
Generating Tests for Detecting Faults
in Feature Models

Paolo Arcaini
Department of Engineering

University of Bergamo, Italy
Email: paolo.arcaini@unibg.it

Angelo Gargantini
Department of Engineering

University of Bergamo, Italy
Email: angelo.gargantini@unibg.it

Paolo Vavassori
Department of Engineering

University of Bergamo, Italy
Email: paolo.vavassori@unibg.it

Abstract—We present a novel fault-based approach for testing
feature models (FMs). We identify several fault classes that rep-
resent possible mistakes one can make during feature modeling.
We introduce the concept of distinguishing configuration, i.e., a
configuration that is able to detect a given fault. Starting from
this definition, we devise a technique, based on the use of a
logic solver, able either to find distinguishing configurations to be
used as tests or to prove that a mutation produces an equivalent
feature model. Compact test suites can be produced by exploiting
an SMT solver. The experiments show that our methodology is
viable and produces reasonable sized test suites in a short time.
W.r.t. the approaches that use only the products, our approach
has a better fault detection capability and requires fewer tests.

I. INTRODUCTION

Feature models (FMs) allow designers to specify families of
products, generally called Software Product Lines (SPLs), in
a simple way. A feature model lists the features in a product
line together with their possible values and constraints. In this
way, it can represent in a compact and easily manageable
way millions of variants, each representing a possible product.
There exist several tools for designing feature models, like
FeatureIDE [1], and repositories and libraries like SPLOT [2].
Test generation for feature models and SPLs has attracted
a lot of recent attention in research [3]. In the context of
SPLs, a test is a configuration which may be valid, called
product, (and accepted by the SPL) or even invalid (that
must be rejected by the SPL). For real life SPLs, exhaustive
testing (i.e., the generation of all the possible configurations)
is infeasible, even if one limits to the testing of products. For
this reason, researchers look for test generation methodologies
from feature models which try to combine manageable sizes,
practicality, and usefulness of the generated test suites. A
classical test generation approach consists in applying com-
binatorial interaction testing (or T-wise testing) [4], [5], [6].

In this paper, we try to apply a fault-based testing ap-
proach [7] to feature model testing with the goal of finding
defects in the models. Fault-based testing consists in generat-
ing test suites that try to demonstrate that prescribed faults are
not in the artifact under test. It assumes that the program or the
model can only be incorrect in a limited fashion specified by
relatively small type of common mistakes. It is often used in
conjunction with mutation analysis [8]. In mutation analysis,
faults are deliberately inserted (aka seeded) in the software
artifacts by simple syntactic changes, in order to create a

set of faulty programs called mutants, each containing a
different syntactic change. Mutations can be used to drive test
generation with the goal of building tests able to distinguish
an artifact from its mutants.

Our approach consists in mutating the feature model by
seeding faults and using these mutations to obtain tests able
to detect those faults. We present a relatively small set of
typical fault classes that can be found in feature models,
and we model them as mutation operators (we derive the
terminology from mutation testing). Then we devise a method,
based on the use of a logic solver, that generates configurations
that are able to distinguish a feature model from its faulty
version. We call these distinguishing configurations. We adapt
an existing greedy method in order to build a test suite able to
detect all the seeded faults. Moreover, since a mutated model
can be equivalent to the original model (i.e., it describes the
same set of products), our technique can also be exploited for
checking models equivalence. The experiments indicate that
the number of generated tests is still manageable (and grows
linearly with the number of features and constraints) and that
our approach is efficient in finding user faults although the
mutation operators set is rather simple.

Sect. II presents the notation of feature models, their se-
mantics, and the use of mutation for testing. In Sect. III, we
present several fault classes for FMs, the concept of equivalent
mutants and the definition of distinguishing configuration.
How to automatically generate distinguishing configurations
is presented in Sect. IV. Experiments are reported in Sect. V
and Sect. VI reports some related work. Sect. VII concludes
the paper.

II. BACKGROUND

A. Feature models

In software product line engineering, feature models are a
special type of information model representing all possible
products of a SPL in terms of features and relations among
them. Specifically, a basic feature model is a hierarchically
arranged set of features, where each parent-child relation
between them is one of the following types (each having a
suitable graphical notation as shown in Fig. 1 and in Table I):
• Or – at least one of the sub-features must be selected if

the parent is selected.

Figure 1: Example of a Feature Model

• Alternative (xor) – exactly one of the sub-features must
be selected whenever the parent feature is selected.

• And – if the relation between a feature and its sub-features
is neither an Or nor an Alternative, it is called And. Each
child of an And must be either:
– Mandatory – child feature is required, i.e., it is selected

whenever its respective parent feature is selected.
– Optional – child feature is optional, i.e. it may or may

not be selected if its parent feature is selected.
In addition to the parental relations, it is possible to add

extra-constraints, i.e., cross-tree relations that specify incom-
patibility between features:

• A requires B – The selection of feature A in a product
implies the selection of feature B.

• A excludes B – A and B cannot be part of the same
product.

• It is also possible to specify a constraint in general form
through a propositional formula (using the usual Boolean
operators ∨,∧,→,¬, . . .) representing the features as
propositional variables. Not all the frameworks support
the general form of constraints.

Feature models can be visually represented by means of
feature diagrams. In order to present the visual notation
commonly adopted for feature modeling, Fig. 1 depicts a
simplified example model presented in [9] and inspired by the
mobile phone industry. The example also shows how a model
can be used to specify a product family, i.e., to determine
the features that will be supported (selected) in a particular
phone configuration of the considered family. According to
the model, all mobile phones must include support for calls,
and must display information in either a basic, color or high
resolution screen. Furthermore, the software for mobile phones
may optionally include support for GPS and multimedia
devices such as the camera, the MP3 player, or both of them.
An extra-constraint (excludes) specifies that the GPS and the
basic screen are incompatible, and another constraint asserts
that the camera requires a high resolution screen.

Extensions to the basic feature model notation have been
proposed in literature, e.g., for specifying the cardinality of
the features and/or additional types of information. However,
in this paper we only consider basic feature models.

Notation Propositional
formula Notation Propositional

formula
Optional Mandatory

p

a
a→ p

p

a
(p→ a)∧ (a→ p)

Requires Or

a

b

a→ b

p

a1 . . . an

(p→ (a1 ∨ . . .
∨an)) ∧ (a1 → p)
∧ . . . ∧ (an → p)

Excludes Alternative

a

b

a→ ¬b

p

a1 . . . an

(p→ alt(a1, . . .
, an)) ∧ (a1 → p)
∧ . . . ∧ (an → p)

Root General form

p

. . .
p gfConstr gfConstr

Table I: Conventional translation in propositional formulae

Several languages/tools for specifying/analyzing feature
models are currently available, some of them already mature
enough to be part of a software production IDE. In this work,
FeatureIDE [1] has been used to design, import, analyze,
mutate, and validate the models used in the evaluation section.

1) Feature Model semantics: Feature models semantics can
be rather simply expressed by using propositional logic as
already done in [10], [9]. Every feature becomes a propo-
sitional letter, and every relation among features becomes a
propositional formula modeling the constraints about them as
reported in Table I1. In the following, we will freely use a
feature name also to identify its corresponding propositional
variable.

Definition 1: Let BOF be a function that, given a feature
model, returns its representation as propositional formula.

Let r1, . . . , rn be all the parent-child relations, the extra-
constraints, and the root of a feature model M. BOF(M) is
given by the conjunction of the propositional formula of each
ri (with i = 1, . . . , n) as shown in Table I.

Example 2: The BOF for the feature model of Fig. 1
is MobilePhone ∧ (MobilePhone → Calls) ∧ (Calls →
MobilePhone) ∧ . . .∧ (Media → (Camera ∨ MP3)) ∧
(Camera→ Media)∧ (MP3→ Media).

2) Configuration and Products:
Definition 3: A configuration of a feature model M is a

subset of the features in M that must include the root.
If M has n features (including the root), there are 2n−1

possible configurations, which, however, are not all valid. A
configuration is valid if it respects all the constraints of M,
derived from the parental relations and by the extra-constraints.

1In Table I the alt operator represents the exclusive or among all its argu-
ments and it is defined as alt(a1, a2, . . . , an) = (a1∧¬a2∧. . .∧¬an)∨. . .
∨(¬a1 ∧ ¬a2 ∧ . . . ∧ an).

A valid configuration is called a product, since it represents a
possible instance of the feature model.

Note that configurations can contain also abstract and non-
terminal features, differently from [11], since we do not
explicitly focus only on testing artifacts of a SPL.

There exists a clear relation between products of M and
BOF(M): a product is a model of BOF(M). So, checking
whether a configuration is a product corresponds to checking
whether the configuration makes BOF(M) true. Moreover,
finding a product for M is equivalent to finding a model of
BOF(M). This fact can be used to generate products as in [12].

B. Mutation testing

Mutation is a well known technique in the context of soft-
ware code and formal modeling. Program mutation consists
in introducing small modifications into program code such
that these simple syntactic changes, called mutations, represent
typical mistakes that programmers often make. These faults are
deliberately seeded into the original program in order to obtain
a set of faulty programs called mutants. The use of mutations
is twofold. First, they can be used to guide the test generation.
Second, mutants are classically used to evaluate other testing
approaches (mutation analysis) and, for this reason, program
mutation is almost always used in combination with testing.
High quality test suites should be able to distinguish the
original program from its mutants, i.e., to detect the seeded
faults. The history of mutation testing can be traced back
to the 70s [8]. Mutation testing has been applied to many
programming languages, to formal notations [13] (as in this
work), and to several application domains. However, as far as
we know, mutation analysis has never been directly applied to
feature models. Preliminary attempts to join mutation analysis
and feature models are presented in [14], [12].

III. FAULT MODELS FOR FMs

The first contribution of this paper regards the mutation of
feature models. Given a feature modelM, we are interested in
finding possible faulty version of M called mutants. In order
to generate mutated models, some mutation operators must
be defined, i.e., rules that specify syntactic variations of the
model to be mutated. Mutation operators are derived from fault
classes, i.e., from the families of errors that can be introduced
by the developer in the model.

We have devised the following fault classes and corre-
sponding mutation operators, divided in feature-based and
constraint-based mutation operators. Feature-based mutation
operators are:
• AlToOr: an Alternative is changed to an Or;
• AlToAnd: an Alternative is changed to an And;
• OrToAl: an Or is changed to an Alternative;
• OrToAnd: an Or is changed to an And;
• AndToOr: an And is changed to an Or;
• AndToAl: an And is changed to an Alternative;
• ManToOpt: a mandatory relation is changed to optional;
• OptToMan: an optional relation is changed to manda-

tory;

a

b c

(a) Original model M

a

b c

(b) Mutant M′

Figure 2: A model and a ManToOpt mutant

• MF: a feature f is removed and it is replaced by its
sub-features which inherit the same relation the removed
feature had with its parent. f is replaced by false in any
constraint containing it.

When a relation is changed to And, all the children in the
relation are set to mandatory (if the parent is selected, all
the children must be selected). We never remove the root,
otherwise we would obtain a void model.

Constraint-based mutation operators are:
• MC: an extra-constraint is removed;
• ReqToExcl: a requires constraint is transformed into an

excludes constraint;
• ExclToReq: an excludes constraint is transformed into a

requires constraint.
In this paper, we focus only on simple faults for the

constraints and we leave as future work complex faults that
can be borrowed from the classical logical mutation operators
of Boolean expressions in general form [15].

The mutation operators we introduce in this paper are
inspired by the feature model edits presented in [11] and by
the refactoring actions of [16]. However, none of the proposed
mutation operators can extend the feature set, since in this
work we assume that a user may forget a feature but not add
a new unexpected one; we leave this as future work, together
with the addition of new constraints.

Example 4: Fig. 2 shows a model and one of its possible
faulty implementations, namely the model obtained by apply-
ing the ManToOpt operator to the relation between the root
node a and its child b.

Mutants can be obtained by applying one mutation operator
at a time (first order mutants) or several mutation operators in
sequence (higher order mutants). Given a feature model M
and one of its mutants M′, we want to find a configuration
that distinguishes M from M′.

Definition 5: We say that a configuration c distinguishesM
from M′ if c is valid in M and not in M′ or vice versa. We
call this a distinguishing configuration.

We borrow the term distinguishing from the context of
conformance testing between Finite State Machines. A distin-
guishing configuration is able to find the difference between
M and M′, and, in terms of mutation analysis, it kills the
mutant. Note that a distinguishing configuration could be either
a product or an invalid configuration for the original model.
The validity information attached to a configuration is used as
oracle when configurations are used as tests.

Example 6: Consider the model in Fig. 2a and its mutant in
Fig. 2b. The configuration {a, c} is valid inM′ but it is invalid

(a) Insurance Policy (M) (b) M′, with LOB optional

Figure 3: An equivalent mutant

in M: therefore, it is a distinguishing configuration. The
configuration {a, b}, instead, is valid in both feature models
M and M′ and so it is not a distinguishing configuration.

We do not require distinguishing configurations to be
products for M because some faults cannot be revealed by
products, as shown in the following example.

Example 7: Consider the model and its mutant in Fig. 2. All
the products of M are also products for M′, although there
exists the distinguishing configuration {a, c}. In this example,
it is not possible to find a distinguishing configuration that is
also a product for M.

In our approach, distinguishing configurations can be used
to detect faults in the feature model under test.

A. Equivalent mutants

Not all the mutants represent actual semantic changes in the
feature model. A mutated model M′ is said to be equivalent
to the original modelM if there is no distinguishing configu-
ration for it. In this case, the mutation introduced inM′ is not
a real fault since it represents a syntactic mutation without any
real change in the feature model semantics. Equivalent models
represent exactly the same set of products.

Example 8: Consider the FM and one of it mutants shown in
Fig. 3. The original modelM (Fig. 3a) is a simplified version
of a model taken from the SPLOT [2] website. In M, LOB
is mandatory and there is an extra-constraint stating that at
least one between TP and watercraft must be present in any
product. If we modifyM by making LOB optional, we obtain
the model M′ of Fig. 3b. However, due to the effect of the
extra-constraint, also inM′ LOB must be selected: since TP or
watercraft must be selected, their common ancestor LOB will
be selected in any case in any product. In M′, LOB is a false
optional and there is no configuration that can distinguish M
fromM′: if a configuration does not contain LOB, it is invalid
for both models, otherwise, if it contains LOB, the validity
result is the same in both models.

Equivalent mutants pose a challenge to any mutation anal-
ysis, since they cannot be detected by any configuration. The
problem of equivalent mutants is well-known in mutation
testing: an equivalent mutant is a mutant that does not change
the semantics of the program; therefore, it is impossible to
write a test that captures it. In general, detecting equivalent

mutants is a time-consuming activity. Our approach is able
to automatically identify equivalent mutants. However, since
the search for equivalent mutants consume resources without
producing useful tests, we try to avoid the generation of a
mutant when the feature model topology guarantees that it
will be equivalent. For instance, we never apply the AlToOr
operator to an alternative feature having only one child, since
it would always produce an equivalent mutant.

Note that in this paper we focus only on faults that can be
detected by a configuration. There exist anomalies that cannot
be detected by configurations since they produce equivalent
mutants. In these cases, finding equivalent mutants is useful
in order to expose this kind of anomalies. For instance, the
problem of false optional features, which are declared as
optional but actually required in all products (for example, due
to a cross-tree constraint like in Fig. 3), would be exposed by
an OptToMan equivalent mutation. This kind of problems is
well studied in literature [9], considered outside the scope of
this paper, and left as future work.

B. Use cases for distinguishing configurations

Distinguishing configurations are useful in many scenarios.
The principal use case we foresee is to identify faults in feature
models developed by the user or obtained using some auto-
matic technique which, however, could make some mistake or
require further user interactions.

The first usage scenario is when M is the feature model
for a SPL as it has been designed, and the user is interested
in validatingM, i.e., he/she wants to be sure thatM captures
the SPL he/she had in mind. This can be performed in
the following way. All the distinguishing configurations can
be generated together with their validity value (oracle), i.e.,
together with the fact that a distinguishing configuration dc is
a product or not for M. For every dc, the user must assess if
the (computed) validity is what he/she expected, i.e., to decide
those that are products or not as expected by the informal
requirements. If every dc has a validity value judged correct
by the user, we can conclude that M does not contain any of
the faults we have seeded in order to obtain the distinguishing
configurations. On the contrary, if a dc, that should be a
product for the intended SPL, is not for the current model M
(or the other way around), then a fault has been discovered.
In case of design validation, it is important that the number
of generated distinguishing configurations is small, since their
evaluation is a human activity. Note that companies may find
identifying products easier than building the feature model
from scratch [17].

A similar problem is when a feature model is synthesized
for a SPL containing a great quantity of features but without
a precise model for them. In this case, a feature model
is automatically reverse engineered starting from the set of
products, as proposed in [18]. Sometimes feature models
are synthesized starting from a given set of dependencies
among features. These constraints can be either specified
by engineers, or automatically mined from the source code
using static analysis [19]. For instance, Fig. 4a shows a C

#ifdef HELLO
char* msg = "Hello!\n";
#endif
#ifdef BYE
char* msg = "Bye bye!\n";
#endif
main() {

printf(msg);
}

(a) The source code (b) Its feature model

Figure 4: Synthesis of feature models

code fragment using preprocessor directives to build a small
SPL; Fig. 4b shows the feature model obtained from the
source code. In these cases, distinguishing configurations are
useful to validate both the synthesis process and the extracted
dependencies among features.

As future work, we plan to investigate the use of distinguish-
ing configurations for further uses. A first extension consists
in using distinguishing configurations instead of products (as
in [18]) to synthesize feature models. Feature models and
corresponding distinguishing configurations can be used to test
feature model analysis tools, especially components that check
products validity (as done in [20]).

IV. GENERATION OF DISTINGUISHING CONFIGURATIONS

Fault-based testing can be successfully applied to Boolean
expressions [21], [15]. The basic principle is the following
one. The erroneous implementation ϕ′ of a Boolean expression
ϕ can be discovered only when the expression ϕ ⊕ ϕ′,
called detection condition (also called boolean difference or
derivative [22]), is evaluated to true, where ⊕ denotes the
logical exclusive or (xor) operator. Indeed, ϕ⊕ϕ′ is true only
if ϕ′ and the correct predicate ϕ evaluate to two different
values. This technique has been exploited in test generation for
Boolean expressions [15]. The same principle can be applied
to test generation for feature models.

Let M be a feature model and M′ a mutated version of
M due to the mutation operator F. Let ϕ be the Boolean
proposition formula for M, i.e., ϕ = BOF(M). Let ϕ′ be
the Boolean proposition formula for M′ over all the literals
defined in ϕ. We have to be careful when we build ϕ′. Indeed,
in case the operator F is MF (missing feature), BOF(M′) will
contain fewer literals than ϕ: every missing feature m will
result in a missing literal m in BOF(M′). In this case, we
add, for every missing feature m, a further conjoint ¬m in
order to preserve the semantics ofM′ (a feature that has been
removed with the fault MF cannot appear in a product for the
obtained mutant M′) and keep the same set of literals. A
similar technique is proposed in [11].

Definition 9: Given a model M and a mutant M′, the
propositional formula ϕ′ is defined as

ϕ′ = BOF(M′) ∧
∧

m∈fea(M)−fea(M′)

¬m

where fea returns the set of features of a feature model.

M M'

a→b b∧ →a c∧ →a

mutation F

(Man2Opt)

a

cb

b → a c ∧ → a⊕
SMT solver

distinguishing configuration = test

φ'=bof(M')

 tp sat?

tp

T

M' eq M

a

cb

φ=bof(M)

F

Figure 5: Generating a distinguishing configuration for a fault
F by an SMT solver

Definition 10: The predicate ϕ⊕ϕ′ is the detection condition
of F and it is called test predicate (or test goal).

Theorem 11: A model of the test predicate is a distinguish-
ing configuration.

Proof: For the semantics of the exclusive or, the test
predicate ϕ⊕ ϕ′ is true if either ϕ or ϕ′ is true. So a model
of the test predicate makes true either ϕ or ϕ′, that is what
required by the definition of distinguishing configuration (see
Def. 5). Note that adding the negation for possible missing
features guarantees that every distinguishing configuration
which is a model of ϕ′ is also a product for M′. Otherwise,
a configuration could be a model of BOF(M′) and contain a
feature not available in M′.

Theorem 12: If a mutation operator produces an equivalent
mutant, its test goal is unsatisfiable.

A. Generation of Distinguishing Configurations

In order to find the distinguishing configurations, one can
use a constraint solver like SAT, CSP, or SMT, as long as
the solver is able to find a model of a formula or to prove
that a formula is unsatisfiable. In this paper, we use the SMT
solver Yices [23]. Indeed, SMT solvers are more flexible tools
than SAT solvers: they have a richer command interface –
allowing, for instance, adding and retracting assertions –, they
are as powerful as SAT solvers when applied to satisfiability
problems, and they accept as input generic Boolean formulae.
Fig. 5 depicts the process of finding a single distinguishing
configuration for a model M and its mutated version M′.

In case the mutant is equivalent, the solver returns that
the test goal is unsatisfiable. As already noted, equivalent
mutants pose a problem to the test generation process: they
require computational time (generally proving that a formula
is unsatisfiable requires more resources than finding a model)
and they do not contribute to the final test suite since they do
not produce any distinguishing configuration.

Example 13: Given the modelM and its mutantM′ shown
in Fig. 2, the test predicate is

tp = ϕ⊕ ϕ′ = BOF(M)⊕ BOF(M′)
= (a→ b ∧ b→ a ∧ c→ a)⊕ (b→ a ∧ c→ a)

The models of tp (i.e., {a = true, b = false, c = true}
and {a = true, b = false, c = false}) are distinguishing
configurations.

A set of configurations able to detect all the (first order)
faults for a given feature model can be generated as follows:

1) generate all the mutants for the original feature model by
applying one mutation at a time;

2) generate a test predicate for every mutant;
3) use the solver to get the model for every test predicate

(or to prove that the mutant is equivalent).
The process can be even extended in case one wants to

find higher order mutants (it suffices to apply the mutation
operators several times). However, the naïve algorithm above
produces many tests and can be very time consuming. Indeed,
it generates a distinguishing configuration for every test pred-
icate and this may be unnecessary, since a configuration may
act as distinguishing configuration for two faults and we are in
general interested to find a small test suite killing all the faults.
To the basic process, we can apply several techniques [21],
including:
• monitoring: it checks whether a test produced for a test

predicate is also a model for other test predicates;
• collecting: it looks for a model of a conjunction of test

predicates, instead of a model for each test predicate.
The use of an SMT solver allows to incrementally add
test predicates to the context;

• prioritizing: it considers the test predicates in a particular
order; such technique is useful only if used in combina-
tion with monitoring and/or collecting;

• post reduction: after the test generation, it removes un-
necessary tests, i.e., tests that only cover test predicates
that are also covered by other tests.

From now on, we assume to use the collecting technique,
since, although it requires much computational resources, it is
able to produce very compact test suites [15]. Moreover, we
devise the following syntactic optimization.

B. Logical XOR simplification

Considering that our test predicates have the form ϕ ⊕ ϕ′
and that ϕ and ϕ′ are conjunctions of many common sub-
expressions (those that refer to parts of the feature model
which are not mutated), we can simplify the test predicate
before running the solver in order to reduce the number of
conditions (i.e., occurrences of literals). We have used the
following equivalence that allows to factor a part of the
formula and to push the ⊕ operator near the literals:

(α ∧ β)⊕ (α ∧ γ) ≡ α ∧ (β ⊕ γ)

where α, β, and γ are predicates.

Example 14 (Simplification of xor expressions): Consider
the test predicate shown in Ex. 13 for the models in Fig. 2.
The test predicate can be simplified as follows:

(a→ b ∧ b→ a ∧ c→ a)⊕ (b→ a ∧ c→ a)
≡ (b→ a ∧ c→ a) ∧ (a→ b⊕ true)
≡ (b→ a ∧ c→ a) ∧ ¬(a→ b)
≡ (b→ a ∧ c→ a) ∧ (a ∧ ¬b)

While the original test predicate has 10 conditions (i.e.,
occurrences of literals), the simplified version contains only
6 conditions.

This simplification is similar to the simplified reasoning
introduced in [11] in which CNF clauses are grouped in order
to simplify the SAT-checking formulas for feature model edits.

C. Mutants classifications

Following the terminology given in [11], we can classify
every mutant in one of four groups, depending on the satisfi-
ability of its test goal.

1) Refactoring: if an operator F does not add new prod-
ucts and no existing products are removed, then M′ is
an equivalent mutant and the test goal is unsatisfiable.
Formally, in a refactoring, ϕ↔ ϕ′ holds, therefore ϕ⊕ϕ′
is unsatisfiable.

2) Specialization: if an operator F removes some existing
products but no new products are added, then every
distinguishing configuration is a product for M but not
for M′. Formally, ϕ′ → ϕ holds and ϕ → ϕ′ does not
hold, therefore ¬ϕ∧ ϕ′ is unsatisfiable while ϕ∧¬ϕ′ is
satisfiable.

3) Generalization: if an operator F adds some products but
no existing products are removed, then every distinguish-
ing configuration cannot be a product for M, while it is
a product for M′. Formally, ϕ → ϕ′ holds and ϕ′ → ϕ
does not hold, therefore ϕ ∧ ¬ϕ′ is unsatisfiable while
¬ϕ ∧ ϕ′ is satisfiable.

4) Arbitrary edit: if an operator F adds some products
and removes some other products, then there exists a
distinguishing configuration that is a product of M and
another one that is not a product. Formally, neither
ϕ → ϕ′ nor ϕ′ → ϕ hold, and therefore both ¬ϕ ∧ ϕ′
and ϕ ∧ ¬ϕ′ are satisfiable.

Note that, in general, it is not possible to associate a mu-
tation operator with a given mutant class. However, for some
particular mutation operators, this is possible: the OptToMan
operator, for example, will always produce a mutant that
is a specialization of the original model (unless there are
constraints that produce a false optional).

V. EXPERIMENTS

As case studies we have taken 53 SPLOT models which are
often used as benchmarks. Table II reports the data about the
53 models in terms of number of features and total number of
products. We have also included 1600 artificially generated
models that are available for download on the FeatureIDE
official site; we took 200 models for eight different groups

Table II: SPLOT models properties

Min Max Mean Median Sum Stdev
Features 9 287 31.79 20 1685 43.99
Products 2 4.52×1049 8.53×1047 6.3 4.52×1049 6.21×1048

Figure 7: Distribution of mutants for each mutation class

characterized by the number of features: 10, 20, 50, 100, 200,
500, 1000, and 2000 features2. All feature models contain
cross-tree constraints, growing with the number of features,
and they all admit at least one product. The criteria used for
their creation are explained in [11].

In the experiments, we apply only first order mutants since
we assume here that the coupling effect [24] is valid also for
feature models; indeed, the coupling effect states that if a test
case finds simple faults, it will also find more complex faults.

A detailed discussion about the results of the experiments,
guided by a series of research questions (RQ), follows.

RQ1 How many mutants are generated?

Fig. 6a and Fig. 6b show the number of mutations depending
on the number of features and extra-constraints, respectively
for the SPLOT and the artificial models. The number of
mutants of a model is around the double of the sum of the
number of its features plus the number of its extra-constraints.
Indeed, a model can be mutated, for each feature, by the
MF operator and by another feature-based mutation operator,
and, for each constraint, by the MC operator and possibly by
ReqToExcl or ExclToReq.

RQ2 How many mutants are generated by each mutation
operator?

The distribution of mutations over the mutation operators
strictly depends on the topology of the feature model. Fig. 7
shows the distribution of the types of mutations. Almost half of
the generated mutations are missing features. This makes our
methodology oriented towards the detection of omission er-
rors, which are one of the most frequent errors: There is some
evidence, from empirical investigations of software faults, that
missing-condition faults are extremely common [22].

2Note that the eCos kernel has 1244 features. Therefore, we believe that
the size of the selected models represents the size of real-life models.

Figure 9: Test-suite generation time and size varying the
number of features – Artificial model set

RQ3 How are mutants distributed in the classes presented
in Sect. IV-C?

We have grouped all the mutants according to the clas-
sification presented in Sect. IV-C and originally proposed
in [11]. Fig. 8 shows the results for the SPLOT models and
for the artificial models. It is apparent that, while only few
mutations of SPLOT models are equivalent (refactoring class),
the artificial models produce many equivalent mutations, prob-
ably because they contain many anomalies (like redundant
constraints, dead features, and false optionals [9]). This fact
makes the generation of distinguishing configurations less
efficient for artificial models than for SPLOT models, since
equivalent mutants consume much time without producing
useful tests.
RQ4 Is the simplification of the xor expressions presented
in Sect. IV-B effective?

The aim of this experiment is to determinate if the xor
simplification introduces an improvement in terms of computa-
tion performance. The test suite generation process, performed
without and with this simplification, shows an average reduc-
tion in terms of time of 46%, and a reduction for the most time
consuming test of 49%. This result was expected since this
technique reduces the computational load of the SMT solver
necessary for the xor resolution.

RQ5 How big are the fault-detecting test suites? How much
time is required to generate them?

The chart of Fig. 9 shows that the size of artificial models
test suites and their generation time increase with the number
of features of the model under test. The time presents an
exponential increase, while the size increases linearly, and both
of them present a great STDEV error. We are able to generate
test suites for models up to 200 features in around 38 seconds.
For bigger models, our method takes a considerably amount
of time and we were unable to generate test within the timeout
of 15 minutes.

Table III reports the data related to the test generation for
the SPLOT models. The generation of the entire test suite
never took more than 138 seconds. During the experiments
we have noticed that the size of the test suites for SPLOT
models and their generation time do not always increase with

(a) Number of mutants for the SPLOT model set (b) Average number of mutants for each artificial model set

Figure 6: Number of mutants

(a) SPLOT (b) Artificial models

Figure 8: Distribution of mutants for each model change class

Table III: Test generation data – SPLOT model set

Size Time (ms) #Infeasible

Min 4 27 0
Max 134 137 029 8
Mean 19.9 5264.6 0.49
Sum 1053 279 026 26

Table IV: Correlation between features, products, generation
time, and size of the test suites – SPLOT model set

Size vs Features -0.17 Time vs Features -0.12 Features vs Products 0.84
Size vs Products -0.07 Time vs Products -0.04 Time vs Size 0.83

the number of features. This observation has been confirmed
by the Pearson correlation test, whose results are reported in
Table IV. According to our opinion, the non-correlation can
be related to the high STDEV that affects the observations of
both sets but that influences more the SPLOT one due to its
small dimension.

Time and size, instead, are mutually correlated in both
model sets (as shown in Fig. 9 for the artificial set and in
Table IV for the SPLOT set).

RQ6 Are distinguishing configurations useful?

We have performed an experiment in which our method is

used to find faults in feature models developed by users. We
have taken 6 small programs from the literature regarding the
synthesis of feature models from preprocessor directives of
C/C++ source code. Each program has from 19 to 38 lines of
code containing from 2 to 5 #ifdef or equivalent directives.
We have instructed 6 students and asked them to build the
6 feature models. The resulting models contain from 2 to 6
features and maximum 2 constraints. They can be validated
by generating the distinguishing test suite, compiling the code
with the options selected in each configuration, checking if
the compiler successfully ends, and comparing the outcome
(compiler success or failure) with the expected result. In this
case we use the compiler as oracle: a configuration is valid if
and only if it compiles successfully (this was explained to the
students). We have compared our technique with three classical
techniques: pairwise testing, considering all the products,
and considering all the configurations. Table V reports, for
each technique, the number of tests, the number of tests
that fail (i.e., they identify a fault), the number of detected
faulty models, and the ratio between the number of tests and
number of detected faulty models. Our approach produces the
minimum number of tests and it is able to discover 59% of the
faulty models with only 21% of the tests w.r.t. the exhaustive
testing (i.e., using all the configurations). By using all the
products, only 29% of the faulty models are captured. As

method #tests (t) #failing tests #faulty models (fm) t/fm

Distinguishing
configurations 109 13 10 10.9

Pairwise 165 12 5 33.0
All products 285 23 5 57.0
All configurations 516 119 17 30.4

Table V: Finding faults in models obtained from C/C++ code

Type Specialization Generalization Arbitrary edit

#models 11 3 3

Table VI: Classification of faults in models from C/C++ code

already explained in Sect. III (Ex. 7), using only the products
greatly reduces the fault detection capability. Note that using
all the products or all the configurations is still practicable in
these examples, but in general it is not. Also pairwise testing
among the features (i.e., the preprocessor directives) discovers
fewer faulty models than our method, and also has less failing
tests (but it is at least better than using all the products in terms
of test suite size). In terms of number of tests necessary to
identify a faulty model (t/fm), our approach is much better than
the others. Table VI shows the types of errors student models
contain. The majority of faults are specializations: students
were inclined to add more constraints than those imposed by
the compiler according to the preprocessing directives. For in-
stance, the code #ifdef HAVE_LIBGCRYPT ... #elif
defined (HAVE_LIBCRYPTO) ... #endif was inter-
preted by the majority of students as an alternative, while the
compiler correctly accepts both the labels true.

Threats to validity

As sanity check, we have compared our results with the
classification produced by the FeatureIDE classifier [11] (see
Sect. IV-C): for example, if we classify a mutant as equivalent,
FeatureIDE must classify the mutation as refactoring.

As seen in the experiment RQ5, the test generation time
grows exponentially with the size of the feature model. This
fact limits the applicability of our approach. As future work,
we plan to devise techniques able to handle bigger models
(e.g., generating tests for independent sub-trees of the feature
model). Note that some limiting policies of the collecting
algorithm (e.g., collecting only a subset of the test predicates)
can already considerably reduce the test generation time, but
at the expense of the test suite size [21].

From our experiments, it is clear that the coupling effect
does not hold in our case, since there are faults that we
are not able to capture. This could be due to the fact that
we have not implemented some mutation operators and/or
that we have only considered first order mutants. Applying
only first order mutants is probably not enough because the
component programmer hypothesis (stating that a programmer
writes models that are nearly correct) may not hold for our
students.

As future work, we plan to consider the use of higher order
mutants and of new mutation operators that add features and

constraints. Especially the addition of constraints could be
useful to find faults in over-constrained models (like most of
those of experiment RQ6). Note that adding new mutation
operators would increase the number of tests only linearly
while the number of configurations grows exponentially with
the number of features; therefore, we believe that our approach
would still be competitive w.r.t. exhaustive testing.

VI. RELATED WORK

Testing for feature models and SPLs is widely studied in
literature. Recent surveys [25] count around 50 papers dealing
with testing of feature models. Regarding how tests are gen-
erated, i.e., products are selected, another recent survey found
19 papers [26]. Surprisingly, the problem of test selection is
considered still an open problem [3]. The main challenge
is the combinatorial explosion of the number of possible
configurations of feature models. All the researchers try to
reduce the number of configurations and still preserve some
kind of coverage over the feature models under test. A classical
test generation approach consists in applying combinatorial
interaction testing (CIT) – also called T-wise testing –, to SPLs
and feature models [5], [6], [4]. CIT aims to achieve a high
coverage of feature combinations with the smallest number
of tests as possible. CIT does not focus explicitly on testing
feature models, since it is mainly used for finding the faults
due to the interaction of features in the products of the SPL.

There are several attempts to use techniques different from
combinatorial testing. For instance, in [27] the authors try
to determine if a feature is irrelevant, i.e., it augments,
but does not change, the existing program behavior, making
many feature combinations unnecessary as far as testing is
concerned. In our case, some combinations are considered
unnecessary if they do not contribute to any distinguishing
configuration, but we do not consider the implementation of
the feature models.

An initial proposal about using mutation and SPL testing
can be found in [14]. The authors propose the concept of
small variation between two models that can be detected by
examining the outputs. This would be the basic for building
our distinguishing configurations. However, in their approach
the test-data generation technique relies on the execution or
simulation of systems, it does not start from feature models
and, therefore, it generally requires complete instantiated prod-
ucts or components in order to generate successful test data.

Segura et al. [20] proposed using metamorphic testing to
generate test data for feature model analysis tools. They
presented a set of metamorphic relations between input FMs
and the set of products they represent. Based on these relations
and given one FM and its known set of products, a set
of neighboring FMs together with their corresponding set
of products are automatically generated. The metamorphic
relations that they propose are only additive and they do not
want to represent design mistakes but they are introduced
with the goal of stressing automated analysis tools. In their
approach, tests are mainly transformed feature models, while
derived configurations play a secondary role.

As already said, our mutations are a particular case of the
16 edit operations presented in [11] (except ReqToExcl and
ExclToReq which are not considered). However, their goal is
to help product line designers judge the impact of their edits,
while we automatically apply a set of changes in order to find
the distinguishing configurations that are used to validate the
original models.

An approach using mutation analysis and feature models
is presented in [12]. There are several differences with our
approach. First, they exclusively focus on using mutation to
evaluate the tests (and not for test generation). The tests are
randomly generated from the space of products, mutation
analysis is performed to measure the quality of the tests,
and they found that the mutation score depends on test suite
characteristics (similarity). Moreover, the authors define the
mutation operators for the representation of the feature model
as propositional formula (the result of our BOF function).
However, it is well known that feature models (as presented in
Sect. II-A) are not logically complete [28]. So, mutating the
formula BOF(M) is partially complementary to the mutation
of the feature model M, since not all the mutations of
BOF(M) may represent mutations ofM and, vice versa, some
mutations ofM may be not represented by a simple mutation
of BOF(M). For instance, there is no feature model whose
representation as proposition formula includes the negation of
the root feature.

VII. CONCLUSIONS

We have presented a fault-based approach for testing SPLs
using feature models. Our technique explicitly targets a set of
fault classes in feature models. Exploiting a well known SMT
solver, we are able to produce, in an efficient way, test suites
with a guaranteed fault detection capability. In our approach,
tests are given by distinguishing configurations, i.e., config-
urations able to distinguish a model from its faulty version;
distinguishing configurations can be either valid products or
not. Experiments show that our approach has a better fault
detection capability and requires fewer tests than the approach
that uses all the products and the pairwise approach that uses
a subset of the products.

REFERENCES

[1] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich,
“FeatureIDE: An extensible framework for feature-oriented software
development,” Science of Computer Programming, vol. 79, no. 0, pp.
70–85, 2014.

[2] M. Mendonca, M. Branco, and D. Cowan, “S.P.L.O.T.: software product
lines online tools,” in Proc. of the conference companion on Object
oriented programming systems languages and applications (OOPSLA
’09). New York, NY, USA: ACM, 2009, pp. 761–762.

[3] J. Lee, S. Kang, and D. Lee, “A survey on software product line
testing,” in Proceedings of the 16th International Software Product Line
Conference-Volume 1. New York, NY, USA: ACM, 2012, pp. 31–40.

[4] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Traon, “Automated
and scalable T-wise test case generation strategies for software product
lines,” in Third International Conference on Software Testing, Verifica-
tion and Validation, ICST 2010, Paris, France, April 7-9, 2010. IEEE
Computer Society, 2010, pp. 459–468.

[5] M. B. Cohen, M. B. Dwyer, and J. Shi, “Coverage and adequacy
in software product line testing,” in Proceedings of the ISSTA 2006
Workshop on Role of Software Architecture for Testing and Analysis.
ACM, 2006, pp. 53–63.

[6] A. Calvagna, A. Gargantini, and P. Vavassori, “Combinatorial testing
for feature models using CitLab,” in Int. Workshop on Combinatorial
Testing (IWCT). IEEE Computer Society, 2013, pp. 338–347.

[7] L. J. Morell, “A theory of fault-based testing,” Software Engineering,
IEEE Transactions on, vol. 16, no. 8, pp. 844–857, 1990.

[8] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” Software Engineering, IEEE Transactions on, vol. 37,
no. 5, pp. 649–678, 2011.

[9] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Information Systems,
vol. 35, no. 6, pp. 615–636, 2010.

[10] D. Batory, “Feature models, grammars, and propositional formulas,”
Software Product Lines, pp. 7–20, 2005.

[11] T. Thum, D. Batory, and C. Kastner, “Reasoning about edits to feature
models,” in Software Engineering, 2009. ICSE 2009. IEEE 31st Inter-
national Conference on, May 2009, pp. 254–264.

[12] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon,
“Assessing software product line testing via model-based mutation: An
application to similarity testing,” in 9th Workshop on Advances in Model
Based Testing (A-MOST) ICST Workshop. IEEE, 2013, pp. 188–197.

[13] P. Arcaini, A. Gargantini, and E. Riccobene, “Using mutation to assess
fault detection capability of model review,” Software Testing, Verification
and Reliability, 2014.

[14] Z. Stephenson, Y. Zhan, J. Clark, and J. McDermid, “Test data gener-
ation for product lines – A mutation testing approach,” in Proceedings
of the International Workshop on Software Product Line Testing (SPLiT
2004), Boston, MA, Aug. 2004, pp. 13–18.

[15] A. Gargantini and G. Fraser, “Generating minimal fault detecting test
suites for general boolean specifications,” Information and Software
Technology, Elsevier, vol. 53, pp. 1263–1273, 2011.

[16] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lucena,
“Refactoring product lines,” in Proceedings of the 5th International
Conference on Generative Programming and Component Engineering,
ser. GPCE ’06. New York, NY, USA: ACM, 2006, pp. 201–210.

[17] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Clelang-Huang,
and P. Heymans, “Feature model extraction from large collections of
informal product descriptions,” Aug. 22 2013.

[18] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed, “On extracting
feature models from sets of valid feature combinations,” in FASE, ser.
LNCS, vol. 7793. Springer, 2013, pp. 53–67.

[19] N. Andersen, K. Czarnecki, S. She, and A. Wasowski, “Efficient
synthesis of feature models,” in International Software Product Line
Conference. ACM, 2012, pp. 106–115.

[20] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés, “Auto-
mated metamorphic testing on the analyses of feature models,” Infor-
mation and Software Technology, vol. 53, no. 3, pp. 245 – 258, 2011.

[21] P. Arcaini, A. Gargantini, and E. Riccobene, “Optimizing the automatic
test generation by SAT and SMT solving for boolean expressions,” in
Automated Software Engineering (ASE), 2011 26th IEEE/ACM Interna-
tional Conference on. IEEE, nov. 2011, pp. 388 –391.

[22] D. R. Kuhn, “Fault classes and error detection capability of specification-
based testing,” ACM Trans. Softw. Eng. Methodol., vol. 8, no. 4, pp.
411–424, Oct. 1999.

[23] B. Dutertre and L. de Moura, “The Yices SMT solver,” SRI Available
at http://yices.csl.sri.com/tool-paper.pdf, Tech. Rep., 2006.

[24] A. J. Offutt, “The coupling effect: fact or fiction,” SIGSOFT Software
Engineering Notes, vol. 14, pp. 131–140, November 1989.

[25] P. A. da Mota Silveira Neto, I. d. Carmo Machado, J. D. McGregor, E. S.
de Almeida, and S. R. de Lemos Meira, “A systematic mapping study of
software product lines testing,” Information and Software Technology,
vol. 53, no. 5, pp. 407–423, May 2011.

[26] I. do Carmo Machado, J. D. McGregor, and E. Santana de Almeida,
“Strategies for testing products in software product lines,” ACM SIG-
SOFT Software Engineering Notes, vol. 37, no. 6, p. 1, Nov. 2012.

[27] C. H. P. Kim, D. S. Batory, and S. Khurshid, “Reducing combinatorics
in testing product lines,” in Proc. of the 10th Int. Conference on Aspect-
oriented Software Development (ASOD 2011). ACM, 2011, pp. 57–68.

[28] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps, “Generic
semantics of feature diagrams,” Computer Networks, vol. 51, no. 2, pp.
456 – 479, 2007.

