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Abstract—In Combinatorial Interaction Testing, models spec-
ify a set of parameters with associated domains, and some
constraints over the parameters. Test generation tools produce,
starting from these models, test suites for achieving some given
coverage criteria. The validation of both the models and the pro-
duced test suites is a worthwhile activity. Validating the models
permits to early discover possible defects in them, to feed the test
generations tools with good inputs and, possibly, to improve the
quality of the testing process. Validating the produced test suites,
instead, permits to check if the test generation tools are correct
and to judge their quality. This paper proposes to validate the
models by checking that the constraints are consistent, that there
is no constraint implied by the other constraints, and that the
parameters and their values are really necessary. The proposed
test suite validation, instead, consists in checking that the tests
respect the type definitions and the constraints, that all the test
requirements are covered, and that all the tests in the test suite
are valid and necessary. For every error we propose a possible
technique able to identify the potential causes and to suggest fixes
for those problems. Experiments show that the targeted defects
are widespread both in benchmark and real-life models.

I. INTRODUCTION

System validation is an essential activity of any development
process since it permits detecting faults as early as possible.
Model validation should precede the application of more
expensive and accurate verification methods, that should be
applied only when a designer has enough confidence that the
specification really reflects the user perceptions. In case of
test generation, models should be validated before tests are
generated, otherwise the generated tests may be useless or
even wrong if models they are generated from are not valid.
Also test cases, especially when their generation is obtained
using experimental tools and their instantiation can be costly,
must be validated.

Among validation techniques, model review, also known as
model walk-through or model inspection, allows to critically
examine modeling efforts to determine if a model not only
fulfills the intended requirements, but also is of sufficient
quality to be easy to develop, maintain, and enhance. This
process should, therefore, assure a certain degree of quality.
When model reviews are performed properly, they can have a
big payoff because they allow to identify defects early in the
system development, reducing the cost of fixing them. Usually
model review, which comes from the code-review idea, is
performed by a group of external qualified people, often both

technical staff and project stakeholders, who meet together to
evaluate models and documents. The model inspection can be
extended to test cases as well: the testers could manually check
that the tests cover all the desired testing requirements.

A weak aspect of the review process is that it is usually
done by hand. This requires a great effort that might be
tremendously reduced if performed in an automatic way by
systematically checking specifications for known vulnerabili-
ties or defects. The question is what to check on and how to
automatically check the model. In other words, it is necessary
to identify classes of faults and defects to check, and to
establish a process by which to detect such deficiencies in
the model. If these faults are expressed in terms of formal
statements, these can be assumed as a sort of “measure” of the
model quality assurance. A tool is also necessary to make the
process automatic. It would work as model advisor to check a
model for conditions and configuration settings that can result
in inaccurate or under-/over-specified behavior of the system
that the model represents. The same applies to generated test
suites: if the testing requirements are formally stated, they can
be checked against the test suites in order to assure that they
are actually achieved.

In this paper we focus on constrained combinatorial models
and combinatorial tests generated from them. These models
simply contain a set of parameters with their domains, to-
gether with some constraints among such parameters. They
are classically validated by hand by the domain experts, who
are able to judge if the constrained combinatorial models
actually capture the problem to be tested. In this paper
we focus on some properties that any combinatorial model
should have, regardless the system it models. For instance,
the constraints must not contradict each other, otherwise no
suitable solution can exist. Moreover, we also focus on the
validation of tests generated from such models. The activity of
test generation is normally performed by suitable tools, which
should guarantee that the test suites are valid, i.e., they satisfy
all the testing requirements. However, sometimes tests could
be (partially) inserted by hand, or the tools may contain faults
that cause the generation of wrong tests or of incomplete test
suites. Moreover, the instantiation of combinatorial testing is
often a human activity that requires a great amount of time
and resources, and wrong tests may cause serious problems.
Consider, for instance, a combinatorial problem in which a



certain configuration is forbidden because it leads the system
to a dangerous state. In these cases, performing a validation
process of the tests is worthwhile. Moreover, this technique
can also be exploited to validate test generation tools.

The paper is organized as follows. Section II gives some
basic definitions about combinatorial models, describes how
satisfiability solvers can be used for combinatorial problems,
and introduces a general description of the qualities expected
from combinatorial models and tests. Desired properties of
combinatorial models and tests are presented in Sections III
and IV, together with the techniques to prove them. Section V
describes some experiments done on benchmark case studies.
Section VI presents some related work, and Section VII
concludes the paper by presenting the settings in which the
use of the proposed validation framework may be useful.

II. BASIC DEFINITIONS

A. Combinatorial models and CITLAB

Combinatorial Interaction Testing (CIT), often called simply
combinatorial testing or combinatorial testing design, aims at
testing the software or the system with selected combinations
of parameters values (inputs). There exist several tools and
techniques for CIT. Good surveys on the ongoing research in
CIT can be found in [21], [14], while an introduction on CIT
and its efficacy in practice can be found in [17]. We assume in
this paper that the reader is familiar with the CIT in general.
A model for a combinatorial problem consists in several
parameters (at least 2) which take values in their domains. In
most configurable systems, constraints or dependencies exist
between parameters. Constraints may be introduced for several
reasons, for example, to model inconsistencies between certain
hardware components, limitations of the possible system con-
figurations, or simply design choices [9]. Constraints were first
described as being important to combinatorial testing in [8]
and were introduced in the AETG system. In our approach,
tests that do not satisfy the constraints are considered invalid
and do not need to be produced.

In this paper we assume that the models are specified using
CITLAB [12], [5]. CITLAB is a framework for combinatorial
testing which provides a rich abstract language with a precise
formal semantics for specifying combinatorial problems, an
eclipse-based editor with a rich set of features (like syntax
highlighting, autocompletion, and outline view), and a Java
APIs library which includes utility methods for generating all
the test requirements for a combinatorial coverage of a given
strength. CITLAB does not have its own test generators, but it
relies on other off-the-shelf tools (like ACTS1 and CASA2).

In CITLAB parameters and constraints are given in a unique
file that contains the whole model. In CITLAB, to formally
describe a combinatorial problem, the user has to identify
at least 2 parameters and their possible values. We call
P = {p1, . . . , pm} the set of parameters. Every parameter
pi assumes values in the domain Di = {vi1, . . . , vioi}. Every

1http://csrc.nist.gov/groups/SNS/acts/
2http://cse.unl.edu/~citportal/

Model Phone
Definitions:

Number threshold 27;
end
Types:

EnumerativeType cameraType {1MP 2MP NOC};
end
Parameters:

Range textLines [ 25 .. 30 ];
Boolean emailViewer;
Enumerative display {16MC 8MC BW};
Enumerative rearCamera type cameraType;
Enumerative frontCamera type cameraType;

end
Constraints:

# emailViewer=true implies textLines >= threshold #
end

Figure 1. A smartphone example

parameter has its name (it can have also a type with its own
name) and every enumerative value has an explicit name. We
identify with C = {c1, . . . , cn} the set of constraints.

CITLAB adopts the language of propositional logic with
equality and arithmetic to express constraints. To be more
precise, we use propositional calculus, enriched with the
arithmetic over the integers and enumerative symbols. As
operators, we admit the use of equality and inequality for
any variable, the usual boolean operators for boolean terms,
and the relational and arithmetic operators for numeric terms.
CITLAB supports also seeds and test goals. However, they are
supported by few tools and they are not considered in this
work.

Fig. 1 reports the CITLAB input domain model of a simple
smartphone product line containing 5 parameters. The number
of lines of the display (textLines) must be between 25 and
30; the phone can have an email viewer (emailViewer);
the display can have 16 million colors or 8 million colors
(16MC and 8MC), or be in black and white (BW); the rear and
front cameras (rearCamera and frontCamera) can have
1 or 2 megapixels (1MP and 2MP) or be not present (NOC).
In the Definitions section, it is possible to define constants to
be used in formulas: for example, the constant threshold
indicates the minimum number of lines of the display required
by the email viewer. In the Constraints section a constraint
specifies that, if the phone has the email viewer, the number
of text lines of the display must be at least 27.

B. Using Logics and SAT/SMT solvers for CIT problems

In this paper, in order to analyze combinatorial models and
tests, we adopt a logic-based approach.

Definition 1. Test A test t = (v1, . . . , vm) is an assignment of
values to all the parameters of the combinatorial problem that
respects the type definitions, i.e., ∀i ∈ {1, . . . ,m}: vi ∈ Di.
Let D = D1×. . .×Dm be the domain of the tests, i.e., t ∈ D.

Definition 2. A test t is a model for a formula ϕ if it makes
the formula ϕ true, formally t |= ϕ.

http://csrc.nist.gov/groups/SNS/acts/
http://cse.unl.edu/~citportal/


Definition 3. Constraint A constraint ci is a formula over
some parameters of the combinatorial problem.

Definition 4. Test validity A test t is valid, if t is a model
of the constraints, i.e., t |=

∧n
i=1 ci.

Given a formula ϕ over the parameters in P , there are
several decision problems regarding the truth evaluation of ϕ.

Definition 5. Satisfiability A formula ϕ is satisfiable if there
is model for it. Formally, ∃t ∈ D: t |= ϕ.

Satisfiability can be proved with a SAT/SMT solver. There
are some formulas that are always true, regardless the test.

Definition 6. Validity A formula ϕ is valid if and only if it is
true under every interpretation, i.e., every possible assignment
to the parameters makes ϕ true. Formally, ∀t ∈ D: t |= ϕ, or
briefly |= ϕ.

To prove validity one can use a satisfiability solver, thanks
to the following theorem.

Theorem 7. A formula ϕ is valid if ¬ϕ is not satisfiable.

In combinatorial testing, test requirements are given as a
set of tuples which are to be covered by the tests. Each
tuple can be represented as a formula in a straightforward
way by a conjunction of equalities. For instance, the pair
(pi = vj , pk = vh) can be represented as pi = vj ∧ pk = vh.
A test covers a test requirement, thus a tuple tp, if it makes
tp true. A satisfiability solver can be used also to check if a
test requirement is feasible.

Definition 8. A test requirement tp is feasible if tp ∧
∧n

i=1 ci
is satisfabile.

In this paper we exploit, whenever necessary, a Satisfiability
Modulo Theories (SMT) solver, namely Yices [11], for repre-
senting and solving the formulas derived from combinatorial
problems and tests. An SMT problem is a decision problem for
logical formulas with respect to combinations of background
theories expressed in classical first-order logic with equality.
Yices can easily deal with the CITLAB models introduced in
Sect. II-A. An SMT instance is a generalization of a boolean
SAT instance in which various sets of variables are replaced
by predicates from a variety of underlying theories. Obviously,
SMT solvers provide a much richer modeling language than
that provided by SAT solvers. We have embedded Yices in
CITLAB using JNA (Java Native Access) and we exploit the
following commands of the Yices APIs (besides those for
creating domains and variables):
• mk_context creates the logical context.
• assert asserts a constraint in the logical context. After

one assertion, the logical context may become inconsis-
tent.

• push creates a backtracking point. The logical context
can be viewed as a stack of contexts.

• pop backtracks, i.e., it restores the context from the top
of the stack, and pops it off the stack.

• check checks if the logical context is satisfiable.

• del_context deletes the logical context.
In order to check the satisfiability of a formula in Yices,

we add the formula to the logical context by the command
assert and then we execute the command check. When-
ever we need to check the satisfiability of a set of formulas
having a common subset, we can do, in order to decrease the
computation time, an incremental checking by exploiting the
commands push and pop.

We use the SMT solver not only as satisfiability checker,
but also as an equivalence prover, thanks to Thm. 7.

C. Desired properties of combinatorial models and tests

In this section we introduce some properties that should
be proved in order to assure that a combinatorial model and
tests have some quality attributes. These properties refer to
attributes that are defined independently from the particular
combinatorial specification to be analyzed and they should
be true in order to guarantee a certain degree of quality for
the combinatorial model and tests. For this reason, we call
them meta-properties. The violation of a meta-property always
means that a quality attribute is not met and may indicate a
potential/actual fault in the model or in the tests. Although
we will actually define the meta-properties in the following
sections, we introduce now three generic categories of quality
attributes.
• Consistency requires that there are no elements that

conflict with each other. For instance, the constraints
should not be contradictory (see Sect. III-A).

• Completeness requires that every feasible requirement
must be covered by at least one test (see Sect. IV-A).

• Minimality guarantees that the specification does not
contain elements defined or declared in the model but
never used. These defects are also known as over-
specification. For example, if a parameter value is never
used, it could be removed from the parameter domain (see
Sect. III-C). Another minimality meta-property checks
that the test suite is minimal (see Sect. IV-B).

III. VALIDATION OF CIT MODELS

A. Inconsistent constraints

In classical deductive propositional logic, a theory is consis-
tent if it does not contain a contradiction. A simple syntactic
contradiction happens when the theory contains both the
formula ϕ and its contradiction ¬ϕ. In general, we consider a
theory (semantically) consistent if and only if it has a model,
i.e., there exists an interpretation under which all formulas in
the theory are true. In brief, the theory is satisfiable.

We can extend the concept of consistency to combinatorial
models with constraints. Given a set of parameters together
with their domains, we can check if the constraints over these
parameters are consistent, i.e., if they actually allow at least a
possible valid assignment to every parameter of the model. An
inconsistent set of constraints restricts too much the problem
space to the point that no solution is possible.



Algorithm 1 Algorithm for finding a maximum consistent
subset
Require: an inconsistent set of constraints C
Ensure: it returns a consistent subset of C

for i = (|C| − 1), . . . , 1 do
for all {C′ ⊂ C: |C′| = i} do

if isConsistent(C′) then
return C′

end if
end for

end for
return ∅

Definition 9. A set of constraints C = {c1, . . . , cn} is
consistent if

∧n
i=1 ci is satisfiable. A model is consistent if

its constraints are consistent.

Example 10. An example of inconsistent set of constraints is
{a ∧ ¬b, a→ b}.

In order to discover if a model is consistent, we use the
SMT solver Yices by simply checking the satisfiability of the
conjunction of the constraints.

How to deal with inconsistent constraints: Once the model
has been proved inconsistent, the designer is interested in
identifying which constraints are responsible for such in-
consistency. In the simplest case a single constraint ci is
inconsistent by itself, i.e., it is a contradiction (|= ¬ci). Single
inconsistencies must be identified and removed (or corrected).

Example 11. For example, the constraint # a=5 and a=6 # is
inconsistent.

Identifying single inconsistencies using Yices is easy: it is
sufficient to check each constraint for satisfiability.

However, in most cases there is not a single inconsistent
constraint, but the inconsistency derives from the interaction
of the constraints. In this case, the designer may be interested
in finding a maximum subset of consistent constraints.

Definition 12. Given an inconsistent set Γ of constraints, we
say that Ω is a maximum consistent (or satisfiable) subset
(MCSS) of Γ, if Ω ⊂ Γ and every subset ∆ (such that
Ω ⊂ ∆ ⊆ Γ) is inconsistent.

Finding the MCSS can be done by a greedy algorithm, as the
one shown in Alg. 1. It checks for consistency all the proper
subsets of C, going from the biggest ones to the singletons.
As soon as a consistent subset C ′ is found, it is returned. The
proposed algorithm has the advantage of returning a consistent
subset, but does not precisely identify the causes of the original
inconsistency: we can only know that the constraints in C \C ′
are inconsistent with at least one of the constraints in C ′.
In order to exactly discover the constraints responsible for
the inconsistency, one should use an algorithm for finding
the minimum unsatisfiable core [20], i.e., the smallest set of
constraints that is still unsatisfiable.

Example 13. Let’s consider the inconsistent set of constraints
C = {a ∧ ¬b, a → b, a ∨ b}. The algorithm first selects the

subsets of size |C| − 1; the subset C1 = {a ∧ ¬b, a → b} is
still inconsistent, subsets C2 = {a∧¬b, a∨b} and C3 = {a→
b, a∨b}, instead, are consistent. The algorithm returns the first
subset found consistent (C2 or C3); note that the two subsets
are not equivalent: C2 admits only {a = true, b = false},
while C3 admits two tests different from the one admitted
by C2. The modeler should check if the returned set actually
captures the intended requirements of the system.

B. Constraints Vacuity

In this section we extend the notion of vacuity to com-
binatorial constraints. Generally, vacuity has been applied
to properties of behavioral models in formal verification. A
property is vacuously satisfied if that property is satisfied and
proved true regardless of whether the model really fulfills what
the specifier originally had in mind or not. For example, the
property a → b is vacuously satisfied by any model where a
is never true. Vacuity is an indication of a problem in either
the model or the property. Several techniques to detect vacuity
have been proposed (e.g., [3], [18]) and also tools that perform
vacuity detection have been developed (e.g., [13]). In classical
formal verification, to detect vacuity as defined in [3], [18],
it is enough to replace parts of the property and see if the
replacement has any effect on the result of the verification. A
common technique to detect vacuity [18] consists in replacing
a subformula φ of property ϕ with true or false (depending
on the polarity of φ in ϕ) and checking for its satisfiability.

In our case, however, the constraints do not represent
properties that can be derived from the model, but the model
itself, i.e., the whole and only formal specification, and the
classical definitions do not apply. We still borrow the term
vacuity to indicate a constraint or one of its subformulas which
is useless. Intuitively, a constraint, or a part of it, is vacuous if
it can be removed, either because it is always true or because
it is implied by the other constraints. We distinguish between
total vacuity and partial vacuity.

Definition 14. A constraint ci is totally vacuous iff |=(∧
k∈{1,...,n}−{i} ck

)
→ (ci ≡ true).

Intuitively, a constraint is totally vacuous if it is implied by
the other constraints which make the constraint useless, since
it does not add any further restriction to the model.

Example 15. Let’s consider the set of constraints C =
{¬a, a→ b}. The constraint a→ b is totally vacuous. Indeed,
¬a→ (a→ b) is valid.

Tautologies used as constraints are a special case of total
vacuity.

Example 16. Let’s consider the set of constraints C = {a ∧
b, c∨¬c}. The constraint c∨¬c is totally vacuous, since it is
a tautology.

A constraint could be partially vacuous, when it contains
an occurrence of a subformula φ which is useless, i.e., it
is implied by the other constraints and by the other part of



Algorithm 2 Given a predicate R, REDUCE returns the set of
all the formulas obtained from R by removing one occurrence
of a subformula in R

function REDUCE(R)
if R is atomic then

return ∅
else if R = A ◦B then

ra←REDUCE(A)
rb←REDUCE(B)
return ra ◦B ∪ rb ◦A ∪ {A,B}

else if R = ¬A then
return ¬REDUCE(A)

end if
end function

where
◦ is ∨ or ∧
{x1, . . . , xn} ◦R = {x1 ◦R, . . . , xn ◦R}, ∅ ◦R = ∅
¬{x1, . . . , xn} = {¬x1, . . . ,¬xn}, ¬∅ = ∅

the same constraint. Therefore φ could be removed in that
occurrence.

In order to discover if a constraint ci is partially vacuous, we
generate, by the function REDUCE reported in Alg. 2, all the
possible formulas that can be obtained from ci by removing
only an occurrence of one of its subformulas3.

Partial vacuity is checked using the following definition.

Definition 17. A constraint ci is partially vacuous if there
exists ϕ ∈ REDUCE(ci) such that |=

(∧
k∈{1,...,n}−{i} ck

)
→

(ci ≡ ϕ).

If formula in Def. 17 is true, then ϕ is equivalent to ci
(assuming all the other constraints). Using ϕ instead of ci
would give an equivalent simpler model.

Example 18. Let’s consider the set of constraints C =
{c1, c2} with c1 = a∧ b and c2 = (a∨ b)∧ d. REDUCE(c2) =
{a ∧ d, b ∧ d, a ∨ b, d}. The constraint c2 is partially vacuous
because it is equivalent to d: indeed, c1 → (c2 ≡ d) is
valid. Note that the whole constraint is not vacuous: indeed,
c1 → (c2 ≡ true) is not valid.

In order to check a constraint for total vacuity in Yices,
we check the formula introduced in Def. 14 for validity. For
checking partial vacuity of constraint ci, we check, for every
formula in REDUCE(ci), the validity of the formula introduced
in Def. 17. Note that one may stop as soon as she/he finds a
ϕ in REDUCE(ci) which makes the formula of Def. 17 true.

How to deal with vacuous constraints: The vacuity of a
constraint may actually be caused by an error in it. The
user may have mistyped an element or an operator and this
may cause the vacuity. Instead, if the constraint is correct,
it can be eliminated or simplified in order to make the model
simpler (and possibly the test generation faster). When a single
constraint is totally vacuous, it can be eliminated without
problems; note that, after its removal, the vacuity should be
checked again, since some of the other vacuous constraints

3The algorithm can be easily extended to deal with other boolean operators
as →, ↔, and ⊕.)

may have become not vacuous. When a constraint ci is
partially vacuous several times, i.e., there exist ϕ1 and ϕ2 in
REDUCE(ci) which are equivalent to ci, ci can be substituted
by either ϕ1 or ϕ2 and its vacuity must be checked again.

In some cases, however, the user may be interested in
keeping also totally vacuous constraints as further properties
of the system. It is common in formal modeling having, stated
in the model, properties which are implied by the assumptions
or axioms asserted in the model. Indeed, a vacuous constraint
represents a property of the system under test which is implied
by other constraints. So, it should be classified as property
and not as constraint. We plan to add to the CITLAB language
also a notation for properties, together with the support for
proving them.

C. Useless parameter values and useless parameters

A parameter p can contain in its domain some values which
are never taken by p.

Definition 19. The value vjk of a parameter pj is useless if,
due to the constraints, pj can never assume value vjk.

Definition 20. If the parameter p can assume only a value,
then the whole parameter is useless.

We consider such elements useless, since they can be
ignored during the test generation process.

In order to discover if the value vjk ∈ Dj of parameter
pj is useless, we check with Yices if pj = vjk ∧

∧n
i=1 ci is

unsatisfiable. Totally, we must check
∑m

j=1 |Dj | values. Once
we know which parameter values are useless, we can also
identify the useless parameters. Indeed, given a parameter p,
if all its values except one are useless, then p can be classified
as useless. Note that, if the model is consistent, each parameter
can take at least one value. Uselessness checking should be
done only on consistent models.

How to deal with useless elements and parameters: Use-
lessness of parameters and values can be caused by errors
in the constraints: the test designer may have inadvertently
introduced a restriction not present in the real system under
test. In this case, the constraints should be revised. If this is
not the case, the useless parameters and values can be removed
from the model. However, if they are contained in some
constraints, also the constraints must be modified accordingly.

Parameters removal can ease the test suite generation pro-
cess, since size reduction of a combinatorial model domain
decreases significantly the generation time. If a useless pa-
rameter is removed, it may be reintroduced in the tests with
its unique value.

Example 21. Consider, for instance, the CITLAB model in
Fig. 2. Due to the first constraint (a == a.a1), parameter a can
take only value a1. In this case, parameter a could be removed
during the test generation process and, if necessary, inserted
again in the test suite. Due to the second constraint (b != b.b1),
instead, the domain of b can be reduced, excluding value b1.
In both cases the corresponding constraint must be removed
as well.



Model uselessModel
Parameters:

Enumerative a {a1 a2 a3};
Enumerative b {b1 b2 b3};

end
Constraints:

# a == a.a1 #
# b != b.b1 #

end

Figure 2. Example of useless parameter and useless parameter value

IV. VALIDATION OF CIT TEST SUITES

Test suite validation checks that the test suites produced by
a generation tool are correct (see Sect. IV-A) and minimal (see
Sect. IV-B).

A. Test Suite Correctness

We introduce the following definitions.
1) A test suite is sound if every test is syntactically correct

and valid:
a) an assignment of values to the parameters is a syntac-

tically correct test if it satisfies the type definitions;
b) a test is valid if it does not violate any constraint (see

Def. 4).
2) A test suite is complete if every feasible test requirement

is covered.

Definition 22. Test suite correctness A test suite is correct
if it is sound and complete.

Checking if a test suite is sound only requires syntax
checking and the tests validity assessment. In order to assess
if a test t is valid, it is enough to substitute the values of the
parameters in t in each constraint ci and check that every ci
evaluates to true.

Example 23. Let’s consider the model with a parameter x
defined in the domain {1, . . . , 100} and the constraint x > 10.
The following test suites are both not sound:
• {{x = 101}}: Although the test suite satisfies the con-

straint, it does not respect the type definition of x (the
test is not syntactically correct).

• {{x = 9}}: The test suite does not satisfy the constraint
(the test is not valid).

Checking the completeness of a test suite requires a satisfi-
ability solver, since it is not possible to judge if a test require-
ment is feasible or not by syntax checking. The completeness
check can be performed by Alg. 3. It checks if every tuple is
covered by at least one test in TS . If a tuple tp is not covered,
it checks its feasibility using the SMT solver and returns false
if tp is feasible and not covered.

How to deal with incorrect test suites: An unsound test
suite must be fixed before it can be used. There are two main
ways: either discard any invalid test or modify it in order to
make it valid. Removing an invalid test is easier than fixing
it, but it may reduce the testing coverage. On the other hand,

Algorithm 3 Test suite completeness check
Require: test suite TS to be checked
Require: the domain D of the parameters
Require: the required n-wise coverage
Ensure: it returns true if TS is complete, false otherwise

TP ← all the n-tuples from D
for all tp ∈ TP do

covered ← false
for all t ∈ TS do

if t covers tp then
covered ← true
break

end if
end for . if not covered, check feasibility
if ¬covered then

if tp ∧
∧n

i=1
ci is satisfiable then

return false
end if . tp is infeasible

end if
end for
return true

fixing a test requires a greater effort, since it is not clear in
general which assignments in the test are responsible for its
invalidity.

An incomplete test suite can still be useful, although it may
not exercise the system under test as well as required. The
tester may use a test generator tool that accepts an existing
possibly incomplete test suite (often called seeds) and tries
to generate the missed test cases. With a slight modification,
Alg. 3 can also be used to measure the incompleteness of a
test suite by counting the number of feasible tuples that are
not covered. As in classical testing, coverage measures can be
used to assess the quality of the test suite and of the tool that
has generated it. Our approach would correctly count only the
feasible test requirements.

B. Test Suite Minimality

Combinatorial test generators can produce very compact
test suites, which, however, could still contain redundant tests.
For example, tools generating at every step a test that covers
still uncovered tuples, may generate at some point a test
which might also cover several other tuples previously covered
by tests and these previously generated tests may become
useless. An optimum test case should satisfy two objectives
simultaneously. First, it must satisfy the maximum number
of uncovered requirements (tuples). Second, it must have the
minimum overlap in requirements coverage with other test
cases. The smallest ideal test suite is that in which each tuple
is covered by exactly one test case, but this very seldom can
happen: in most cases, a tuple will be covered by many tests,
creating possible redundancies. A certain level of redundancy
is in general unavoidable. However, some redundancies are
useless: some tests that overlap may be eliminated without
reducing the total coverage of the test suite. This problem is
also known as test suite reduction or minimization [15].

First of all, we want to discover if a test suite could be
reduced without losing coverage. We introduce the following



Algorithm 4 Test suite minimality check
Require: test suite TS to be checked
Require: set of tuples TP
Ensure: it returns true if TS is minimal, false otherwise

EssentialTests ← ∅
for all tp ∈ TP do

cov ← ∅
for all t ∈ TS do

if t covers tp then
cov ← cov ∪ {t}

end if
end for
if |cov | = 1 then

EssentialTests ← EssentialTests ∪ cov
end if

end for
return |EssentialTests| = |TS |

definition.

Definition 24. A test suite TS is minimal if there exists
no subset TS ′ ⊂ TS such TS ′ satisfies all the testing
requirements as the original set TS does, i.e., that all the tuples
covered by TS are also covered by TS ′.

How to recognize a non-minimal test suite? We can postu-
late that a test t is redundant if all the tuples covered by t are
also covered by other tests. On the contrary, a test case can
be defined essential, i.e., it cannot be removed from the test
suite, as follows.

Definition 25. A test case ti is essential if it covers at least
one tuple tp in TP (the set of all the tuples for a given n-wise
coverage) not covered by other test cases of the test suite TS .
Formally, ∃tp ∈ TP : (ti |= tp ∧ (¬∃tj ∈ TS : (i 6= j ∧ tj |=
tp))).

Theorem 26. A test suite TS is non-minimal iff TS contains
at least a not essential test.

Alg. 4 reports the algorithm we use to check if a test suite
is minimal. It checks if each test t of the test suite is essential,
i.e., for every tuple tp it collects (in cov ) the tests that cover
tp. If cov contains only one test, then that test is essential and
collected in EssentialTests. If all the tests are essential, then
the test suite TS is minimal.

How to deal with non-minimal test suites: Test suite reduc-
tion (also known as test suite minimization) is often applied
in the context of regression testing, when one wants to find
a minimal subset of test cases which satisfy all the testing
requirements as the original set does. The problem of finding
the minimal test suite that satisfies a set of test goals can
be reduced, in polynomial time, to the minimum set covering
problem which is NP-hard. A simple greedy heuristic for the
minimum set covering problem defined in [7] can be adapted
to the test suite minimization.

In this paper, in order to obtain a final test suite with fewer
test cases, we try to build a reduced test suite in which the
requirements coverage is preserved and all the test cases are
essential. Note that, however, if the test suite is non-minimal,

Algorithm 5 Reduction algorithm
Require: test suite TS to reduce
Require: set of tuples TP covered by TS
Ensure: it returns a possibly minimal test suite

TS ′ ← TS
mTS ← ∅
while TP 6= ∅ do

t← getMostCoveringTest(TS ′,TP)
CoveredTPs ← getCoveredTPs(TP , t)
if CoveredTPs = ∅ then

return mTS
end if
mTS ← mTS ∪ {t}
TS ′ ← TS ′ \ {t}
TP ← TP \ CoveredTPs

end while
return mTS

then one cannot simply remove all the not essential test cases,
since a not essential test case may become essential after
another not essential test case is removed from the test suite.
The choice of which tests to include in the final test suite is
critical. We have implemented a greedy algorithm, reported in
Alg. 5, which can reduce the original test suite, still covering
all the requirements. At every step it chooses the test that
covers most uncovered tuples. When there is a tie between
multiple test cases, one test case is randomly selected.

Example 27. Let’s consider the test suite TS = {t1, t2, t3}
whose tests cover, respectively, requirements {a, b}, {a, c} and
{b, d}. If in the first iteration the greedy algorithm collects
test t2, in the second iteration it must collect the test t3 since
it covers most uncovered tuples. At this point, all the tuples
have been covered. So, the greedy algorithm reduces TS as
mTS = {t2, t3}.

Note that the algorithm may fail to reduce the test suite,
even if this test suite is non-minimal.

Example 28. Let’s consider the same test suite shown in
Example 27. If in the first iteration the greedy algorithm
collects test t1, it must also collect both tests t2 and t3 in two
following iterations. So the final test suite is not minimized,
i.e., mTS = TS . However, as seen in Example 27, TS is
non-minimal.

V. EXPERIMENTAL RESULTS

As model set for CIT problems we have gathered a set of 64
models with constraints taken from the literature (CASA [10],
FoCuS [23], ACTS [19], and IPO-S [4]) and used (in sub-
sets) also by many other papers. We have implemented the
validation framework in CITLAB and we have performed
experiments over models and their test suites generated with
different tools. The benchmarks are available at the CITLAB
web site4. We have performed the experiments on a Linux PC
with an i7 processor 3770 (3.4 GHz) and 16 GB of RAM.

4https://code.google.com/a/eclipselabs.org/p/citlab/

https://code.google.com/a/eclipselabs.org/p/citlab/


Table I
VACUOUS CONSTRAINTS

Vacuous constraints
Model (# constr.) # useless partially (but totally

subform. not totally)
# % # % Sum %

bench_01 (24) 7 4 16.7 2 8.3 25.0
bench_02 (22) 2 2 9.1 0 0.0 9.1
bench_03 (10) 0 0 0.0 1 10.0 10.0
bench_04 (17) 11 7 41.2 2 11.8 52.9
bench_05 (39) 9 0 0.0 1 2.6 2.6
bench_06 (30) 40 8 26.7 22 73.3 100.0
bench_07 (15) 20 3 20.0 11 73.3 93.3
bench_08 (37) 22 6 16.2 11 29.7 45.9
bench_09 (37) 51 13 35.1 24 64.9 100.0
bench_10 (47) 31 9 19.1 16 34.0 53.2
bench_11 (32) 11 5 15.6 6 18.8 34.4
bench_12 (27) 12 5 18.5 4 14.8 33.3
bench_13 (26) 17 9 34.6 4 15.4 50.0
bench_14 (15) 10 5 33.3 3 20.0 53.3
bench_15 (22) 3 3 13.6 0 0.0 13.6
bench_16 (34) 41 10 29.4 22 64.7 94.1
bench_17 (29) 0 0 0.0 1 3.4 3.4
bench_18 (28) 3 0 0.0 3 10.7 10.7
bench_19 (43) 6 2 4.7 0 0.0 4.7
bench_20 (48) 30 12 25.0 14 29.2 54.2
bench_21 (46) 65 12 26.1 32 69.6 95.7
bench_22 (22 17 6 27.3 10 45.5 72.7
bench_23 (15) 13 4 26.7 7 46.7 73.3
bench_24 (29) 9 3 10.3 6 20.7 31.0
bench_26 (32) 16 3 9.4 11 34.4 43.8
bench_27 (20) 3 1 5.0 3 15.0 20.0
bench_28 (37) 6 1 2.7 3 8.1 10.8
bench_30 (35) 38 10 28.6 17 48.6 77.1
CommProt (128) 814 73 57.0 24 18.8 75.8
Concurr (7) 7 1 14.3 0 0.0 14.3
gcc (40) 6 2 5.0 0 0.0 5.0
HealthC2 (25) 14 2 8.0 0 0.0 8.0
ProcComm2 (125) 43 7 5.6 97 77.6 83.2
Services (388) 81 27 7.0 0 0.0 7.0
SmartHome (43) 33 16 37.2 17 39.5 76.7
Storage1 (95) 205 41 43.2 0 0.0 43.2
Telecom (21) 5 1 4.8 0 0.0 4.8

A. Consistency of constraints

The aim of this experiment is to determinate if some of
the models under test present any inconsistent constraint. The
constraints validation process performed over the 64 models
took about 5.6 seconds and it proved that all the models have
only consistent constraints. This result was expected since
these models have been extensively used for test generation
and no test can be generated from inconsistent models.

B. Vacuity detection

The aim of this experiment is to determine the presence
of partially/totally vacuous constraints. The experiment took
45.5 seconds. Table I reports the 37 models that present at
least a form of vacuity; for each model, we report in round
brackets the number of its constraints. The second column
reports the number of (occurrences of) subformulas that cause
a partial vacuity in a constraint: such subformulas are useless.
The next columns report the number and the percentage of
constraints that are partially vacuous, but that are not also
totally vacuous. Then, the number and the percentage of totally
vacuous constraints are reported. Finally, the table shows the
percentage of constraints that have any form of vacuity (partial

Table II
USELESS PARAMETER VALUES AND USELESS PARAMETERS

Useless parameter values Useless parameters
Bool Enum Total Bool Enum Total

# %
bench_01 2 0 2 2 0 2 2.06
bench_02 1 0 1 1 0 1 1.06
bench_04 2 1 3 2 0 2 3.45
bench_06 12 0 12 12 0 12 15.58
bench_07 4 0 4 4 0 4 13.33
bench_08 3 1 4 3 0 3 2.52
bench_09 10 4 14 10 0 10 16.39
bench_10 4 2 6 4 1 5 3.40
bench_11 3 0 3 3 0 3 3.13
bench_12 3 0 3 3 0 3 2.04
bench_13 5 1 6 5 0 5 3.76
bench_14 2 1 3 2 0 2 2.17
bench_15 1 0 1 1 0 1 1.72
bench_16 13 0 13 13 0 13 14.94
bench_20 8 1 9 8 0 8 5.06
bench_21 13 2 15 13 0 13 15.29
bench_22 7 0 7 7 0 7 8.86
bench_23 1 2 3 1 0 1 3.70
bench_24 2 0 2 2 0 2 1.68
bench_26 3 0 3 3 0 3 3.16
bench_30 8 0 8 8 0 8 10.13
ProcComm2 0 10 10 0 3 3 12.00
SmartHome 14 0 14 14 0 14 36.84

or total). We can notice that there are more useless subformulas
than partially vacuous constraints: indeed, a partially vacuous
constraint can have more than one useless subformula. The
number of totally vacuous constraints can be high (e.g., 77.6%
for ProcComm2); however, not all the vacuous constraints can
be removed at once. As explained in Section III-B, in order
to remove vacuity, one should remove a vacuous constraint
at a time, and check for vacuity after each removal: indeed,
after the removal of a vacuous constraint, (some of) the other
vacuous constraints could become no more vacuous.

The constraints vacuity has proved to be a widespread
problem. Almost all the benchmarks bench_n, that have been
“randomly synthesized starting from real case studies” [10],
manifest this problem. However, many real life models are
affected too. In general, vacuity is difficult to detect by hand
and a tool like that presented in this paper is essential for
discovering it.

C. Useless parameter values and useless parameters

The aim of this experiment is to determine the presence
of useless parameters values and useless parameters. Table II
shows the results. Checking useless parameters and values
over the 64 models took about 6.2 seconds. We have found
that 23 models have at least one useless parameter value and
one useless parameter. As expected, we note that each useless
boolean value corresponds to a useless parameter. Instead, a
useless enumerative value does not necessarily imply that the
corresponding parameter is useless.

The presence of so many combinatorial models with useless
parameters has surprised us, since they have been extensively
used in experiments in the literature. We discovered that
most of them (bench_n) have been randomly synthesized.
Nonetheless, they should be fixed in order to make them



Table III
TEST SUITE VALIDATION

# test suites
Tool Complete Correct Minimal
ACTS 64 64 62
MEDICI 64 64 64
CASA 64 64 64

more plausible as real models and be considered suitable as
benchmarks for testing technique. One model (ProcComm2),
however, claims to be a “real-life test space instance generated
by or for our customers” [23]. In another case (SmartHome),
useless parameters are present because the model has been
automatically obtained from a feature model without applying
any optimization [6].

D. Test suite validation

We have performed experiments over the test suite generated
in 10 different runs with three different tools: ACTS [19],
CASA [10] and MEDICI (an internal tool for test generation
we are developing). The test suite used was the same of the
previous experiment (64 models) and we chose to perform
a pairwise generation. Results are shown in Table III. The
three tools produced complete and correct test suites for all
the models. MEDICI and CASA always produced minimal test
suites, while ACTS (which was the fastest in test generation)
produced a non-minimal output for two benchmarks. We have
applied 10 times the reduction algorithm presented in Alg. 5 to
the test suites obtained in these two cases. In all the cases the
reduction algorithm was able to reduce the test suite. In one
case, however, the produced test suite was still non-minimal.

The time to check if all the test suites are minimal is
50 seconds, while the reduction of one test suite takes 0.8
seconds.

VI. RELATED WORK

For different programming languages, several tools auto-
matically look for common errors as, for example, FindBugs,
PMD and Checkstyle for Java, or Splint for C5. These tools
look for erroneous code but also for stylistic conventions
violations that may indicate a possible problem. For example,
the pattern Unwritten field of FindBugs signals if a field
has never been written and always returns its default value:
the violation of this pattern could show that the field is not
necessary or that it must be updated somewhere.

Also for models, some model review techniques have been
proposed.

A model review technique has been developed for the
Software Cost Reduction (SCR) method [16], a requirements
specification method that uses a tabular notation to define
mathematical functions. There are different tables: condition,
event, and mode transition tables. Each table describes a
variable or a mode as a function of modes and/or events

5http://findbugs.sourceforge.net/, http://pmd.sourceforge.net/,
http://checkstyle.sourceforge.net/, http://www.splint.org/

and/or conditions. The authors defined a formal requirements
model specifying the properties that any SCR specification
must satisfy, and developed a tool, the consistency checker,
for checking these properties. They identified eight categories
of properties: Proper Syntax, Type Correctnesses, Complete-
ness of Variable and Mode Class Definitions, Initial Values,
Reachability, Disjointness, Coverage and Lack of Circularity.
Some properties are similar to ours. For example, Coverage
requires that at least one condition in each row of a condition
table must be true; this is similar to our consistency check.

The UML state machines are an object-based variant of
Harel statecharts. In [22] the authors present a set of rules
that seek to avoid common types of errors by ruling out certain
modeling constructs for UML state machines or Statecharts.
The authors state that the first rules that must be respected are
the UML well-formedness rules. These rules are expressed
as OCL constraints over UML models; the satisfaction of
these constraints assures the syntactical correctness, which is a
prerequisite for executing more complex checks. An example
of well-formedness rule is the rule CompositeState-1 that states
that a composite state can have at most one initial vertex.
The authors then reviewed different style guides proposed for
statecharts and their dialects. They devised two categories
of rules. Syntactical Robustness Rules identify syntactical
constructions that, although syntactically correct according to
the well-formedness rules, should be avoided because they
could produce misleading models. Semantic Robustness Rules
try to detect incorrect model behaviours, e.g., race conditions.
Some syntactical robustness rules map to our checks. For
instance, rules MiracleState and Connectivity, requiring that
each state is reachable, are similar to our useless parameter
and value check since they all require model minimality.

In [1] a model review technique is proposed for Abstract
State Machines (ASMs), an extension of Finite State Ma-
chines. Seven meta-properties have been devised for checking
the consistency, the completeness and the minimality of ASM
models. Some of these meta-properties inspired our current
work. For example, a meta-property requires that every con-
trolled function can take any value in its co-domain: this meta-
property is similar to the control we do to check that every
parameter value is useful (see Section III-C).

A model review technique has been developed also for
models of the NuSMV model checker [2]; the authors iden-
tified ten meta-properties for checking the consistency, the
completeness and the minimality of NuSMV models. We
have been inspired also by some of these meta-properties.
One meta-property checks that the temporal properties of the
NuSMV specification are not vacuously satisfied: in a similar
way, we check that the constraints are not totally/partially
vacuous. Note that, however, our definition of vacuity is
slightly different from the classical definitions [3], [18].

Test suite reduction has been extensively used in regression
testing. Chavatal [7] proposes the use of a greedy heuristic
that selects at a time a test case that covers most yet to-be-
covered requirements, until all requirements are satisfied. Our
algorithm in Alg. 5 is an instantiation of that proposed by

http://findbugs.sourceforge.net/
http://pmd.sourceforge.net/
http://checkstyle.sourceforge.net/
http://www.splint.org/


Chavatal. Harrold and colleagues [15] propose a similar, but
improved heuristic that generates solutions that are always as
good or better than the ones computed by Chavatal. Their
technique selects a representative set of test cases from a
test suite that provides the same coverage as the entire test
suite. This selection is performed by identifying, and then
eliminating, the redundant and obsolete test cases. We plan to
translate Harrold’s algorithm also for combinatorial test suites.

VII. CONCLUSIONS

We have presented a set of quality checks that CIT models
and test suites should pass: the constraints are consistent and
do not contain useless parts, all the parameters and values
are useful, test suites do not violate the constraints and cover
all the testing requirements, and the final test suite does not
contain tests that can be removed without loss of coverage. We
have devised suitable techniques, based on an SMT solver, to
perform these checks and established some policies about how
to deal with violations of these properties.

We have identified the following use cases of our validation
framework involving different kinds of users. The first set of
users are the clients of combinatorial testing, i.e., those who
apply combinatorial testing to real systems. Our validation
framework helps designers to identify defects in models: an
inconsistent or vacuous constraint and a useless parameter or
value are often an evidence of a defect in the model. Testers
can use our validation framework in order to assess the quality
of the test suites they use. The test suite may require to be
fixed and some tests may be discarded because they are wrong
or useless. The measure of coverage can be used by testers to
determine the quality of the testing process.

The second set of users are the providers of CIT tools and
frameworks. By using our validation framework, researchers
can check the quality of the models they use for benchmarking
and experimenting their algorithms. Moreover, the validation
framework can be used to validate (and eventually debug)
new test generation algorithms, to see if the test suites they
generate are actually correct and minimal. The presence of
our validation component inside the proposed CIT framework
CITLAB makes also the comparison and integration of test
generation techniques more fair, since it guarantees a way
to ensure that every tool embedded in CITLAB is producing
correct results.

In this paper we focus on detecting potential defects and we
give generic guidelines for removing them. As future work,
we plan to study the impact of defect removal over the test
generation process, especially in terms of test suite size and
test generation time.
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