
Combinatorial Testing for Feature Models
Using CITLAB

Andrea Calvagna
Dip. di Matematica e Informatica

University of Catania - Italy
Email: calvagna@cs.unict.it

Angelo Gargantini
Dip. di Ingegneria

University of Bergamo - Italy
Email: angelo.gargantini@unibg.it

Paolo Vavassori
Dip. di Ingegneria

University of Bergamo - Italy
Email: paolo.vavassori@unibg.it

Abstract—Feature models are commonly used to represent
product lines and systems with a set of features interrelated
each others. Test generation from feature models, i.e. generating
a valid and representative subset of all the possible product
configurations, is still an open challenge. A common approach
is to build combinatorial interaction test suites, for instance
achieving pairwise coverage among the features. In this paper
we show how standard feature models can be translated to com-
binatorial interaction models in our framework CITLAB, with
all the advantages of having a combinatorial testing environment
(in terms of a clear semantics, editing facilities, language for
seeds and test goals, and generation algorithms). We present our
translation which gives a precise semantics to feature models and
it tries to minimize the number of parameter and constraints
while preserving the original semantics of the feature model.
Experiments show the advantages of our approach.

I. INTRODUCTION

Feature models (FMs) allow designers to specify families of
products, generally called Software Product Lines (SPLs) in a
simple way. A feature model lists the features in a product
line together with their possible values and constraints. In
this way, it can represent in a compact and easily manageable
way millions of variants, each representing a possible product.
There exist several tools for designing feature models, like
FeatureIDE [19], and repositories and libraries like SPLOT
[13]. However, only few tools support feature model testing,
also because exhaustive FM testing is unfeasible in most cases.

A possible solution is to apply basic principles of combina-
torial interaction testing (CIT) to feature models. Generally
combinatorial testing algorithms and tools are adapted to
feature models, like PACOGEN [10] and ICPL [11], or testing
criteria similar to those for combinatorial testing are applied
to SPLs [6]. All these works share the common approach
that consists in adapting combinatorial algorithms to feature
models testing. In this paper, we try to proceed in the other di-
rection: translating feature models to combinatorial problems.
In this way, thanks also to our framework for combinatorial
testing, CITLAB [4], [8], we have access to all the features,
algorithms and techniques normally used in combinatorial
testing. We optimize our approach over the classical one, in
several directions:

1) We use enumerative variables and types when it is more
suitable than using only Boolean variables.

2) In this way we minimize the use of implicit constraints,
i.e. those constraints which are not part of the feature
models but are inserted only to correctly represent feature
relationships.

3) We operate several simplifications in order to make
models more easy to solve by combinatorial algorithms.

This strategy provides several benefits. At the model rep-
resentation level, it allows us to generate a more human
readable model and also prevents the use of the flattening
algorithm [14], which disrupts the feature hierarchy. The
resulting model is simpler both to read and understand (with
less syntactical elements) and to deal with (with less con-
straints). At generation level, the tester has access to all
the algorithms and tools commonly used for combinatorial
interaction testing. Moreover, the model simplification could
give access to tools and algorithms not suitable to the original
models. For example, several combinatorial testing tools work
only with models without constraints, and our approach is
capable of removing all constraints in particular cases (e.g.,
when there is only one level in the feature model).

The paper is organized as follows. Section II presents
the feature model notation together with the tools used in
this paper (FeatureIDE and SPLOT) and our framework for
combinatorial testing, CITLAB [8]. Section III presents our
translation from FM to combinatorial models. In Section IV
we present some simplifications we apply to the combina-
torial models in order to further reduce their complexity by
removing useless parameters and constraints while preserving
their original semantics. Note that these simplifications are not
specific and limited to combinatorial problems obtained from
feature models, and they can be applied to any combinatorial
problem regardless its origin. In Section V, we present the
data we obtained using a wide set of examples commonly
used as benchmarks in the SPL community in order to show
how our techniques compare with other classical ones. Section
VI presents some related work and Section VII concludes the
paper and presents some future work.

II. BACKGROUND

In software product line engineering, feature models are a
special type of information model representing all possible
products of a software product line in terms of features and
relationships among them. Specifically, a basic feature model

(a) Conventional notation (b) FeatureIDE notation

Figure 1: Examples of Feature model notations

is a hierarchically arranged set of features, where each parent-
child relation between them may be one of the following types:

Mandatory – child feature is required.
Optional – child feature is optional.
Or – at least one of the sub-features must be selected.
Alternative (xor) – exactly one of the sub-features must be

selected
In addition to the parental relationships, cross-tree relations

are allowed, to specify incompatibility or requirement kind of
constraints between features, in the form:

A requires B – The selection of feature A in a product
implies the selection of feature B.

A excludes B – A and B cannot be part of the same product.
Feature models can be visually represented by means of

feature diagrams. Figure 1 depicts a simplified example model
presented in [2] and inspired by the mobile phone industry, in
order to present the visual notation commonly adopted for
feature modeling. The example also shows how a model can
be used to specify a product family, that is, to determine
the features that will be supported (loaded) in a particular
phone configuration of the considered family. According to
the model, all phones must include support for calls, and
displaying information in either a basic, color or high resolu-
tion screen. Furthermore, the software for mobile phones may
optionally include support for GPS and multimedia devices
such as camera, MP3 player or both of them.

Extensions to the basic feature model notation have been
proposed in literature, e.g. allowing specifying the cardinality
of the features and/or additional type of information. However,
in this paper we consider only basic feature models.

A. Feature Modeling frameworks

Several languages/tools for specifying/analyzing feature
models are currently available, some of them already mature
enough to be part of a software production IDEs. In this work,
FeatureIDE [19] has been used to design or import the models
used in the evaluation section. FeatureIDE is an open-source
framework for feature-oriented software development (FOSD)
based on Eclipse. FOSD is a paradigm for the construction,
customization, and synthesis of software systems. Code ar-
tifacts are mapped to features, and a customized software

Type Notation Propositional formula

Mandatory p→ A
∧

A→ p

Optional A→ p

Alternative p→ alt(a1, a2 . . . an)
∧

a1→
p
∧

a2→ p
∧
· · ·

∧
an→ p

Or p→ (a1
∨

a2
∨
· · ·

∨
an)

∧
a1→

p
∧

a2→ p
∧
· · ·

∧
an→ p

Table I: Conventional translation

system can be generated given a selection of features. The set
of software systems that can be generated is then a software
product line (SPL).

B. Feature Model semantics

Feature models semantics can be rather simply expressed by
using propositional logics as already done in [2]. Every feature
becomes a propositional letter or a Boolean variable, and every
relationship among features becomes a propositional formula
modeling the constraints about them as reported in Tab. I1.

Example 1. Note that in case of alternative features, the
translation using Boolean variables introduces many variables
which are mutually exclusive. For instance, the model in Fig.
2 introduces 8 Boolean variables for a system with just two
main features (A and B), because each of them expands to
four alternative leaf features a1 . . . a4 and b1 . . . b4. Several
complex constraints are necessary to constraint valid products.
In case of many alternative features, the complexity of the
model would grow. Reducing their complexity would be a
benefit to the user, which would be facilitated in the model

1Where the alt operator represents the exclusive or among all its ar-
guments and it is defined as alt(a1, a2, . . . , an) = (a1 ∧ ¬a2 ∧ · · · ∧
¬an)

∨
· · ·

∨
(¬a1 ∧ ¬a2 ∧ · · · ∧ an).

Figure 2: A two alternative model

comprehension, and would also allow the available tools to
manage larger models.

Variability factor: This index measures the ratio between
the number of valid products and the total number of possible
feature combinations, which is equal to 2n where n is the
number features. In case of Boolean variables, n is also equal
to the number of variables. The feature model variability can
be used to measure the flexibility of the feature model. For
instance, a small factor means that the number of combinations
of features is very limited compared to the total number of
potential products [2].

C. CitLab

In this paper the CITLAB tool for Combinatorial Interaction
Testing (CIT) is used to solve the combinatorial generation
task associated with every feature model. The CITLAB tool
allows importing/exporting models of combinatorial problems
from/to different application domains, by means of a common
interchange syntax notation and a corresponding interoperable
semantic meta-model. Moreover, the tool is a framework
allowing embedding and transparent invocation of multiple,
different implementations of combinatorial algorithms. CIT-
LAB has been designed tightly integrated with the Eclipse IDE
framework, by means of its plug-in extension mechanism. It
is intended to easy the spread of CIT testing both in industrial
practice and in academic research, by allowing users and
researchers to apply multiple test suite generation algorithms,
each with its peculiarities, on the same problem models, and let
them compare the results in order to select the one that best fits
their needs, while alleviating from the pain of knowing all the
different details and notations of the underlying CIT tools. In
order to support the model conversion activity presented in this
work, a new importer plugin for CITLAB has been designed
and implemented, which converts a feature model specifica-
tion into a corresponding combinatorial task specification, by
applying the optimized language translation described in Sect.
III. Although CITLAB does not introduce its own test genera-
tors, existing test generator tools can be and have been easily
embedded in it. We have used several external tools to generate
combinatorial tests in the experiments of Sect. V. All the code
and the experiments are openly available at the CITLAB web
site (http://code.google.com/a/eclipselabs.org/p/citlab/).

III. TRANSLATION FROM FM TO CITLAB

In this section we present a procedure to translate feature
models into combinatorial models. Our translation is per-

formed in three steps:
A. Every feature, starting from the root feature, is translated

to an element (variable or literal constant) in the combi-
natorial problem.

B. Additional constraints are added in order to represent re-
lationships among features as specified by the hierarchies
in the future model.

C. Cross-tree constraints are translated and added to the
model.

Several simplifications can be applied to the final combina-
torial model, but these will be presented in the next section.

A. Representation of every feature

During the first step, all the features (corresponding to all
the nodes in the feature model diagram) are translated as
Boolean variables, enumerative variables or enumerative con-
stants, according to Tab. II. Alternative features are translated
as an enumerative variable, where the sub features, which
are mutually exclusive by definition, are represented as values
in a corresponding enumerative type. This represents a main
difference between the proposed approach and the classical
one: just a single enumerative variable is introduced to model
alternative sub-features, instead of a set of Boolean variables.
However, any other feature type is still translated to a Boolean
variable, as in the classical approach.

During this step, the function isChosen is set for each
encountered feature. isChosen defines the predicates that
must hold if a feature is selected. It associates every feature
to a propositional formula (i.e., a Boolean expression):

isChosen : Feature → Expression
Consequently, isChosen(x) means that feature x is present

in the considered product configuration.

B. Adding implicit constraints

During the second step of the translation, the feature model
is visited again starting from the root node and constraints
among the features in the original model are translated into
constraints between the variables of the corresponding com-
binatorial task. Constraints are built depending on the node
and its parents semantics mapping, as shown in Table III. We
refer to these constraints as implicit, since they are implicitly
implied by the type of relationships child-parent of the nodes.

C. Cross-tree constraints

Sometimes cross-tree constraints are used to limit valid
product configurations and to model relationships among fea-
tures. These constraints can be translated easily in CITLAB,
which accepts as constraints general form Boolean expres-
sions. Specifically, they are translated as follows:

FM constraint CITLAB constraint
A requires B isChosen(A) ⇒ isChosen(B)
A excludes B isChosen(A) ⇔ ¬isChosen(B)

Example 2. Fig. 3 reports a small example which, however,
contains all the feature kinds. Table IV reports the results

http://code.google.com/a/eclipselabs.org/p/citlab/

Feature Both A and its parent are
alternative nodes

A is alternative but its parent
is not alternative Any other node Ai whose

parent is alternative P (Ai is a
child in an alternative feature)

Any other node x whose
parent is not Alternative

Parameter Enumerative A {a1 ... an NONE} skip (the father is alternative, the
node is already translated into
an element of an enumative)

Boolean x

isChosen skip isChosen(A) isChosen(A) ≡ isChosen(ai) ≡ isChosen(x) ≡
A! = NONE P = Ai x = true

Table II: Representing features and setting isChosen function

Feature Constraint

A and its parent are
alternative

A 6= NONE⇔
isChosen(A)

A is Or and its parent
is of any kind

isChosen(A)⇒
(isChosen(a1) ∨ · · · ∨

isChosen(an))
∧

∀i isChosen(ai)⇒
isChosen(A)

A is different from Or
and parent is alterna-
tive

skip

A mandatory and par-
ent not alternative nor
or

isChosen(A)⇔
isChosen(P)

A optional and parent
not alternative nor or

isChosen(A)→
isChosen(P)

Table III: Constraints to be added

Figure 3: A small complete example

obtained by visiting each node during the visit of the diagram.
The columns show the CITLAB Parameter, the value of the
isChosen function, and the implicit constraints. Listing 1
reports the CITLAB code before simplification.

Variability factor: In our case, the variability factor can
be computed as the ratio between the number of valid products
and the size of Cartesian product of the parameter domains.

Listing 1: CITLAB code for model in Fig. 3
Model model
Parameters:

Enumerative model { a1 a2 a3 NONE };
Boolean a11;
Boolean a12;
Boolean a21;
Boolean a22;
Enumerative a3 { a31 a32 NONE };

end
Constraints:

model!=NONE
a11==true => model==a1
a12==true => model==a1
model==a2 => (a21==true || a22==true)
a21==true => model==a2
a22==true => model==a2
a3!=NONE <=> model==a3

end

D. Extra testing requirements

Once the combinatorial model is derived from a feature
model, the tester can apply the usual combinatorial interaction
testing criteria in order to obtain set of products that cover the
family of products in a desired way. Besides this standard use
of CIT, our approach supports two additional features that are
implemented in CITLAB.

1) Pre-built product configurations:: known configurations
that must be included in the final suite of test configurations
can be imported into the combinatorial model as a list of
seeded tuples of feature combinations, which are already sup-
ported by some combinatorial generation algorithms integrated
in CITLAB. For instance, in the FM of Fig. 1 if the tester wants
to force the inclusion of a specific product, he/she can write
the following seed in CITLAB:

Seeds:
Calls = true,GPS = false, Screen = Color, Media = MP3#

CITLAB automatically checks that a seed sets the value to
every parameter (hence to every feature) and that it satisfies
the constraints (implicit and cross-tree).

node CITLAB Parameter isChosen CITLAB constraint
model Enumerative model {a1 a2 a3 NONE} model!=NONE model!=NONE
a1 skip model == a1 skip
a11 Boolean a11 a11 == true a11 == true => model == a1
a12 Boolean a12 a12 == true a12 == true => model == a1
a2 skip model == a2 model == a2 => (a21 == true ∨ a22 == true)
a21 Boolean a21 a21 == true a21 == true => model == a2
a22 Boolean a22 a22 == true a22 == true => model == a2
a3 Enumerative a3 {a31 a32 NONE} model == a3 a3 != NONE <=> model == a3
a31 skip a3 == a31 skip
a32 skip a3 == a32 skip

Table IV: Translation to CITLAB model for model of Fig. 3

2) Further testing goals: Testers may want to add extra
requirements about the testing activity in form of further
conditions over the product space that they want to cover.
These test goals must be achieved either beside or by the
combinatorial coverage and represent particular product con-
figurations the tester wants to be sure that they will be included
in the final test suite. These extra constraints can be added in
CITLAB by means of test goals. For instance, in the FM of
Fig. 1 if the tester wants to include at least a product in which
the GPS is present but Media is not MP3, he can write the
following test goal:

TestGoals: # GPS == true and Media != MP3#

A test goal is covered if there exists at least a test that
satisfies it.

For now, we assume that these extra testing requirements
are manually inserted by the user after the translation is
performed. We plan to study a way introduce them in the
source feature models. For a precise semantics of test goals
and seeds, see [8].

IV. SIMPLIFICATION PROCESS

The combinatorial model resulting from the imported fea-
ture model can be optimized in order to reduce the number of
unnecessary variables and constraints. Although the proposed
optimization is proposed in the context of feature model
combinatorial testing, it can be applied to any combinatorial
model and it has been implemented in CITLAB as model
transformation and added to its public APIs. We perform two
types of syntactical simplifications:

A. We simplify the constraints of the model in a semantic
preserving way. The goal is to ease the test generation,
which in the presence of constraints can be more diffi-
cult [5].

B. We completely remove unnecessary parameters and con-
straints.

A. Constraint simplification

We apply the rules presented in the following table, which
reports the constraint to be simplified (column A), the con-
dition under which it can be simplified (column B), and
the performed simplification (column C), where a and b can
be either atomic proposition or complex propositions. It is

Listing 2: CITLAB code for model in Fig. 3 after simplification
Model model_smp
Parameters:

Enumerative model { a1 a2 a3 };
Boolean a11;
Boolean a12;
Boolean a21;
Boolean a22;
Enumerative a3 { a31 a32 NONE };

end
Constraints:

a11==true => model==a1
a12==true => model==a1
model==a2 => (a21==true || a22==true)
a21==true => model==a2
a22==true => model==a2
a3!=NONE <=> model==a3

end

Parameter Constraint Action
Boolean x x = true or

x = false
remove x and remove the con-
straint (if x does not compare in
other constraints).

enum A{a1... an} A 6= ai remove ai from type A and re-
move the constraint (if ai does not
compare in other constraints).

enum A{a1... an} A = ai remove A and the constraint (if
neither A nor ai compare in other
constraints).

Table V: Parameter simplification

straightforward to prove that the simplifications preserve the
final semantics of the constraints.

(A) (B) (C)
Constraint If already present Replaced by
a → b a b
a → b b - (remove)
a ↔ b a b
a ↔ b b a

B. Parameter simplification

Once the constraints have been simplified, we can simplify
the model parameters, as reported in Tab. V. In those cases,
under some assumptions, the parameters can be simplified and
the constraints removed.

Example 3. For the example of two alternative features given

Figure 4: FeatureIDE importer plugin

in Fig. 2, the resulting CITLAB file is the following one:

Model model
Enumerative A {a1 a2 a3 a4};
Enumerative B {b1 b2 b3 b4};

end

Note that in this specific case, our simplification algorithm is
able to remove all the constraints. Using unconstrained models,
the tester has access to a wide set of tools, including most
algebraic and bio-inspired tools for combinatorial testing (like
[3]), which are very powerful in terms of generation time and
test suite size, but they cannot easily deal with the constraints.

Note that since we operate only at syntactical level, we may
miss some possible simplifications but the process is simple
and fast. We plan to use in the future a constraint solving
engine (like a SMT solver).

V. EXPERIMENTS

We have implemented in CITLAB an importer of Fea-
tureIDE models, which can read feature models in the Fea-
tureIDE native format and also in the SPLOT format (sxfm).
We have also implemented an importer that translates feature
models in SPLOT format into a combinatorial problem with
only Boolean variables with the classical semantics given
by [13]. These importers are CITLAB plugins and they are
integrated in the framework together with other test generators
as shown in Fig. 4.

As case studies we have taken 52 SPLOT2 models which
are often used as benchmarks3

A. Testing the correctness of the transformation

Formally proving the correctness of the proposed trans-
formation would require a standard formal framework for
feature models semantics, which is not available yet, although
Schobbens and Benavides have made some progress in this
direction [18], [2]. In this paper we focus on testing the
correctness of the proposed transformation by comparing it
with the classical transformation using propositional logics.
We want to asses the semantic equivalence: all the proposed
transformation rules preserve the semantics of the feature

2SPLOT can be found at http://www.splot-research.org/.
3Note that beacuse of a bug in FeatureIDE sxfm parser, we had to modify

few SPLOT examples.

model. To systematically test the correctness of our translation
we need to check the following characteristics:

• Consistency: our approach generates only valid products,
i.e., products that satisfy the constraints.

• Completeness: our approach generates all the valid prod-
ucts.

The consistency is checked automatically within the integrated
test case evaluator of CITLAB. CITLAB has an integrated logic
evaluator to check for inconsistency and whether a parameter
(feature) configuration is a valid test case or not. We rely on
the fact that the internal evaluator works correctly.

The completeness is checked by simply verify for every case
study that the number of distinct valid product of our approach
is equal to the number of valid products found by the SPLOT
analyzer. Note that the number of products including invalid
ones may differ, but the number of valid configurations must
be the same in order to preserve semantical equivalence.

The semantical equivalence ensures a biunivocal correspon-
dence between one test case produced by CITLAB and one
possible valid product.

B. Effect of the simplification over the parameters and the
constraints

We want to check if the simplification process reduces
the number of parameters and constraints. Fig. 5 reports the
number of parameters (Fig. 5a) and constraints (Fig. 5b) before
(CTL) and after the simplification (CTL S). The simplification
process has always reduced the number of both quantities in
the models considered for experimentation. Our technique was
able to remove all the constraints in 4 models.

C. Comparison with approaches using Boolean variables

We want to compare our approach with those using Boolean
variables (like [2]) to check the effectiveness of our method-
ologies over the following quantities of the final models:
parameters: we should obtain smaller models
constraints: we should obtain simpler models
variability: we should obtain more compact models

Fig. 6a compares the number of CITLAB parameters (after
simplification) w.r.t. the number of features in the original
model. It is apparent that our technique is able to reduce the
number of parameters of problem. This should make the test
generation faster to perform.

Fig. 6b compares the number of CITLAB constraints w.r.t.
the number of constraints in the model obtained by using the
classical translation implemented by SPLOT. Since SPLOT
represents all the constraints in CNF, in order to perform a fair
comparison, we have converted also the CITLAB constraints
to CNF and the figure compares the total number of clauses
in the CNF expressions. As the figure shows, our final models
have always fewer constraints than those in SPLOT.

Fig. 7 shows the variability factor of our final models.
The figure on the left shows the variability factor before and
after the simplification process, while the figure on the right
compares the variability factor of CITLAB models with that
of SPLOT models. The figures show that the simplification

http://www.splot-research.org/

2

20

200

CITL PARAMETERS

CITL S PARAMETERS

(a) Number of parameters

2

20

200

CITL CONSTRAINTS

CITL S CONSTRAINTS

(b) Number of constraints

Figure 5: Benefits of our model simplification process

2

20

200

FEATURE

CITL S PARAMETERS

(a) Comparison of number of CitLab Parameters vs Boolean variables

2

20

200

CITL S CNF CONSTRAINTS

TOT CNF FI CONSTRAINTS

(b) Comparison of CitLab constraints vs SPLOT constraints

Figure 6: Modeling comparison

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

CITL RATE

CITL S RATE

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

CITL S RATE

SPLOT RATE

Figure 7: Variability comparison

Aircraft FameDBMS Dell laptops Printer
Time Size Time Size Time Size Time Size

BOOLEAN 0.046 10 1.169 13 0.519 39 out of memory
BOOLEAN S 0.014 10 0.976 13 0.785 39 out of memory
CITL 0.017 10 0.020 13 4.296 36 20 180
CITL S 0.005 8 0.006 12 2.043 37 12 180

Table VI: Pairwise with ACTS (time in seconds)

increases the variability factor and that our final models have
a higher variability factor than the original SPLOT models.
This means that in our approach valid products occur more
often in the product space.

D. Test generation

A major advantage of our approach is that the tester can
relay for test generation on different algorithms and tools
developed for CIT. We want to evaluate the impact of our
approach to the actual generation of combinatorial test suites.

Table VI reports the results of pairwise test generation using
ACTS4 which implements the IPOG algorithm [12] and which
is integrated in CITLAB as generator plugin. We have run 100
test generations for 4 SPLOT models, by using the transla-
tion to only Boolean variables (BOOLEAN) and the method
proposed in this paper (CITL), where the simplification is
applied (S) or not. Note that the coverage requirements for all
these translation methods are the same. We generally obtain
better results, i.e., both faster generation and smaller or equal
test suites, with the proposed translation than that using only
Boolean variables. However, there is one exception. For the
Dell Laptop example, we have a smaller test suite but at the
expenses of of the test generation time. It seems that IPOG
can further reduce the test suite size when using our models
containing fewer parameters (8 parameters against 48 features)
and simpler constraints. Per the biggest case study (Printer)
and the BOOLEAN translation, ACTS did not complete the
generation.

Table VII reports the test generation of 5 case studies5 using

4http://csrc.nist.gov/groups/SNS/acts/
5We chose these examples because data about using other tools is available

in literature papers.

CITLAB by CASA Oster [15] PACOGEN [10]
Size Time Size Size

Sienna 20 1.76 24 20
Inventory 9 3.06 12 15
ArcadeGame 13 37.90 25 14
Web Portal 15 24.01 26 16
Doc generator 13 11.41 18 17

Table VII: Pairwise with CASA (time in seconds)

our translation and the test generator tool CASA [9] which is
integrated in CITLAB as generator plugin. In our experiments,
CASA is able to produce smaller test suites than others test
generation algorithms specifically designed for SPL testing.

Overall, we can say that our encoding has also advantages
during test generation (in terms either of time or test suite
size): some tools can take advantage of our simpler encoding
and testers can benefit from having access to very powerful
test generation frameworks not designed specifically for SPLs.
However, further experiments are needed in order to give a
final positive evaluation regarding test generation.

VI. RELATED WORK

There exist several attempts to give a precise semantics to
feature models. Batory connects feature models, grammars,
and propositional formulas [1] by giving a very simple yet
clear meaning to feature models. The proposed connection
allows arbitrary propositional constraints to be defined among
features and enables off-the-shelf satisfiability solvers to debug
feature models. It would also allow the use of tools for
generating combinatorial test suites, although this topic is not
tackled in [1].

A more complete (including several variants of Feature Dia-
grams) and powerful semantics of feature models is presented
by Shobbens [18], who emphasizes the necessity of precision
and unambiguity for efficient and safe tool automation. They
provide a formal semantics by a generic construction called
Free Feature Diagrams (FFDs). Test generation from FFDs can
be complex though.

http://csrc.nist.gov/groups/SNS/acts/

Benavides at al. present several mapping from feature mod-
els to other formal notations (propositional logic and CSP) [2].
They focus more on automated analysis instead of testing, but
our translation has been greatly influenced by their survey.

Regarding testing feature models and SPLs, a good survey
can be found in [7]. A first attempt to apply CIT in the form
of covering arrays to SPLs, using a simple variant of feature
models called Orthogonality Variability Model (OVM), can
be found in [6]. They define several testing criteria which
are adaptation of combinatorial criteria to OVMs and identify
some open issues like scalability, the use of constraints, and
the benchmarking. We believe that reducing the problem of
SPL testing to a CIT problem can help to deal with all the
issues mentioned in that paper.

In [16], the authors propose a scalable toolset using Alloy to
automatically generate test cases satisfying T-wise from SPL
models. The proposed tools set is based on the use of a SAT
solver. However, an extension of the approach by using also
Constrain Programming is presented in [17]. In that paper the
authors present and evaluate two techniques, one focusing on
generality and using high level strategies in order to improve
the test generation. The other emphasizes providing efficient
generation.

The tool PACOGEN is presented in [10]. PACOGEN relies
on constraint programming to generate configurations that
satisfy all constraints imposed by the feature model and to
minimize the set of the tests configurations. Extensive exper-
iments, based on the state-of-the art SPLOT feature models
repository, shows that PACOGEN scales well and produces
reasonable small test suites also for large SPLs. A specialized
algorithm (called ICPL) for generating covering arrays from
feature models is presented in [11].

All these algorithms are specific to SPL testing but we
believe that they could be used also for combinatorial testing,
although they may need some modification in order to accept
generic combinatorial problems. On the other hand, SPL
testing could benefit from CIT algorithms, tools, and concepts
(like seeds and test goals). Our experiments who that reusing
CIT test generation tools for SPL testing can have great
advantages.

VII. CONCLUSION AND FUTURE WORK

We have presented a mapping from feature models to
combinatorial interaction problems which can leverage a com-
binatorial testing framework like CITLAB in order to generate
test suites for software product lines or for system products.
Our translation provides several advantages over classical
mappings, like the reduction of the parameters and constraints,
the possible use of concepts like seeds and test goals, and
the exploitation of external tools developed during these years
for CIT. The approach has been implemented in CITLAB, a
framework for CIT, which aims to integrate notations (using
importers) and test generation algorithms in a friendly easily
usable way.

For now, we support only simple feature models, but we
plan to extend our translation to support feature models with

extended notations, like those with cardinality and grouping.

REFERENCES

[1] D. Batory. Feature models, grammars, and propositional formulas.
Software Product Lines, pages 7–20, 2005.

[2] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of
feature models 20 years later: A literature review. Information Systems,
35(6):615–636, 2010.

[3] Renée C. Bryce and Charles J. Colbourn. One-test-at-a-time heuristic
search for interaction test suites. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation, GECCO ’07,
pages 1082–1089, New York, NY, USA, 2007. ACM.

[4] A. Calvagna, A. Gargantini, and P. Vavassori. Combinatorial interaction
testing with CitLab. In Sixth IEEE International Conference on Software
Testing, Verification and Validation - Testing Tools Track., 2013.

[5] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test
suites for highly-configurable systems in the presence of constraints:
a greedy approach. IEEE Transactions on Software Engineering,
34(5):633 –650, sept.-oct. 2008.

[6] M.B. Cohen, M.B. Dwyer, and J. Shi. Coverage and adequacy in
software product line testing. In Proceedings of the ISSTA 2006
workshop on Role of software architecture for testing and analysis, pages
53–63. ACM, 2006.

[7] E. Engström and P. Runeson. Software product line testing–a systematic
mapping study. Information and Software Technology, 53(1):2–13, 2011.

[8] Angelo Gargantini and Paolo Vavassori. Citlab: a laboratory for
combinatorial interaction testing. In Workshop on Combinatorial Testing
(CT) - ICST, pages 559–568, Montreal, Canada, 2012. IEEE Computer
Society.

[9] B.J. Garvin, M.B. Cohen, and M.B. Dwyer. An improved meta-heuristic
search for constrained interaction testing. In Search Based Software
Engineering, 2009 1st International Symposium on, pages 13–22. IEEE,
2009.

[10] Aymeric Hervieu, Benoit Baudry, and Arnaud Gotlieb. PACOGEN: Au-
tomatic generation of pairwise test configurations from feature models.
In Proc. of Int. Symp. on Soft. Reliability Engineering (ISSRE’11), 2011.

[11] M.F. Johansen, Ø. Haugen, and F. Fleurey. An algorithm for generating
t-wise covering arrays from large feature models. In Proceedings of the
16th International Software Product Line Conference-Volume 1, pages
46–55. ACM, 2012.

[12] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James
Lawrence. IPOG/IPOG-D: efficient test generation for multi-way combi-
natorial testing. Software Testing, Verification and Reliability, 18(3):125–
148, September 2008.

[13] Marcilio Mendonca, Moises Branco, and Donald Cowan. S.P.L.O.T.:
software product lines online tools. In Proceedings of the 24th ACM
SIGPLAN conference companion on Object oriented programming sys-
tems languages and applications, OOPSLA ’09, pages 761–762, New
York, NY, USA, 2009. ACM.

[14] S. Oster, I. Zorcic, F. Markert, and M. Lochau. MoSo-PoLiTe: tool
support for pairwise and model-based software product line testing. In
Proceedings of the 5th Workshop on Variability Modeling of Software-
Intensive Systems, pages 79–82. ACM, 2011.

[15] Sebastian Oster, Florian Markert, and Philipp Ritter. Automated incre-
mental pairwise testing of software product lines. In Jan Bosch and
Jaejoon Lee, editors, Software Product Lines: Going Beyond, volume
6287 of Lecture Notes in Computer Science, pages 196–210. Springer
Berlin Heidelberg, 2010.

[16] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Traon. Automated
and scalable t-wise test case generation strategies for software product
lines. In Software Testing, Verification and Validation (ICST), 2010 Third
International Conference on, pages 459–468. IEEE, 2010.

[17] Gilles Perrouin, Sebastian Oster, Sagar Sen, Jacques Klein, Benoit
Baudry, and Yves Le Traon. Pairwise testing for software product lines:
comparison of two approaches. Software Quality Journal, 20(3-4):605–
643, 2012.

[18] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and
Yves Bontemps. Generic semantics of feature diagrams. Computer
Networks, 51(2):456 – 479, 2007.

[19] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke,
Gunter Saake, and Thomas Leich. FeatureIDE: An extensible frame-
work for feature-oriented software development. Science of Computer
Programming, 2012. to appear.

	Introduction
	Background
	Feature Modeling frameworks
	Feature Model semantics
	CitLab

	Translation from FM to CitLab
	Representation of every feature
	Adding implicit constraints
	Cross-tree constraints
	Extra testing requirements
	Pre-built product configurations:
	Further testing goals

	Simplification Process
	Constraint simplification
	Parameter simplification

	Experiments
	Testing the correctness of the transformation
	Effect of the simplification over the parameters and the constraints
	Comparison with approaches using Boolean variables
	Test generation

	Related Work
	Conclusion and Future Work
	References

