can be modeled as shown in Listing 1.

2.2 Multivalued Decision Diagram

A decision diagram is a graph that represents a function f : D → B where
D = D1× . . .× . . .Dn and B is the Boolean domain, i.e., B = {F,T}. A decision
diagram is used to evaluate the truth value of f when applied to the variables
x1, . . . , xn. If all the domains Di are binary, then we use Binary Decision Dia-
grams (BDDs) to represent Boolean functions. BDDs are widely used within the
domain of system design verification. Multi-Valued Decision Diagrams (MDD)
extend BDDs by allowing every variable to have a different domain with differ-
ent size. A MDD is a directed acyclic graph used to encode a function f . The
graph has only two terminal nodes each labeled F or T. Every non-terminal
node is labeled by an input variable xi and has |Di| outgoing labeled edges; one
corresponding to each value. The diagram is ordered if the variables adhere to a
single ordering on every path in the graph, and no variable appears more than
once on any path from the root to a terminal node. An MDD can represent the
values in D that are selected by f : if the values x1, . . . , xn for the variables in D
are selected by f , then f(x1, . . . , xn) = T, otherwise f(x1, . . . , xn) = F.

Typical operations among MDDs include unary operations like complement
and cardinality, and binary operations like union, intersection, and difference.

MDD operations can be mapped to logic operation between the Boolean
functions represented by an MDD. Given an MDD m with function f , its com-
plement m{ represents the function ¬f . The union between two MDDs m1 tm2

represents the function f1 ∨ f2. The intersection between two MDDs m1 um2

represents the function f1 ∧ f2. Given the MDD m, its cardinality |m| is the



dis eV fC T

16MC,8MC,
BW
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Fig. 1: MDD for the combinatorial problem of Listing 1

number of all the possible paths to the terminal node T. The cardinality can be
used to check consistency among Boolean functions: if f1 and f2 are inconsistent,
i.e. f1(x) 6= f2(x) for any x, the intersection between their MDDs is empty.

MDDs can represent Boolean logic functions using less memory and shorter
path then BDDs. From a theoretical point of view, Nagayama [22] demonstrated
that the amount of memory used by mapping Boolean function with Boolean
variables to heterogeneous MDD is lesser than using OBDD directly. This seems
to suggest that MDDs are the preferred data structure when the domains are
not simple Boolean values.

In order to achieve this performance improvement over BDDs, it is very im-
portant the use of techniques that can reduce the size of MDDs. To our knowl-
edge, Meddly [3] is the only opensource C/C++ library that natively supports
these DDs. According to our opinion, Meddly native support for MDDs and their
variants, along with its performance makes it a good candidate for applications
in areas where these DDs make sense.

3 Using MDD for CCIT

If one ignores the constraints, a combinatorial model with n parameters each with
cardinality pi can be very easily represented by an MDD that has n non-terminal
nodes labeled by the name of every parameter and each node for parameter Pi

has pi outgoing labeled edges to the node for Pi+1 for i < n and to the T
terminal node for Pn. We call this MDD MTS . For instance, the MDD in Fig. 1
represents the MTS for the phone given in Listing 1. In the following figures,
edges sharing the same starting and final node are shown with a unique arch
and the list of labels. Every path from root to the terminal T is a syntactically
correct configuration. The MTS represents all the tests, i.e., all the possible paths
from the start to the terminal node. The cardinality of MTS is equal to

∏n
i=1 pi

which is equal to the total number of possible tests.
The equality formula that associates parameter Pi to one of its values v, i.e.,

the assignment Pi = v can be easily represented by the following function.

f(p1, . . . , pn) =

{
T if Pi = v

F if Pi 6= v

Such function can be represented by an MDD in which all the paths, traversing
the edge outgoing the node Pi with label v, terminate to the terminal T while
all the other ones terminate in F. For instance, the equality eV = true is shown
in Fig. 2a. A similar MDD representation can be given for a tuple assigning
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(a) Single value equality (eV = true)

dis eV fC

fC

T

F

16MC,8MC,
BW true

false

2MP

1MP,NOC

2MP,1MP,
NOC

(b) Tuple (eV = true, fC = 2MP)

Fig. 2: Representation by MDDs of assignments and tuples

values to a list of parameters. A path terminates to the node T if and only if
it contains an assignment contained also in the tuple. For instance, the tuple
(eV = true, fC = 2MP) is shown in Fig. 2b.

In most configurable systems, constraints or dependencies exist between pa-
rameters. Since we assume that the constraints corresponding to a CIT prob-
lem can be described by propositional logic with equality, we can describe ev-
ery model constraint ci using a Boolean general formula containing operators
¬,∨,∧ over equalities among parameters and their values. Every constraint can
be represented by an MDD modeling its truth function: it can be built using the
representation of equality formulas proposed above and the operations between
MDDs presented in Sect. 2.2.

In order to include the constraints in the MDD MTS representing the uncon-
strained model, we can use the operations between MDDs. Let MTS be the MDD
representing the model and the whole test set from all the possible combinations.
The conjunction of MTS with all the constraints ci restricts the set of satisfying
interpretations of the function associated to MTS such that it contains exactly
those interpretations that correspond to valid test cases. Let mci be the MDD
for the constraint ci, and the MDD MVS be defined by the following formula:
MVS =

dn
i=1mci uMTS .

Integrating the constraints ci into the MDD MTS in order to obtain the
MDD MVS , changes the MTS original topology by making one or more paths
from valid to not-valid. In the original MDD there are n levels and n not-terminal
nodes, where n is the number of parameter. In order to model not-valid paths
it is necessary to duplicate some nodes. The MDD MVS preserves the number
n of levels but has some more not-terminal nodes. The MVS represents all the
valid tests, i.e. all the possible paths from the start to the terminal T node.

An example of the MDD MVS representing the model and the constraint for
the phone problem is shown in Fig. 3a. MVS can be used to identify valid tests.
For instance, the combination (dis = BW, eV = true) is not valid, regardless of
the value of fC, as expected, since the requirements prohibit a BW display with
the emailViewer. On the contrary, the test (dis = 16MP, eV = true, fC = 2MP)
is a valid test, as shown by the corresponding path leading to the terminal T
node in the MDD. An MDD with cardinality 1, i.e. with only one path to the T
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Fig. 3: Representation by MDDs of models with constraints and test cases

terminal node, represents one valid test. The example shown in Fig. 3b identifies
the test (dis = 16MP, eV = true, fC = 2MP).

4 An MDD-based algorithm for CCIT

We have devised an automatic algorithm for the generation of combinatorial test
suites based on the use of MDDs. The algorithm takes as input the MDD MVS

representing the intersection between the model domain and the constraints, and
produces as output the desired test suite R. It builds one test at the time until all
the testing requirements are achieved. When building a single test, it proceeds in
a greedy manner: it chooses one optimal parameter, which is not already set in
the test, and its optimal value, according to our weighting criteria, and it adds
this assignment to the test to be built. In the following we explain in details the
algorithm that is reported in Alg. 1.

Firstly, we populate a list of tuples TTC including all the combinations to
cover based on a given coverage criterion C, usually t-wise coverage. We plan
to use MDDs also to represent set of tuples like in [26]. Some tuples may be
infeasible because of the constraints. In order to filter all the valid tuples, we use
MDDs as well: the function feasibleTuples returns all the tuples required by the
criterion C that have a non-empty intersection with the MDD MVS .

We then start the iteration part where we generate, for each iteration, a test
case Mnc represented by an MDD with final cardinality equal to 1. At the end
of each iteration, we update TTC removing the tuples covered by the generated
Mnc until TTC is empty.

In the single iteration we initialize Mnc to the valid set MVS , we then sort
all the parameters (sortParamList) by simply counting for every parameter p
the number of tuples in TTC that contain p. We then start assigning every Pi

to the best value for it, by taking the value producing an assignment that is
compatible with Mnc and that maximizes the coverage of tuples in TTC .

This basic algorithm is a classical greedy algorithm that generates a test
at the time and tries to cover as many uncovered tuples as possible. It can be
improved in several directions, as explained in the following sections.



Algorithm 1 Generation of the test suite R

Input: MVS : MDD for the model with the constraints
Output: R: set of MDDs representing the test set
TTC ← feasibleTuples(MVS )
R← ∅
while TTC 6= ∅ do . Build single test Mnc

Mnc ←MVS

P ← sortParamList(TTC)
for all Pi ∈ P do . Fix every parameter in P

value← chooseBest(Pi,Mnc, TTC)
Mnc ←Mnc u Pi = value
if |Mnc| = 1 then break end if

end for
TTC ← removeCoveredTuples(Mnc)
R← R ∪Mnc

end while

4.1 Optimization: Weighting compatibility

Although most greedy algorithms consider only the number of remaining tuples
that will be covered in order to determine the best choice [7], it is well known
that such greedy policy can lead to bigger test suites, even for unconstrained
models1. In the presence of constraints, this greedy policy can be even more
inefficient since it tends to leave at the end all the tuples that are “difficult” to
cover, because the constraints limit the number of valid test cases that can cover
them. In this way, the last generated tests cover only a few tuples not covered
yet, leading to bigger test suites.

We propose to weight every tuple depending on its compatibility with respect
to the other tuples not covered yet considering also the constraints. Heavy tuples
are more difficult to cover and they should be fixed sooner than light tuples. To
weight tuples, we introduce a dynamic function weigth that measures the weight
of every tuple and we modify the Alg. 1 by calling the function in Alg. 2 that
assigns the weights before ordering the parameters. We modify the functions
sortParamList and chooseBest accordingly in order to consider tuple weights.

The function assignWeight increases the weight (initially set to 0) for all
the tuple pairs (Ti, TJ) with Ti and Tj in TTC that are mutually exclusive by
considering also the constraints. Checking if two tuples are compatible can be
performed by using the usual intersection operator among MDDs. For instance
the tuples (dis = BW, fC = 2MP) and (fC = 2MP, eV = true) would have their
weight increased because they are incompatible due to the constraints and this
can be easily computed using the MDD of Fig. 3a.

Although we can rely on the efficiency of MDDs for the computation of
weights, Alg. 2 has complexity N2/2 where N is the number of remaining tuples

1 Bryce and Colbourn report in [6] the example in which a simple greedy algorithm
provides a solution of 1,222 tests. Relaxing the greedy behavior or other algorithms
can provide much smaller test suites till 910 tests



Algorithm 2 Computation of weights

function assignWeight(TTC ,MVS )
for all T ∈ TTC do weight(T )← 0 end for
for all (Ti, Tj) ∈ TTC × TTC with i < j do

if MVS u Ti u Tj = ∅ then
weight(Ti)← weight(Ti) + 1
weight(Tj)← weight(Tj) + 1

end if
end for

end function

Algorithm 3 Approximate and faster computation of weights

function assignWeightFromParams(TTC)
for all T ∈ TTC do weight(T )← 0 end for
for all Pi and Ti ∈ TTC with Pi ∈ Ti do

weight(Pi)← weight(Pi) + 1
end for
for all Ti ∈ TTC and Pi ∈ Ti do

weight(Ti)← weight(Ti) + weight(Pi)
end for

end function

to cover (TTC) and this can increase the computation time. For this reason, we
define a simplified algorithm (Alg. 3) that is less precise but it is much faster
than Alg. 2. This algorithm 3 first assigns a weight to every parameter depending
on the number of remaining tuples to cover (TTC) that contain it. Then, every
tuple gets a weight that is the sum of the weights of the parameters in it. It does
not consider the model and its constraints (MVS ), it does not need to perform
any operation among MDDs, and for this reason is much faster.

We devised the following policy. If the number of tuples to be covered (|TTC |)
is greater than a threshold, Alg. 3 performs the weighting otherwise, the more
precise Alg. 2 is used.

4.2 Optimization: Repetitions

Our algorithm produces non deterministic results, since when ordering the pa-
rameters and when identifying the best value for the chosen parameter, it may
occur that two or more choices are equally valid. In this case the algorithm
randomly chooses one possibility. The choice may affect the behavior of the test
generation only much later (typically only in the last steps). One possibility is to
repeat with a different random seed the entire algorithm (except the evaluation
of tuple feasibility) in order to see if by chance a better solution is found. We call
this optimization repetition, as defined in [7]. We manage the repetition policy
by setting the following three parameters repeatmin, repeatmax, and repeatbetter.
When repetition is activated, the algorithm generates at least repeatmin times a



Table 1: Characteristics of the CCIT benchmarks.

#Variable #Constraints Domain size #Valid configurations Ratio3

Minimum 3.00 0 8.00 1.00 2.44×10−29

Maximum 259.00 388 9.26×10+77 2.44×10+62 1.00

Mean 44.85 27.46 1.16×10+76 5.89×10+60 0.25

Median 15.00 15 8.35×10+04 2.60×10+04 7.86×10−02

new test suite. It keeps generating new test suites unless for repeatbetter the test
suite is not smaller than the best found so far. In any case no more than repeatmax

generation runs will be executed. The smallest test suite found is returned.

5 Experiments

We have implemented the algorithm presented in the previous section in a pro-
totype tool called medici (MultivaluEd Decision diagrams for Combinatorial
Interaction testing). We have integrated medici in CitLab, an extensible frame-
work for combinatorial testing [10]. medici is written in C++ and is based on
Meddly [3] for the MDDs. It has been embedded in CitLab and it is freely avail-
able2. CitLab simply exports the necessary input file for medici and executes
it. Note that medici accepts constraints in general form and thanks to the fact
that it uses MDDs, it avoids the time-consuming conversion to CNF .

As benchmarks for CCIT problems we have gathered 117 models with con-
straints taken from the literature (Casa [13,15,12], FoCuS [26], ACTS [1], and
IPO-S [9]) and from SPLOT SPLs repository, and used (in subsets) also by many
other papers. The benchmarks can be found on the CitLab web site and can be
used for further comparisons. For the sake of brevity, we show, in Tab. 1, only
some useful statistical summary about the models. We run the experiments on
a PC with two Intel(R) Xeon(R) CPU E5-2630 @ 2.30GHz and 64 GByte of
RAM. We exploit the multi-core architecture by running 20 threads in parallel
and we run all the experiments with the pairwise coverage and 50 runs.

Let sizem be the average of the test suite size for model m over all the runs
and timem be the average of the time for model m, we introduce size and time
defined as: size = Σsizem which is the sum of the averages of the test suite sizes
and time = Σtimem which is the sum of the averages of the executions times
(in seconds). We will use size and time as performance indexes.

Optimal threshold value. We perform an experiment in order to discover
the impact of the threshold introduced in Sect. 4.1 over the test generation size

2 CitLab and its medici plugin can be found at http://code.google.com/a/

eclipselabs.org/p/citlab/
3 Ratio=(#Valid configurations / Domain Size)

http://code.google.com/a/eclipselabs.org/p/citlab/
http://code.google.com/a/eclipselabs.org/p/citlab/


Fig. 4: Test suite size and time depending on the threshold

and time (with 1 repetition). Fig. 4 reports how the test suite size and time
changes depending on the value of the threshold4. As the graph shows, the test
suite size has a minimum for a threshold around 500, while it becomes sensibly
greater with thresholds smaller than 250. The time becomes significantly greater
for threshold greater than 250. From now on, we chose as optimal threshold the
default value of 250.

Using compatibility We experiment the efficacy of the use of the compatibil-
ity and weights in order to choose the optimal parameter and value w.r.t. the
classical greedy algorithm as explained in Sect. 4.1 by performing a comparison
with a version of medici that avoids this optimization and uses a greedy algo-
rithm over the number of covered combinations. The results are shown in the
chart of Fig. 5a.

We observe that using the compatibility leads to smaller test suites (size is
around 4% smaller on average) with an increase of the time (time) of around
15%. Using the proposed technique slows the rate in which uncovered tuples are
covered but reduces the final test suite size. For instance, Fig. 5b reports the
size of still uncovered tuples (y-axis) while generating tests for one model (the
number of tests already generated is on the x-axis). By maximizing the coverage
of tuples (dotted line), the test generation covers more tuples at the beginning
but at the end it needs new tests to cover the residual uncovered tuples. By using
compatibility and by weighting the tuples (continuous line), the algorithm covers
fewer tuples at the beginning but at the end all the residual tuples are easily
covered with few tests. The figure shows that the problem of finding minimal
test suites is not easily solvable by using pure greedy algorithms, since only near
the end our proposed approach outperforms the classical greedy approach.

Number of repetitions Regarding the number of repetitions (options repeatmin,
repeatmax, repeatbetter introduced Sect. 4.2), the situation is more clear, since the
use of these options is purely incremental and increasing the number of tries will

4 Threshold values are in the set {0,10,50,100,250,500,1000,2000}.



(a) Greedy vs Compatibility comparison
with optimization of Sect. 4.1

(b) Tuple coverage rate for b 12 with op-
timization of Sect. 4.1

Fig. 5: Greedy vs Compatibility comparison

Fig. 6: Test suite size and time depending on the repetitions settings (repeatmin

repeatmax repeatbetter).

always increase the time and decrease (or keep equal) the number of tests. The
choice of the optimal values for these options, is however a typical multi-objective
optimization, in which we try to optimize the two conflicting objectives of a small
test suite size and a small generation time.

We test for the repeat options the values {1, 5, 10, 15, 20, 30, 50} which
give rise to 27 valid configurations. The data for the execution of all the config-
urations is shown in Fig. 6 (and later in Tab. 2). The graph confirms that the
two objectives of minimizing both size and time are conflicting: it is possible to
obtain smaller test suite but at the expense of the test generation time. Our tech-
nique allows the tester to decide of spending more time in order to have smaller
test suites. From all the configurations, we select one with (repeatmin, repeatmax,
repeatbetter) equal to (10,30,5) which represents a good compromise between
time and speed and it can be considered as a good candidate for a default use
of medici. From now on, we will use this version for further comparison.

Comparison with other tools in CitLab We perform a comparison of
medici with the other external tools supported by CitLab, namely ACTS [1,21]
and CASA [13,15]. ACTS is a tool developed by the NIST and implements several



size ΣσS time ΣσT

ACTS 3387.5 0.5 73.7 2.4

CASA 3185.4 4391.2 14781.2 14305.9

medici 3214.4 6633.5 7871 965.4

Table 2: Comparison with
ACTS and CASA

Fig. 7: Number of models that present the mini-
mum cost for each generator for timetest from 0.01
to 5000 secs.

variants of the In Parameter Order (IPO) strategy. CASA is a tool developed at
the University of Nebraska and it is based on simulated annealing, a well-studied
meta-heuristic algorithm. Both support constraints, are freely available, have a
large user base, and are very often used in comparison studies. Using CitLab
allows us to perform all the experiments in a very controlled environment on the
same computer and using exactly the same examples.

Due to the high number of models and experiments, we can give only some
cumulative results. Table 2 reports the results of the comparison: we have com-
puted the mean, and the standard deviation (σ) of the size and time (in secs)
among all the 115 runs for every model. Besides the sum of averages (size and
time), the table displays the sum of the standard deviations.

Table 2 shows that ACTS is the fastest but it produces also the biggest test
suites. ACTS has a deterministic algorithm and hence the standard deviation of
its sizes is null. medici is always slower than ACTS but it produces smaller test
suites. medici is around 200 times slower than ACTS, but it produces a test
suite on the average 5.4% smaller than ACTS. On the other hand, CASA is the
slowest of all, but it produces rather small test suites. CASA has a very high
standard deviation both in time and in size (running CASA only once may not
lead to the best solution of its). medici is faster than CASA and it has a smaller
standard deviation. CASA produces a test suite on the average 1% smaller than
medici, but its generation time is, on average, double that of medici.

Overall, we can say that medici performances are between CASA and ACTS.
To better guide the user in the choice of the best test generator tool, we can
roughly estimate the cost of testing (cost) as the total time for test generation
(timegen) plus test execution, which depends on the size of the test suite (size)
and time necessary to execute every single test (timetest): cost = timetotal =
timegen + size × timetest . Using the data previously computed, we have also
calculated the cost for each model and for each generator selecting a meaningful
set of timetest . Fig. 7 shows the number of models that present the minimum
average cost for each generator varying the timetest . ACTS outperforms both
CASA and medici if each test takes on average less than 10 seconds. This is in
line with what was found by Garvin et al. [14]. If the time for executing a single



test increases, CASA and medici cost less than ACTS in most models. Even
for very costly test execution (e.g. tests that require some human intervention),
medici can still compete with CASA in a meaningful number of models.

5.1 Threats to validity

We have identified some threats to validity of the proposed study and we present
some countermeasures we have employed. First, the benchmark data may be
not representative. We have tried to collect models from many sources: to the
best of our knowledge this is one of the biggest benchmark set of constrained
combinatorial models used for test generation. The models represent a wide
heterogeneous range of real life and academic models. Second, we are aware that
our tool, medici, may produce incomplete and incorrect test-suites that allow
it to perform better than the other tools. To avoid this, besides performing unit
testing we have used CitLab “validator” [2] that checks that the resulting test
suite actually cover all the required tuples (except those infeasible). We use this
program for debugging medici. In order to have confidence of the data obtained
in the experiments, we have executed 50 runs for every configuration. Using
multi-threads allows us to reduce the experimental time, but it may alter the
running time, since an ordinary user will generally launch only one execution at
the time. However, we believe that the comparison is still fair because we have
treated all the generators in the same way.

6 Related work

Combinatorial interaction testing has been an active area of research for many
years. In a recent survey [23] Nie and Leung count more than 12 research groups
that actively work on CIT area and many other groups and tools are missing
in the count. In a previous survey, Grindal et al. [16] presented 16 different
combination strategies, covering more than 40 papers. There are several web
sites listing tools and approaches (like [24]), and publishing benchmarks and
evaluations of tools and algorithms. The most studied area in CIT is the test
suite generation, where several research groups continuously challenge existing
algorithms and tools in order to provide better approaches in terms of execution
times, supported features, and minimality of the produced test suites. Finding
an algorithm that improves over the current state of the art has become a hard
research task.

There are several families of CIT test generation tools, including bio-inspired,
algebraic, logic-based [8], and greedy. In [7], Bryce et al. presented a general
framework of greedy construction algorithms, in order to study the impact of
each type of decision on the effectiveness of the resulting heuristic construction
process. To this aim, they designed the framework as a nested structure of four
decision layers, regarding respectively: (1) the number of instances of the process
to be run, (2) the size of the pool of candidate rows from which select each new
row, (3) the factor ordering selection criteria and (4) the level ordering selection



criteria. The approach presented in this work fits exactly in the greedy category
of algorithms modeled by that framework, and it is structured in order to be
parametric with respect to the desired number of repetitions and the factor and
level ordering strategies. Note that their study concluded that factor ordering is
predominant on the resulting test suite size, and that density-based level ordering
selection criteria was the best performing one out of those tested. In the present
work, we explored original ways of redefining the density concept. In fact, while
Bryce et al. compute it as the expected number of uncovered pairs, we weight
tuple compatibility and we order parameters accordingly.

Comparison with BDD-based tools. Regarding the data structure we use, a com-
parison can be done with works using for CCIT binary decision diagrams (BDDs)
which are similar to MDDs. Salecker et al. [25] developed a test set calculation
algorithm which uses BDDs as efficient data structure to represent the combina-
torial interaction testing problem with constraints. Both their and our approach
are based on the modeling of the combinatorial interaction test problem with
constraints as a single propositional logic formula. MDDs are a more efficient
data structure for CCIT than BDDs: while modeling CCIT using BDDs requires
a logic subformula corresponding to all possible alternatives for selecting val-
ues from each parameter Pi, MDDs permit to avoid the representation of these
subformulas for single parameters; the benefit produced by this technique is the
absence of the implicit constraints introduced to represent value selection. Un-
fortunately the tool presented in [25] is not available and a fair comparison is
difficult. For sanity check, we found that on the same models presented in [25],
medici without repetitions was able to produce a smaller test suite (486.2 vs
547) and the time required in [25] was 2.3 times the time for medici (687 vs
1606 secs), although our PC is only 1.8 times faster (considering the SPECint
of around 42.6 vs 23.5).

Segall et al. [26] developed FoCuS, another BDD-based CCIT tool. In their
approach each parameter is represented by one or more binary variables in the
BDD. In order to build the BDD of valid tests, they first built for each constraint
(called restriction) the BDD representing the set of tests allowed by it. A test is
valid if and only if it is valid according to all restrictions, therefore the set of valid
tests is exactly the intersection of the sets of tests allowed by the restrictions.
This is computed by the conjunction of the BDDs representing these sets. Their
approach is therefore very similar to ours in terms of problem representation,
and we believe that also their approach would benefit from the use of MDDs
instead of BDDs. Unfortunately FoCuS is not publicly available. However, again
for sanity check, we found that on the same models presented in [26] medici
produced smaller test suites (923.5 vs 934) while published data for FoCuS do
not include generation time.

7 Future work and Conclusions

We plan to work in several directions in order to improve our approach and the
tool. medici (as most other test generation tools, with the notable exception of



ACTS) does not support constraints containing arithmetic expressions. CitLab
already adopts the language of propositional logic with equality and arithmetic
to express constraints. To be more precise, it uses propositional calculus, en-
riched by the arithmetic over the integers and enumerative symbols. Although
arithmetic expressions are quite rare in models published in the literature, we
plan to extend medici in order to deal with the arithmetic constraints expressed
in CitLab, since we believe that industrial studies often use them.

Moreover, we have experimented only pairwise coverage, even if medici,
ACTS, and CASA support n-wise coverage. Initial experiments shows that medici
performs well also with n-wise coverage, but further experiments are needed.

Overall, we believe that the technique presented in this paper and imple-
mented in a prototype tool is a viable alternative to other commonly used tools
for tests generation of combinatorial tests in the presence of constraints. Our
techniques exploits an efficient data structure (MDDs) that proved to be suit-
able to represent and solve constrained combinatorial models and promise to
scale better than BDDs [17]. We have also devised several optimizations, like
weighting, that combined with a classic greedy approach allow us to obtain very
good results, as demonstrated by our experiments. The use of the framework
CitLab has allowed us to define a wide body of benchmarks and to perform the
comparison with other tools in a simple and fair way.

Acknowledgments. We thank Dario Corna for his valuable work on the imple-
mentation of medici.
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