POSTER: Transparent Temporally-Specialized System Call Filters

Matthew Rossi
matthew.rossi@unibg.it
Universita degli Studi di Bergamo
Bergamo, Italy

Dario Facchinetti
dario.facchinetti@unibg.it
Universita degli Studi di Bergamo
Bergamo, Italy

Abstract

Reducing the attack surface of the OS kernel is an effective tech-
nique to enhance the security of application workloads. In Linux
systems, developers can restrict the set of available system calls by
using seccomp. Although being widely adopted in browsers, con-
tainer runtimes, and sandboxing tools, this approach presents some
challenges: (i) applying precise filters often requires significant ap-
plication modifications, which can impede developer productivity,
and (ii) the transparent enforcement of filters is bound to use a
single, static list with every syscall the application might ever need,
resulting in overly permissive and less effective security boundaries.

In this paper, we propose an automated method to generate
temporally-specialized seccomp filters tailored to the current appli-
cation state. This significantly enhances the effectiveness of filters,
and overcomes the major limitations associated with a single, static
filter. We implement our solution by leveraging the eBPF subsystem
in the Linux kernel. Specifically, we use in-kernel eBPF programs
to monitor the application state and dynamically enable or disable
specialized seccomp filters in response to state transitions. We dis-
cuss how this approach addresses the limitations of state-of-the-art
solutions. Finally, we validate the feasibility of our proposal and
show that it introduces a limited overhead.

CCS Concepts

« Security and privacy — Software and application security;
Access control.

Keywords

Syscall filtering, Temporal specialization, Attack surface reduction,
eBPF, Seccomp

ACM Reference Format:

Matthew Rossi, Michele Beretta, Dario Facchinetti, and Stefano Paraboschi.
2025. POSTER: Transparent Temporally-Specialized System Call Filters. In
ACM Asia Conference on Computer and Communications Security (ASIA CCS
'25), August 25-29, 2025, Hanoi, Vietnam. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3708821.3735342

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASIA CCS ’25, Hanoi, Vietnam

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1410-8/2025/08

https://doi.org/10.1145/3708821.3735342

Michele Beretta
michele.beretta@unibg.it
Universita degli Studi di Bergamo
Bergamo, Italy

Stefano Paraboschi
stefano.paraboschi@unibg.it
Universita degli Studi di Bergamo
Bergamo, Italy

1 Introduction

Several research works (e.g., [7, 11]) have shown that access to
unnecessary syscalls increases the risk of privilege escalation and
correlates with a higher frequency of zero-day vulnerabilities. The
reason is that less commonly used kernel APIs are more susceptible
to bugs, whereas popular ones are more robust and tested [12].

The introduction of seccomp [1] represents a key advancement
in safeguarding the kernel from potentially vulnerable unprivileged
user space applications. Indeed, seccomp enables the specification
of a syscall filter that is evaluated by the kernel with minimal over-
head whenever an application invokes a syscall. This mechanism is
widely employed by various applications, such as browsers, con-
tainer runtimes, and sandboxing tools. However, it also introduces
some challenges. Indeed, once activated, seccomp filters can only
be further restricted, requiring the implementation of tight secu-
rity boundaries through significant application restructuring. To
become seccomp-aware, an application must separate its functions
into distinct compartments and manage different security profiles at
runtime. In practice, most (if not all) seccomp users apply the filter
once, often at application startup, and never change it afterwards.
This means that all required syscalls are included in a single, overly
permissive filter, which exposes a wider attack surface, and dimin-
ishes the security benefits. Another issue is that developers often
struggle to craft effective syscall filters, since they typically oper-
ate at higher level of abstractions (i.e., developers directly invoke
library APIs rather than syscalls).

To improve the current scenario, novel research [9, 10] has in-
troduced the promising concept of temporally-specialized filters
that are tailored around specific application compartments. Despite
being innovative, both works have shortcomings. For instance,
Ghavamnia et al. [9] provide tools to generate the filters, but still
require the developer to restructure the application manually. Jia
et al. [10] instead greatly enhance seccomp’s flexibility, but their
work requires several kernel architectural changes.

This paper advances the state-of-the-art with an approach to
enforce temporally-specialized filters that does not require appli-
cation changes nor kernel modifications. The design relies on the
eBPF kernel subsystem, and permits to transparently apply filters
to the application based on its current state. In addition, we provide
the developer with tools to automatically generate the filters associ-
ated with every application state. To this end, the developer is only
required to identify functions that trigger state changes (e.g., any

https://doi.org/10.1145/3708821.3735342
https://doi.org/10.1145/3708821.3735342

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

functions that transitions a web server from an initialization to a
serving phase), and to run the application in a test environment.

In the following we detail our approach and discuss the experi-
mental evaluation, which confirms the merits of our solution and
its limited performance overhead.

2 Background

This section provides a concise overview of eBPF, detailing the
essential information needed to understand the rest of this paper.

eBPF [5] is a Linux subsystem that allows programs to run within
the kernel in response to the execution of kernel functions. Specifi-
cally, eBPF programs are attached to designated hook points, and are
executed whenever these are triggered. This allows for the inspec-
tion of the hook’s input arguments and, for functions allowing error
injection, the modification of the return value. Essentially, these
programs permit to alter the kernel behavior without changing
its source code or introducing custom modules. For the purposes
of this paper it is important to note that (i) data structures called
maps can be used to maintain state across multiple invocations of
eBPF programs and to share data with user space, and (ii) eBPF pro-
grams loaded into the kernel undergo rigorous validation to attest
their safety (e.g., a program cannot crash due to memory errors).
Modern eBPF development is supported by frontends such as libbpf,
i.e., frameworks that allow developers to write eBPF programs in
a C-like dialect which is then converted into cross-platform byte-
code.

3 Our approach

This section clarifies the threat model and presents our solution. We
begin with a high-level overview, followed by detailed explanations
of the generation and enforcement of filters.

Threat model. Similarly to the seccomp framework, our proposal
limits the set of system calls available to user space applications.
We consider the kernel trusted, although it may be affected by
vulnerabilities. Our goal is to reduce the attack surface and better
defend the kernel against an attacker gaining remote code execution
due to vulnerabilities in unprivileged user space applications.

3.1 Overview

From a high-level perspective, we replace static filters, traditionally
set by manually invoking the seccomp syscall, with dynamic filters
enforced through eBPF. This approach requires loading a set of
eBPF programs that are evaluated whenever syscalls are invoked.
Note that loading eBPF programs into the kernel is a privileged
operation, as it demands the CAP_BPF capability, and hence we
delegate this task to a system administrator. This operation occurs
only once at application deployment, and simply involves executing
the application with a provided loader.

The uploaded eBPF programs operate either (i) in tracing mode,
in which they collect all syscalls executed by the application and
categorize them by application state, enabling the generation of
filters, or (ii) in enforcement mode, in which the previously gener-
ated filters are activated in response to state transitions. Filters are
recorded (during tracing) and loaded (during enforcement) in dedi-
cated maps. The architecture of our solution is shown in Figure 1.

Matthew Rossi, Michele Beretta, Dario Facchinetti, and Stefano Paraboschi

Application loader

| Tracer | |

Application |

user
m{ syscalls };
y eBPF eBPF
JT "— p?;grams F;?;grams
compiler | 2 [V x]

Figure 1: Tracing and sandboxing of a target application

—

bpf syscall

T
1
1
'
!

»|oad time -} tracing

--

3.2 Monitoring the application lifetime

The implementation of our approach presents two primary tech-
nical challenges: (i) tracing the processes of the target application,
and (ii) detecting transitions in the application’s state.

Processes are traced by injecting in the kernel a set of eBPF pro-
grams to monitor the application’s lifetime. These programs are at-
tached to the sched_process_fork and the sched_process_exit
tracepoints, which are triggered by both the fork and clone syscalls,
and also at process termination. Using the application’s main thread
id as a starting point, the eBPF programs track all child processes
by adding or removing their ids in a TYPE_HASH map.

To detect transitions we rely on eBPF’s ability to probe user
space processes. Specifically, a second set of eBPF programs are
activated when the application executes a transitioning function.
These programs maintain the mapping between application threads
and states. Every thread is associated with a single state, but multi-
ple threads with their respective states and syscalls may coexist at
runtime. We consider the definition of state transition functions a
developer-provided input, which entails sharing its name with the
system administrator. No application changes are required.

3.3 Generating the filters

To generate the filters, the developer runs the application in a test
environment with a provided binary, which (i) prepares a process
for the application’s execution, (ii) records its process id in the
application monitoring maps detailed in § 3.2, and (iii) launches the
application via an execve syscall. An eBPF program is attached to
the tp_btf/sys_enter tracepoint to capture all the syscalls issued
by the application. When executed, it first reconstructs the mapping
between thread id and application state using the monitoring maps,
and then extracts the requested syscall id, storing it in a backing
array. Upon application termination, this information is retrieved
by the tracer to generate the corresponding filters (see Figure 1).

3.4 Activating the filters

The generated filters (§ 3.3) are applied at runtime without modify-
ing the application’s structure or manually invoking the seccomp
syscall. The developer just provides the system administrator with
the application binary and the generated filters. The system admin-
istrator then executes the application binary using the provided

POSTER: Transparent Temporally-Specialized System Call Filters

Table 1: Performance of local web servers without syscall
filtering, with seccomp, and with our eBPF-based solution

P99 latency [ms] Throughput [req/s]

Software Native Seccomp eBPF Native Seccomp eBPF

Apache 2.4.58 18.64 19.11 19.51 3.46K 272K 2.39K
Lighttpd 1.4.74 2.79 2.91 3.34 5.45K 5.23K 4.69K
Nginx 1.24.0 6.32 6.58 6.96 3.09K 299K 2.93K

loader (§ 3.1). This process is sufficient to enforce the filters auto-
matically at runtime, and requires no additional actions.

Filter enforcement is handled by a separate eBPF program at-
tached to kernel probes that monitors all syscalls issued by the
application’s threads. If a thread’s application state does not allow a
specific syscall, i.e., it is absent from the backing array representing
the filter, the eBPF program invokes the bpf_override_return
helper function to inject an error. This means that the kernel code
implementing the syscall is not run at all, and instead a permission
denied error is returned, resulting in a failed syscall invocation.

4 Evaluation

To test our approach, we first isolated the overhead introduced by
eBPF with a microbenchmark that measures the performance of the
lightweight getpid syscall, and then evaluated the impact of syscall
filtering on popular web servers (Apache, Lighttpd, Nginx). In both
experiments, we compared a test without protections (native case)
against the use of seccomp and our eBPF-based solution. Experi-
ments were conducted on an Ubuntu 24.04 server, kernel 6.8.0, an
AMD 7985WX CPU, 256 GiB of DDR5 RAM, and 2 TB SSD.

Microbenchmark. In this preliminary experiment we measured
the time to execute the getpid syscall over 1 million invocations.
The average time was 207 ns when running without protections,
241 ns (+16.4%) with seccomp, and 309 (+28.2% w.r.t. seccomp) with
our solution. This result was expected, since getpid is one of the
shortest-lived syscalls, and because seccomp is currently the most
efficient approach to filter syscalls directly within the kernel.

Web server. In this test we evaluated the overhead introduced
by syscall filtering techniques on web servers. In detail, we used
Wrk! to request the default web server page for 30 seconds, using
100 connections parallelized over 12 threads. Table 1 reports the
99th percentile of latency and the average throughput in the three
different configurations. The result we obtained are promising:
comparing our solution with seccomp, latency increased by 2.1%
(—12.1% throughput) for Apache, by 14.7% (—10.3% throughput) for
Lighttpd, and by 5.8% (—2.0% throughput) for Nginx.

5 Related Work

While seccomp remains a fundamental technique to safeguard the
kernel, recent research has explored precise temporal specializa-
tion [9, 10] to enhance its effectiveness, with the goal of enabling
fine-grained seccomp filters, tailored to specific application states.
Although innovative, these approaches have limitations. For in-
stance, Ghavamnia et al. [9] propose the generation of temporally-
specialized policies, but the solution requires developers to make

https://github.com/wg/wrk

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

applications seccomp-aware. Jia et al. [10] significantly enhance
seccomps’s programmability, but introduce several kernel architec-
tural changes, hindering adoption. Extensive research [7, 13, 14]
has also investigated user space solutions. This offers great flexi-
bility, but it incurs substantial overhead due to frequent context
switches between kernel and user space. A promising binary rewrit-
ing technique named zpoline [15] can be used to avoid them, but
unfortunately it cannot filter syscalls issued by dynamic libraries.
The automatic generation of syscall filters has also been widely
studied. Proposed methods fall into two main categories: static and
dynamic generators. Static generators [6, 8] extract the syscalls
required by an application directly from its code, whereas dynamic
generators [2-4] are based on runtime application monitoring. Both
approaches have limitations. For instance, static generators strug-
gle with interpreters or managed runtimes, while the coverage of
dynamic generators depends on the runtime tests conducted.

6 Conclusions and future work

This paper proposed an approach to transparently apply temporally-
specialized seccomp filters, without requiring modifications to the
application or to the kernel. Preliminary results confirmed the
introduction of a limited overhead. In future work we aim to explore
various hooking strategies and investigate the integration of our
solution into orchestration frameworks.

Acknowledgments

This work was supported in part by the EC under project GLACIA-
TION (01070141), by the Italian MUR under PRIN project POLAR
(2022LA8XBH), and by projects SERICS (PE00000014) and GRINS
(PE00000018) in the NRRP MUR program funded by the EU-NGEU.

References

[1] 2025. Seccomp BPF. https://docs.kernel.org/userspace-api/seccomp_filter.html

[2] 2025. SlimToolkit. https://slimtoolkit.org/

[3] M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi.
2023. Lightweight Cloud Application Sandboxing. In CLOUDCOM.

[4] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi. 2023. NatiSand:
Native Code Sandboxing for JavaScript Runtimes. In RAID.

[5] J. Corbet. 2014. BPF: the universal in-kernel virtual machine. https://lwn.net/
Articles/599755/

[6] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V.P. Kemerlis. 2020.
Sysfilter: Automated system call filtering for commodity software. In RAID.

[7] T. Garfinkel, B. Pfaff, and M. Rosenblum. 2004. Ostia: A delegating architecture
for secure system call interposition. In NDSS.

[8] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis. 2020. Confine:
Automated system call policy generation for container attack surface reduction.
In RAID.

[9] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis. 2020. Temporal system
call specialization for attack surface reduction. In USENIX.

[10] J. Jia, Y. ZhuFei, D. Williams, A. Arcangeli, C. Canella, H. Franke, T. Feldman-
Fitzthum, D. Skarlatos, D. Gruss, and T. Xu. 2023. Programmable system call
security with eBPF. arXiv (2023).

[11] V. Kemerlis, Vasileios P., M. Polychronakis, and A. D. Keromytis. 2014. ret2dir:

Rethinking kernel isolation. In USENIX.

Y. Li, B. Dolan-Gavitt, S. Weber, and J. Justin. 2017. Lock-in-Pop: Securing

privileged operating system kernels by keeping on the beaten path. In USENIX

ATC.

C. Linn, M. Rajagopalan, S. Baker, C. Collberg, and S. Debraya nd J.H. Hartman.

2005. Protecting Against Unexpected System Calls. In USENIX.

S. Pailoor, X. Wang, H. Shacham, and I. Dillig. 2020. Automated policy synthesis

for system call sandboxing. OOPSLA (2020).

[15] K. Yasukata, H. Tazaki, P.L. Aublin, and K. Ishiguro. 2023. zpoline: a system call
hook mechanism based on binary rewriting. In USENIX ATC.

[12

(13

[14

https://github.com/wg/wrk
https://docs.kernel.org/userspace-api/seccomp_filter.html
https://slimtoolkit.org/
https://lwn.net/Articles/599755/
https://lwn.net/Articles/599755/

	Abstract
	1 Introduction
	2 Background
	3 Our approach
	3.1 Overview
	3.2 Monitoring the application lifetime
	3.3 Generating the filters
	3.4 Activating the filters

	4 Evaluation
	5 Related Work
	6 Conclusions and future work
	Acknowledgments
	References

