Secure Kubernetes Workload Deployment with
Automated Enforcement of Cluster-Defined Policies

Matthew Rossi
Universita degli Studi di Bergamo, Italy
matthew.rossi @unibg.it

Dario Facchinetti
Universita degli Studi di Bergamo, Italy
dario.facchinetti @unibg.it

Abstract—Scheduling pods on separate physical nodes is a
crucial strategy to isolate workloads with incompatible security
requirements. In Kubernetes, this is enforced using metadata
such as node selectors, affinity rules, and topology spread con-
straints, all manually defined by developers at resource creation.
The aforementioned process is complex and prone to errors,
frequently resulting in misconfigurations that expose systems to
data breaches and regulatory violations.

This paper proposes an approach to constrain scheduling using
policies defined once at the cluster level and automatically evalu-
ated by Kubernetes during each workload deployment. The ad-
vantages are (i) automatic rejection of uncompliant resource cre-
ation requests, (ii) streamlined support for executing multi-tenant
workloads, and (iii) secure scheduling and deployment of work-
loads based on security requirements. To implement this solution,
we integrate the native Kubernetes node-filtering capabilities with
OPA Gatekeeper for policy enforcement. We demonstrate how
this approach reliably enforces common corporate governance
policies and analyze its performance advantage over isolation
achieved solely through sandboxing. The experimental evaluation
confirms the effectiveness of our proposal and the minimal
overhead.

Index Terms—Kubernetes, Security, Node isolation, Schedul-
ing, Data sovereignty, Multi-tenancy

I. INTRODUCTION

Kubernetes has emerged as the predominant technology for
managing containerized workloads [1]. Its execution model re-
volves around the concept of pod, defined as a cohesive group
of interdependent containers that are co-scheduled within
a shared execution context with dedicated resources. Pods
significantly simplify deployment and orchestration tasks, but
scheduling multiple pods on a single physical node introduces
notable security challenges. When containerized applications
are flawed, the shared execution context can be compromised,
and in case of severe vulnerabilities all workloads running
on the node can be affected, leading to widespread impact
(e.g., [2]-[5]). This is also testified by the 2024 Red Hat’s State
of Kubernetes Security Report [6], which found that 90% of
surveyed organizations experienced Kubernetes-related secu-
rity incidents, and 46% reported loss of revenue or customers.

Enhancing isolation between workloads is a key strategy for
mitigating vulnerabilities. The industry has proposed several

Michele Beretta
Universita degli Studi di Bergamo, Italy
michele.beretta@unibg.it

Stefano Paraboschi
Universita degli Studi di Bergamo, Italy
stefano.paraboschi @unibg.it

ways to achieve this. For instance, Google has heavily invested
in gVisor [7] to isolate Linux host systems from application
containers. Amazon instead proposed to isolate multi-tenant
container services through virtualization using Firecracker [8],
a method also adopted by Kata Containers [9]. Although
these solutions are crucial to isolate co-located workloads,
they inevitably increase resource consumption and introduce
performance overhead [8], [10]. Moreover, sandboxing does
not fully address the broader spectrum of security-related
requirements. Indeed, there are three cases that prove complex
to satisfy: (i) regulations such as General Data Protection
Regulation (GDPR) and California Consumer Privacy Act
(CCPA) impose constraints on how data are stored and pro-
cessed to protect data sovereignty, (ii) different tenants, like
customers or teams, often need tailored configurations to
prevent unintended data sharing within the same cluster, and
(iii) workloads can require allocation based on the availability
of dedicated hardware resources. Hence, precise control over
workload deployment and execution is essential for achieving
a solid security posture.

Kubernetes facilitates this control through scheduling con-
straints [11], rules which govern the distribution of pods across
a cluster. These are embedded in the pod specification and
are interpreted by the Kubernetes scheduler upon receiving a
pod creation request. Unfortunately, they must be manually
specified by developers for every workload, a practice that
increases the risks of data breaches or regulatory violations.

Contribution. In this work, we propose a solution to auto-
matically generate and enforce scheduling constraints based
on workload security requirements. This approach enables the
definition of a policy at the cluster level, ensuring automatic
enforcement whenever a pod creation request is submitted.
Major benefits include: (i) elimination of organizations’ re-
liance on handwritten scheduling constraints, (ii) uniform
governance policy application across all workloads, with auto-
matic rejection of non-compliant requests, and (iii) precise and
granular workload isolation based on security requirements.
Building upon these features, our solution can also reproduce
Workload Security Rings [12], a recent Google proposal

exclusive to Borg [13] for managing workload deployment
based on sensitivity levels. The artifact of the software and
the scripts that permit the reproduction of all the experiments
reported in the paper are available open-source.!

Outline. We start with a background on native Kubernetes
scheduling capabilities and the introduction of the use cases
in Section II. Then, Section III presents the threat model and
details the architecture of our approach. Section IV explains
the validation of the design, while Sections V evaluates the
scheduling overhead and the potential performance improve-
ment over a sandboxing-only approach. Section VI discusses
the related work. Finally, conclusions are drawn in Section VII.

II. MOTIVATION

This section highlights the limitations of the native Kuber-
netes scheduling capabilities and then introduces the key use
cases that motivate our work.

A. Kubernetes scheduling constraints

Before describing our proposal we give an overview of
the native Kubernetes scheduling capabilities. Specifically, we
briefly introduce (i) node labels and selectors, (ii) node affinity,
and (iii) taints and tolerations.

Node labels [14] are key-value pairs assigned to nodes.
Pod specifications utilize these labels through node selectors
for direct matching. However, this selection mechanism lacks
flexibility, as individual selectors cannot be combined with
logic operators.

Affinity [15] introduces advanced scheduling rules beyond
basic selectors, distinguishing between hard requirements and
soft preferences. Although preferences allow scheduling even
when rules are partially satisfied, the complexity of writing
and validating affinity rules often poses a challenge, especially
when combining many matchExpressions operators (e.g.,
Exists, DoesNotExist, In, NotIn, Gt, Lt).

Taints [16] allow nodes to repel pods lacking corresponding
tolerations. Specified via key-value pairs coupled with an
effect (e.g., NoExecute), they commonly restrict access to
nodes with specialized hardware. However, this method only
operates with simple matching, and does not allow for the
expression of complex constraints.

While native Kubernetes scheduling capabilities allow con-
trol over pod placement, they must be embedded in each
pod specification by the developer. Errors in their definition
directly leads to policy violations, such as workload executing
on unauthorized nodes.

B. Use cases

Among the various practical scenarios that can benefit
from automated and verified scheduling constraints, we focus
on: (i) data sovereignty, which mandates how data must be
processed and stored based on its origin, (ii) multi-tenancy,
which regulates how applications deployed by different entities

I'The open-source repository is available at https:/github.com/matthewrossi/
k8s-secure-scheduling.

may coexist in a cluster, and (iii) workload security rings,
which define the boundaries between workloads associated
with different sensitivity levels. Our goal is to devise a policy-
driven mechanism that generates the correct scheduling con-
straints based on simple metadata that classify the workload.

Data Sovereignty. Regulations such as GDPR or CCPA
define a series of data protection standards to protect citi-
zens’ data. Companies that violate these laws risk significant
penalties. A common and prudent approach is to prevent data
from crossing jurisdictions, and this is done by deploying
services based on the geographical region. This task can be
automated using metadata to classify the origin, along with a
company governance policy. To give an example, our solution
automates this by translating a data-sovereignty label
(e.g., eu) into the appropriate node affinity rules, ensuring the
workload is always deployed in accordance with the company
guidelines.

Multi-tenancy. In Kubernetes, multi-tenancy refers to the
practice of sharing a cluster among multiple teams or cus-
tomers. Dedicated node sets are commonly used to this end,
reducing the risk of noisy neighbors and lateral movements.
Instead of asking the developer to partition the cluster with
constraints, our solution uses namespace information to auto-
matically schedule workloads based on the tenant, enhancing
isolation even in the case of shared control plane components.

Workload Security Rings. The application of the same
security measures to all Kubernetes workloads can lead to
increased security risks and inefficiency. For instance, co-
locating untrusted applications with sensitive ones significantly
expands the attack surface, while heavily constraining ver-
ified workloads introduces unnecessary overhead and slows
down the development. Workload Security Rings (WSR) [12]
addresses this by categorizing applications based on sensi-
tivity, and then by implementing category-specific protection
measures. With our solution this behavior is replicated by
including sensitivity-related labels in the specification, which
are then automatically evaluated by the cluster-level policy,
simplifying development and centralizing policy enforcement.

Note that while for simplicity our description treats these
use cases as separate entities, in practice they can be combined.
For instance, a workload may be classified as both data-
sovereignty: eu and security-ring: critical,
and our solution ensures that the pod is scheduled on nodes
that satisfy both conditions.

III. OUR APPROACH

This section clarifies the threat model, then illustrates our
solution, discussing the advantages and the open challenges.

Threat model. The execution of workloads with incom-
patible security requirements on the same physical node in-
creases the likelihood of service interruptions and security
incidents [6]. Indeed, vulnerable applications that process
unverified input or run untrusted third-party code can be used
to target confidential or critical co-located services. Recent ex-
amples of vulnerabilities that can be leveraged for this purpose

https://github.com/matthewrossi/k8s-secure-scheduling
https://github.com/matthewrossi/k8s-secure-scheduling

include the use of buggy third-party libraries [3], incorrect
management of requests in Kubernetes environments [4], and
flaws in the kernel interface [5] or in the container runtime [2].
This paper aims at mitigating this issue by introducing fine-
grained scheduling constraints to improve the isolation be-
tween workloads with incompatible security requirements.
Sandboxing techniques and the use of namespaces can be used
in conjunction with our approach.

A. Our solution

In a Kubernetes cluster, whether issued by developers or
controllers, all pod creation requests are sent to the Kubernetes
API server. By default, they undergo mandatory authentication
and authorization to verify the requester’s identity and their
permissions to modify the cluster’s state. Upon successful
completion of these stages, the API server initiates the admis-
sion control process, which consists of mutation and validation
phases. Our approach modifies the default admission control
workflow by redirecting all requests to OPA Gatekeeper [17],
an open source policy and governance framework. This frame-
work leverages Open Policy Agent (OPA) [18], a general-
purpose policy engine that enforces unified, declarative poli-
cies across systems.

As shown in Figure 1, OPA Gatekeeper receives the com-
plete pod specification from the API server and applies muta-
tions based on cluster-defined policies. Mutation entails the au-
tomatic injection or modification of scheduling-related fields,
such as nodeSelector, affinity (including nodeAf-
finity, podAffinity, and podAntiAffinity), and
tolerations, tailored to specific use cases. To give an
example, a data sovereignty policy may translate a data-—
sovereignty: eu label into a nodeAffinity rule,
ensuring the pod is scheduled only on nodes labeled with
topology.kubernetes.io/region belonging to the
European Union.

After the mutation, OPA Gatekeeper is used in the validation
stage to verify that pod specifications comply with governance
rules. This also permits checking requests that are not mu-
tated (i.e., they do not need to be augmented, according to
the mutation policy) or contain errors. In detail, validation
policies leverage two Gatekeeper Custom Resource Defini-
tions: (i) Constraint Templates, which encapsulate policy logic
written in the Rego language [19] and configurable parameter
schemas, and (ii) Constraints, which instantiate templates,
specifying parameters and targeting resources based on criteria
such as resource kind, namespace, or use case-specific labels.

When a pod specification fails validation, Gatekeeper rejects
the request, providing immediate feedback to the requester.
When instead validation is successful, the API server persists
the pod specification to efcd, the distributed key-value store
that maintains the cluster’s state and configuration. The kube-
scheduler then processes the persisted pod, evaluating its
scheduling constraints (augmented during mutation) to select
the most suitable node for deployment.

Pod
creation =
request

Ve

C

API server

O
©

Etcd

’[Mutation]—’[Validation
I) [L)

Original Mutated
resource resource. s,

Admission Allowed

review Denied

Gatekeeper

1©)

Sched

|

:

Worker node

Worker node

% Kubernetes
QIO
o~
- J

Fig. 1: Kubernetes pod creation workflow, highlighting the
integration of OPA Gatekeeper for policy enforcement through
the mutation and validation hooks. Our solution uses this
architecture to automate cluster-wide policy enforcement that
then drives the scheduling process

B. Advantages

By automating the translation of high-level security labels
into specific scheduling constraints with Gatekeeper, our so-
lution offers several key advantages.

Centralized policy. Workload isolation is enforced consis-
tently based on a single cluster-defined policy. This signif-
icantly reduces the chances of misconfigurations and policy
drift, i.e., minimizes possible discrepancies between the de-
fined policy and the actual state of the cluster over time.

Simplified pod definition. With our solution, developers
are no longer required to write complex and error-prone
scheduling constraints by hand. Simple use-case-related labels
are sufficient to assign a workload to a policy-compliant node.

Easier governance updates. When a central policy update
is issued, Gatekeeper’s validation capabilities can be directly
used to detect workloads that violate the new security defini-
tions, and therefore need to be migrated to policy-compliant
nodes. Without our approach, a manual inspection is necessary.

In essence, our solution provides a powerful abstraction
layer that enhances Kubernetes’ native scheduling capabilities.
It empowers cluster administrators to define and enforce
sophisticated scheduling policies centrally, while allowing
developers to focus on the security characteristics of their
applications through a simplified, label-driven approach. We
believe these features are crucial for managing increasingly
complex multi-tenant Kubernetes environments.

C. Open challenges

The security benefits of node isolation come at the cost of
reduced cluster utilization when an excessive number of secu-
rity categories is used. Repurposing nodes offers a potential

TABLE I: Latency measures for mutation, validation, and scheduling phases. Mutation and validation policies are always
evaluated when our solution is enabled (constrained and unconstrained cases), although no mutation is performed on

unconstrained pod creation requests

Latency P50 [ms]

Latency P90 [ms] Latency P99 [ms]

Use case Test Mutation Validation Scheduling Mutation Validation Scheduling Mutation Validation Scheduling
Data Baseline — — 0.51 — — 0.92 — — 1.70
covorsiant Unconstrained ~ 0.50 0.50 0.52 0.90 0.90 0.93 0.99 0.99 1.80
EMY Constrained 0.50 0.50 0.58 0.90 0.90 1.40 0.99 0.99 430
Baseline — — 0.51 — — 0.92 — — 1.68
Multi-tenancy ~ Unconstrained 0.50 0.50 0.52 0.90 0.90 0.93 0.99 0.99 1.82
Constrained 0.50 0.50 0.55 0.90 0.90 0.98 0.99 0.99 3.69
Workload Baseline — — 0.51 — — 0.92 — — 1.75
ety tingg Unconstrained 050 0.50 0.52 0.90 0.90 0.93 0.99 0.99 1.87
YTINES Constrained 0.50 0.50 0.54 0.90 0.90 0.98 0.99 0.99 351

solution, but introduces operational overhead. Indeed, tran-
sitioning nodes between security domains requires rigorous
sanitization beyond workload draining. This includes system
integrity checks to prevent persistent attacks.

Robust isolation requires accurate maintenance of node and
pod labels. This activity can be supported by tools that assign
labels based on hardware features and system configuration
such as Node Feature Discovery [20] and by CI/CD pipelines.

IV. DESIGN VALIDATION

We validated the design of our proposal by showcasing its
ability to support the use cases described in Section II-B. First,
we prepared a small local High Availability (HA) cluster with
kind 2.0.4 with three control plane nodes and five workers
nodes, and integrated OPA Gatekeeper 1.0.10 as explained in
Section III. Then, we authored and deployed a cluster policy
to model each use case.

To test the effectiveness of the mutation and validation
stages, we prepared a test suite with several pod specifications
covering multiple cases. For each of them, we issued a pod
creation request to the Kubernetes API server and observed
the mutation and validation decisions as well as the resulting
state of the cluster.

The correctness of the mutation stage was tested by using
the following criteria:

M; Pod definitions not covered by the use cases must be left
unaltered.

M> Pod definitions covered by the use cases that already
report scheduling constraints relevant to the use case must
not be modified.

M3 All other pod definitions covered by the use cases must
be mutated with the injection of the required scheduling
constraints.

On the other hand, the effectiveness of the validation stage
was evaluated as follows:

V1 Validation must not be applied to pod specifications
unaffected by the use cases.

V5, Validation must reject pod specifications that are covered
by the use cases but lack any scheduling constraints
required by the use case.

V5 Validation must reject pod specifications that are covered
by the use cases and include a misconfiguration of the
scheduling constraints.

V4 All other pod specifications covered by the use cases must
be admitted for deployment.

Rather than overwriting malformed pod specifications, we
opted to return a clear message reporting the error, along
with directives on how to fix it. Our experiments confirm
that scheduling constraints are added to pod specifications as
expected, and their validation did not report any deviations
from the expected behavior.

V. PERFORMANCE EVALUATION

To assess the practical applicability of our solution, we
conducted a series of experiments to evaluate the scheduling
overhead introduced by our solution, as well as the runtime
performance of workloads deployed in a cluster with our
solution enabled. The tests were executed on a Linux server
with kernel 6.15, a 12 core AMD Ryzen 8 7900X CPU, 64 GiB
of RAM, and a 2 TB SSD. We used kind 2.0.4 to run Kuber-
netes locally, and containerd 2.0.4 as the container runtime.
ClusterLoader2 [21] was used to issue pod creation requests,
while test metrics were collected with Prometheus 2.25.0.

A. Scheduling overhead

The changes introduced by our proposal to the default
Kubernetes admission process are contained, but we still
expect to introduce some overhead during pod creation. So, in
this section we evaluate the scheduling overhead introduced by
our solution, which is the sum of the overhead introduced by
the mutation and validation phases of the admission process,
as well as the scheduling latency introduced by the scheduling
algorithm itself.

The first challenge we faced was to accurately reproduce
a large cluster (e.g., 1k nodes) on our test machine. To this
end, we conducted a preliminary experiment comparing two
cluster configurations, one with real worker nodes and one
with simulated worker nodes (i.e., nodes that behave like
real ones but do not execute the containerized application).
Considering the limited computing resources at our disposal,

r

CRI
[kubelet |—] cri plugin]cuntainerm}

\.

Shim V2 API

containerd-

containerd-]
shim-runc

containerd-
shim-runsc shim-kata

[runsc (@]

[kata-runtime]

Pod sandbox

™~ Pod sandbox
Container

Operating system |

Container

[}

[}

[}

[}

: App1
: Libs
[}
[}
[}
[}
[}

Pod sandbox

Container

1
i ! '
| b
1 1
1
At]|
1
1
! b

Guest
Linux kernel

——— e —————

Fig. 2: Runtime overhead test environments

this test was conducted with a small HA cluster with three
control plane nodes and five worker nodes. The emulation of
worker nodes in the simulated configuration was performed
with Kubernetes WithOut Kubelet (KWOK) v0.6.1 [22]. As
expected, there was no significant difference between the two
cluster configurations in terms of pod admission and schedul-
ing latency, as these operations are performed by control plane
nodes (i.e., not by workers). We therefore scaled the number
of simulated worker nodes to 1k for the next experiment.

In the second experiment we measured the admission and
scheduling latency when pods are deployed in a default Kuber-
netes cluster (baseline), and when pods are created in a cluster
where our solution is enabled. In this second case, we also
highlighted the difference between the overhead associated
with pod creation requests that are mutated and validated
by OPA Gatekeeper (constrained pods), as well as requests
that are checked and validated but not mutated (unconstrained
pods). The 50th, 90th, and 99th percentiles of latency measures
are reported in Table 1.

Comparing the baseline and a cluster with our solution, for
all the use cases, we measured a total admission overhead (i.e.,
both mutation and validation) that ranges between 1.00 ms
and 1.98 ms. Looking carefully at the mutation and validation
percentiles, we can notice that there are no visible differences
between the use cases, this is also true for constrained re-
quests, suggesting that the longest time is spent invoking OPA
Gatekeer rather than evaluating the different use case policies.
Turning our attention to the scheduling time, we can notice an
interesting behavior. First, for all the use cases, there is a minor
variation between the scheduling time of the baseline and the
unconstrained case (consistently less than a fraction of ms).
This is also true for the constrained case, except for the P99.
We investigated the reason and found out that a small number

of constrained scheduling requests experienced high overhead
due to unbalances in the partitioning of nodes that negatively
affected the default scheduling algorithm. Also, we can notice
that the latency distribution is characterized by a long tail (i.e.,
P99 is significantly different compared to P50 and P90). As
a consequence, a fraction of requests are associated with high
latency. In this particular case this was due to the high number
of requests compared to the available control plane nodes.
Despite all these differences, we would like to point out that
even in the worst case represented by P99, the total overhead
experienced by a constrained request was 4.58 ms compared
to the baseline. These results confirm the applicability of
our proposal for large clusters, as the scheduling overhead is
negligible especially when amortized by the workload runtime
(i.e., a generic workload can live for minutes, hours, or days).

B. Runtime overhead

While we do not expect our solution to introduce runtime
overhead, in this section we investigate the runtime perfor-
mance benefits of employing host containers compared to
relying solely on sandboxing technologies. The rationale is
that, thanks to the automated policy-driven scheduler, we can
ensure workloads with equivalent security boundaries are co-
located on dedicated nodes, so in some practical scenarios
(e.g., verified services not processing untrusted data) an ad-
ditional sandboxing layer, beyond what is already provided
by containers, can be redundant. To this end, we collected
metrics associated with the execution of common software in:
(1) host containers scheduled by our solution, (ii) containers
isolated from the host by a user space kernel like gVisor [10],
and (iii) containers deployed in dedicated QEMU virtual
machines by Kata [9]. The architecture of these environments
is summarized in Figure 2.

We first analyzed the impact of sandboxing with two
common web servers, i.e., Lighttpd and Nginx. Both servers
were deployed in the described test environments, and exposed
on the network through a Kubernetes Service [23]. To collect
the results, we employed wrk [24] on the host to repeatedly
download the default web server page for 2 minutes over
10 concurrent HTTP connections. The results are shown in
Figure 3 and 4. Looking at the measures, both gVisor and Kata
Containers introduce a significant latency overhead. Indeed,
taking the P99 measures as a reference for comparison, sys-
tematically applying sandboxing to Nginx rather than carefully
co-schedule pods with compatible security requirements is
associated with a roughly 10.9x latency increase with gVisor
and roughly 17.7x with Kata (roughly 5.4x and 4.7x for
Lighttpd, respectively). The throughput reduction was also
significant, as the performance drop was at least 70.6% for the
two web servers in all sandboxed configurations. These results
were expected, as short-lived requests are particularly affected
by both sandboxing methods. Indeed, gVisor intercepts and
re-implements system calls in user space, while with Kata
the HTTP requests are dispatched to a separate virtualized
environment before being served, hence they are penalized by
a fixed delay. It is worth mentioning that Nginx’s architecture

B Our solution M gVisor M Kata

150K
4
— =
[} o
g3 £ 100K
>’ +
22 &
g)
3 8 50K
=
1 =
0 0

(a) Latency (b) Throughput

Fig. 3: Latency and average throughput of Nginx

B Our solution M gVisor M Kata

0.6 3K
= 3
Eo04 %21{
> =}
= £
8} o0
0.2 g1k
= 5

0.0 0

P50 P90

(a) Latency (b) Throughput

Fig. 5: Latency and average throughput of MongoDB

B Our solution B gVisor Ml Kata

7K
10.0
6K
. =
g 75 55K
— -
L;>)} §4K
£ 50 % 3K
3 2 oK
25 &
1K
0.0 0

P50

P90

(a) Latency (b) Throughput

Fig. 7: Latency and average throughput of PostgreSQL

is significantly more complex than Lighttpd’s, and its high-
performance I/O and frequent system calls are more sensitive
to Kata’s hypervisor and virtualized network stack.

Nonetheless, we would like to point out that, despite the
reduced throughput, both gVisor and Kata Containers provide
strong guarantees that are necessary for the execution of
unverified or third-party workloads.

For the second test, we analyzed two NoSQL DBMSs, i.e.,
MongoDB and Redis. After deploying them, we ran the open
source Yahoo! Cloud Serving Benchmark (YCSB) [25] to
assess their performance through a 50% read and 50% write
workload. The results are shown in Figure 5 and 6. Comparing
theses results with the ones obtained for web servers, gVisor

B Our solution M gVisor M Kata

0.6 150K
2
= =
£04 £ 100K
2 =
g &
g)
% 0.2 3 50K
= £
E
0.0
P50 P90 P99 0

(a) Latency (b) Throughput

Fig. 4: Latency and average throughput of Lighttpd

B Our solution M gVisor M Kata

0.20 20K

€0.15 ng
=

£0.10 B0k
g ®
3 3

0.05 = 5K

0.00 0

P50 P90

(a) Latency (b) Throughput

Fig. 6: Latency and average throughput of Redis

B Our solution Bl gVisor M Kata

30 1.8K
—_ @1.5K
z z
=20 ! 1.2K
g 2
g £ 0.9K
< 2
3 10 5 0.6K

0.3K
0 0

P50 P90 P99

(a) Latency (b) Throughput

Fig. 8: Latency and average throughput of MySQL

and Kata Containers introduced a significantly smaller (albeit
non-negligible) overhead. Indeed, the drop in throughput never
exceeded 43.8% for both DBMSs. It is worth noticing that
Kata Containers showcased slightly better performance than
gVisor, the reason being that gVisor employs a filesystem
proxy [26], hence imposing a larger overhead on applications
that access the disk frequently.?

Finally, to complement the previous category, we evaluated
the performance of two relational database management sys-
tems, i.e., PostgreSQL and MySQL. In this case, the perfor-
mance was assessed with the open source sysbench suite [27]

Zhttps://gvisor.dev/docs/user_guide/filesystem/

https://gvisor.dev/docs/user_guide/filesystem/

with a 77% read and 23% write workload, as implemented
in the standard oltp_read_write.lua script provided
by the sysbench community, for 2 minutes on a 10-MiB
indexed table with 10’000 rows. The results are reported in
Figure 7 and 8. Again, gVisor and Kata introduced a non-
negligible overhead. Interestingly, while PostgreSQL showed
better performance with Kata than gVisor, in MySQL the two
sandbox showcased comparable results.

VI. RELATED WORK

The research community has extensively studied scheduling
techniques in cloud environments [28]-[30], with the primary
goal of increasing the efficiency and reducing costs [31]-
[35]. Recent proposals have also focused on energy-efficient
scheduling in Kubernetes. Indeed, Piontek et al. [36] propose
a COy-aware workload scheduler, which is able to shift non-
critical jobs in time based on their predicted carbon emis-
sions, hence reducing data center emissions while guaranteeing
Quality of Service. Rao et al. [37] introduce an energy-aware
scheduling algorithm based on Service Level Agreement to
reduce the energy consumption of Kubernetes microservices,
reducing it by at least 5% in a typical cloud environment.
On the other hand, Anouar et al. [38] propose a theoretical
framework that enhances the Kubernetes scheduler through
reinforcement learning in order to improve decision-making
processes. Their architecture is able to adapt to dynamically
changing clusters, allowing for potential benefits in resource
allocation efficiency.

A promising research line [39]-[44] explores in more detail
security-aware scheduling, with the goal of mitigating the
impact of possible vulnerabilities, and therefore reducing the
attack surface in the cluster. Our proposal complements these
works by providing a way to schedule workloads based on
a cluster-defined policy, which prevents the deployment of
sensitive or critical workloads to untrusted nodes.

Sandboxing is a complementary technique that can be
used alongside our solution to increase the isolation between
workloads running on the same physical node. It allows
for higher cluster utilization, but it also introduces a non-
negligible overhead (Section V-B). Sandboxing can be in-
troduced with several frameworks. For instance, gVisor [10]
intercepts pods’ system calls and re-implements them in user
space, offering strong security guarantees at the expense of
a higher overhead and possible compatibility issues (not all
Linux system calls are available). Virtual machines (e.g., [8],
[9], [45]) run each container in a dedicated kernel, dramatically
increasing security and reducing the likelihood of a container
escape, but they are characterized by higher resource utiliza-
tion and slower bootstrap time. To overcome these issues, other
solutions (e.g., [46]-[51]) propose to use in-kernel sandboxing
technologies such as Landlock and eBPF, however, they also
expose a wider attack surface due to the shared kernel.

Isolation of vulnerable nodes has also been researched
by Google with Workload Security Rings [12], in which
the risk of lateral movement is mitigated preventing the co-
scheduling of sensitive and untrusted workloads. This solution

is unfortunately only available in Borg [13], Google’s cluster
management system. Our solution can replicate this behavior
in Kubernetes.

VII. CONCLUSIONS

In this paper we presented an approach to enforce schedul-
ing policies defined once at the cluster level and automatically
applied whenever a pod creation request is submitted to
Kubernetes. We evaluated the effectiveness of this solution by
demonstrating its application to common governance policies
including data sovereignty, multi-tenant workloads, and work-
load security rings. Our approach introduced only minimal
overhead during pod creation. Future work will (i) explore the
use of the experimental Common Expression Language, i.e.,
expressions that are evaluated directly within the API server
providing an efficient alternative to webhooks, for the mutation
and validation constraints; and (ii) assess the approach in
multi-cluster environments.

ACKNOWLEDGMENTS

This work was supported in part by the European Commis-
sion under project GLACIATION (01070141), by the Italian
Ministry of University and Research (MUR) under PRIN
project POLAR (2022LA8XBH), and by projects SERICS
(PE00000014) and GRINS (PE00000018) in the NRRP MUR
program funded by the EU-NGEU.

REFERENCES

[1] “CNCF Annual Survey,”
cncf-annual-survey-2023/, 2023.

[2] “CVE-2024-21626,” https://nvd.nist.gov/vuln/detail/cve-2024-21626.

[3] “CVE-2021-44228,” https://nvd.nist.gov/vuln/detail/CVE-2021-44228.

[4] N. Ohfeld, R. Shustin, S. Tzadik and H. Ben-Sasson, “In-
gressNightmare: 9.8 Critical Unauthenticated Remote Code Exe-
cution Vulnerabilities in Ingress NGINX,” https://www.wiz.io/blog/
ingress-nginx-kubernetes-vulnerabilities, 2025.

[5] “CVE-2022-0185,” https://nvd.nist.gov/vuln/detail/CVE-2022-0185.

[6] “Kubernetes adoption, security, and market
trends report,” https://www.redhat.com/en/resources/
kubernetes-adoption-security-market-trends-overview, 2024.

[71 N. Lacasse, “Open-sourcing gVisor, a sandboxed container
runtime,” https://cloud.google.com/blog/products/identity-security/
open-sourcing- gvisor-a-sandboxed-container-runtime.

[8] A. Agache, M. Brooker, A. lordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D. Popa, “Firecracker: Lightweight Virtualization for
Serverless Applications,” in NSDI, 2020.

[9] “Kata Containers,” https://katacontainers.io/, 2025.

[10] E. G. Young, P. Zhu, T. Caraza-Harter, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “The true cost of containing: a gVisor case study,” in
HotCloud, 2019.

“Pod Topology Spread Constraints,” 2025.

M. Czapiriski and R. Wolafka, “Workload Security Rings,” https://www.
usenix.org/publications/loginmisc/workload- security-rings, 2023.

A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
EuroSys, 2015.

“Assign Pods to Nodes with Node labels,” https://kubernetes.io/docs/
concepts/scheduling-eviction/assign-pod-node/, 2025.

“Assign Pods to Nodes using Affinity,” https://kubernetes.io/docs/tasks/
configure-pod-container/assign-pods-nodes-using-node-affinity/, 2025.
“Taints and Tolerations — Kubernetes,” https://kubernetes.io/docs/
concepts/scheduling-eviction/taint-and-toleration/, 2025.

“OPA Gatekeeper,” https://open-policy-agent.github.io/gatekeeper/
website/, 2025.

“Open Policy Agent,” https://www.openpolicyagent.org/, 2025.

https://www.cncf.io/reports/

(11]
[12]

[13]

[14]
[15]
(16]
(17]

(18]

https://www.cncf.io/reports/cncf-annual-survey-2023/
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://nvd.nist.gov/vuln/detail/cve-2024-21626
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
 https://www.wiz.io/blog/ingress-nginx-kubernetes-vulnerabilities
 https://www.wiz.io/blog/ingress-nginx-kubernetes-vulnerabilities
https://nvd.nist.gov/vuln/detail/CVE-2022-0185
 https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-overview
 https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-overview
 https://cloud.google.com/blog/products/identity-security/open-sourcing-gvisor-a-sandboxed-container-runtime
 https://cloud.google.com/blog/products/identity-security/open-sourcing-gvisor-a-sandboxed-container-runtime
https://katacontainers.io/
 https://www.usenix.org/publications/loginmisc/workload-security-rings
 https://www.usenix.org/publications/loginmisc/workload-security-rings
 https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
 https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
 https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
 https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
 https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
 https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://open-policy-agent.github.io/gatekeeper/website/
https://open-policy-agent.github.io/gatekeeper/website/
https://www.openpolicyagent.org/

[19]
[20]
[21]

[22]
[23]

[24]
[25]

[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

“Policy Language,”
policy-language/, 2025.
“Node feature discovery,”
node-feature-discovery, 2025.
“ClusterLoader2,” https://github.com/kubernetes/perf-tests/tree/master/
clusterloader2, 2025.

“KWOK,” https://github.com/kubernetes-sigs/kwok, 2025.

“Service,” https://kubernetes.io/docs/concepts/services-networking/
service/, 2025.

W. Glozer, “wrk: Modern HTTP Benchmarking Tool,” https://github.
com/wg/wrk.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in SoCC, 2010.
“Filesystem,” https://gvisor.dev/docs/user_guide/filesystem/, 2025.

A. Kopytov, “sysbench: Scriptable database and system performance
benchmark,” https://github.com/akopytov/sysbench.

C. Carrion, “Kubernetes Scheduling: Taxonomy, Ongoing Issues and
Challenges,” ACM Computing Surveys, 2022.

https://www.openpolicyagent.org/docs/latest/

https://github.com/kubernetes-sigs/

Z. Rejiba and J. Chamanara, “Custom Scheduling in Kubernetes: A Sur-
vey on Common Problems and Solution Approaches,” ACM Computing
Surveys, 2022.

M. Rossi, M. Beretta, D. Facchinetti, and S. Paraboschi,

“POSTER: Policy-driven security-aware scheduling in Kubernetes,” in
ASIACCS, 2025.

G. Vallée, C. Morin, J.-Y. Berthou, and L. Rilling, “A new approach
to configurable dynamic scheduling in clusters based on single system
image technologies,” in IPDPS, 2003.

E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou, “Apollo: scalable and coordinated scheduling for cloud-scale
computing,” in USENIX OSDI, 2014.

R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “Graphene:
packing and dependency-aware scheduling for data-parallel clusters,” in
USENIX OSDI, 2016.

T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and
M. D. Corner, “Memory buddies: exploiting page sharing for smart
colocation in virtualized data centers,” SIGOPS Operating Systems
Review, 2009.

A. C. Caminero and R. Mufoz-Mansilla, “Quality of Service Provision
in Fog Computing: Network-Aware Scheduling of Containers,” Sensors,
2021.

T. Piontek, K. Haghshenas, and M. Aiello, “Carbon emission-aware
job scheduling for kubernetes deployments,” Journal of supercomputing,
vol. 80, pp. 549-569, 2023.

W. Rao and H. Li, “Energy-aware scheduling algorithm for microser-

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

(471

(48]

[49]

[50]

[51]

vices in kubernetes clouds,” Journal of Grid Computing, vol. 23, no. 1,
p. 2, 2025.

H. Anouar, H. Hatim, and E. A. Zineb, “Proposing a theoretical
energy aware framework for kubernetes scheduling using reinforcement
learning,” in International Conference on Advanced Intelligent Systems
for Sustainable Development. Springer, 2024, pp. 849-857.

T. Xie and X. Qin, “Scheduling security-critical real-time applications
on clusters,” IEEE Transactions on Computers, 2006.

T. Xiaoyong, K. Li, Z. Zeng, and B. Veeravalli, “A Novel Security-
Driven Scheduling Algorithm for Precedence-Constrained Tasks in
Heterogeneous Distributed Systems,” IEEE Transactions on Computers,
2011.

J. Han, W. Zang, S. Chen, and M. Yu, “Reducing Security Risks of
Clouds Through Virtual Machine Placement,” in DBSec, 2017.

Y. Han, J. Chan, T. Alpcan, and C. Leckie, “Using Virtual Machine
Allocation Policies to Defend against Co-Resident Attacks in Cloud
Computing,” IEEE Transactions on Dependable and Secure Computing,
2017.

M. Bahrami, A. Malvankar, K. K. Budhraja, C. Kundu, M. Singhal, and
A. Kundu, “Compliance-Aware Provisioning of Containers on Cloud,”
in IEEE CLOUD, 2017.

M. V. Le, S. Ahmed, D. Williams, and H. Jamjoom, “Securing
Container-based Clouds with Syscall-aware Scheduling,” in ASIA CCS,
2023.

“QEMU,” www.gqemu.org, 2025.

M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi,
and S. Paraboschi, “Lightweight Cloud Application Sandboxing,” in
CLOUDCOM, 2023.

M. Rossi, M. Beretta, D. Facchinetti, and S. Paraboschi,
“POSTER: Transparent Temporally-Specialized System Call Filters,” in
ASIACCS, 2025.

M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi,
“Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses,” in
ASIACCS, 2023.

Y. Sun, D. Safford, M. Zohar, D. Pendarakis, Z. G., and T. Jaeger,
“Security Namespace: Making Linux Security Frameworks Available to
Containers,” in USENIX Security, 2018.

M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi,
“NatiSand: Native Code Sandboxing for JavaScript Runtimes,” in RAID,
2023.

M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi, and
S. Paraboschi, “POSTER: Leveraging eBPF to enhance sandboxing of
WebAssembly runtimes,” in ASIACCS, 2023.

 https://www.openpolicyagent.org/docs/latest/policy-language/
 https://www.openpolicyagent.org/docs/latest/policy-language/
 https://github.com/kubernetes-sigs/node-feature-discovery
 https://github.com/kubernetes-sigs/node-feature-discovery
 https://github.com/kubernetes/perf-tests/tree/master/clusterloader2
 https://github.com/kubernetes/perf-tests/tree/master/clusterloader2
https://github.com/kubernetes-sigs/kwok
 https://kubernetes.io/docs/concepts/services-networking/service/
 https://kubernetes.io/docs/concepts/services-networking/service/
https://github.com/wg/wrk
https://github.com/wg/wrk
https://gvisor.dev/docs/user_guide/filesystem/
https://github.com/akopytov/sysbench
www.qemu.org

