
POSTER: Policy-driven security-aware scheduling in Kubernetes
Matthew Rossi

matthew.rossi@unibg.it
Università degli Studi di Bergamo

Bergamo, Italy

Michele Beretta
michele.beretta@unibg.it

Università degli Studi di Bergamo
Bergamo, Italy

Dario Facchinetti
dario.facchinetti@unibg.it

Università degli Studi di Bergamo
Bergamo, Italy

Stefano Paraboschi
stefano.paraboschi@unibg.it

Università degli Studi di Bergamo
Bergamo, Italy

Abstract
Nowadays, Kubernetes is the leading platform for managing con-
tainerized application workloads. These are built of numerous pods,
groups of one or more containers that are always co-located and
co-scheduled on the same node. Given a pod, the scheduler performs
a critical task, i.e., it finds the best possible node for its execution.
This process is affected by several factors, including resource avail-
ability, hardware requirements, data processing restrictions (e.g.,
GDPR and CCPA), workload sensitivity, and the presence of other
workloads. Developers can control the scheduling process through
several methods, such as node selectors, affinity, anti-affinity, and
topology spread constraints. However, this activity is cumbersome,
error prone, and can easily lead to security incidents.

In this paper we propose an approach to constrain and validate
pod scheduling decisions without relying on complex, handwritten
node selection policies. The idea is to combine the node filtering
capabilities of Kubernetes with the use of OPA Gatekeeper for
automated policy enforcement. We discuss how this approach over-
comes the limitation associated with existing solutions, and then
describe how it is used to support corporate governance policies in
common scenarios. Preliminary experiments confirm the applica-
bility of our proposal.

CCS Concepts
• Security and privacy→ Software and application security;
Access control.

Keywords
Kubernetes, Security, Scheduling, Multi-tenancy, Data sovereignty,
Workload isolation

ACM Reference Format:
Matthew Rossi, Michele Beretta, Dario Facchinetti, and Stefano Paraboschi.
2025. POSTER: Policy-driven security-aware scheduling in Kubernetes. In
ACM Asia Conference on Computer and Communications Security (ASIA CCS
’25), August 25–29, 2025, Hanoi, Vietnam. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3708821.3735343

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASIA CCS ’25, Hanoi, Vietnam
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1410-8/2025/08
https://doi.org/10.1145/3708821.3735343

1 Introduction
Since its announcement in 2014, Kubernetes has become the indus-
try leading solution for the orchestration of containerized work-
loads. According to a 2023 Cloud Native Computing Foundation’s
survey [1], 71% of respondents are using Kubernetes in production,
and another 18% are evaluating its adoption. The reason of this
success is Kubernetes’ ability to automatically deploy, scale, and
manage applications in a declarative way, independently of the
size and complexity of the underlying cluster of nodes. To do so, it
leverages the concept of pod, a group of containers that are tightly
coupled, always co-located and co-scheduled, and share the same
execution context and resources (e.g., storage, network).

However, companies that rely on Kubernetes also face some
challenges. Indeed, as reported by Red Hat in the 2024 State of
Kubernetes security report [2], nearly 9 in 10 organizations experi-
enced security incidents, causing delays in application development
to approximately 67% of companies, and even revenue or customer
loss to 46% of all respondents. Indeed, when a vulnerable container
is compromised the damage easily spreads to the entire pod due to
the shared execution context, and when the vulnerability is severe
and compromises the security of the node, it undermines all the
co-located workloads.

Given this scenario, it is critical to provide developers and orga-
nizations with tools to improve the isolation between workloads. In
particular, there are three common situations that can benefit from
this: (i) multi-tenancy, where multiple tenants (e.g., customers or
teams) run applications on the same cluster and need strong access
control guarantees; (ii) data sovereignty, where several regulations
(e.g., GDPR in Europe, and CCPA in California) require to control
the geographical area where data is either stored and/or processed;
and (iii) incompatible sensitivity levels for different workloads, as
somemay process personal data, implement critical services such as
authentication and identity management, while others are exposed
to untrusted input and/or depend on third-party code. In all these
cases, it is crucial to select the execution node appropriately. While
Kubernetes allows customizing the decision of the execution node
during scheduling, this is done using verbose handwritten node
selectors, affinity, anti-affinity, and topology spread constraints in
the pod specification. Therefore, this process is tedious, error prone,
and depends entirely on the developer.

In this paper we address this limitation by proposing the use of
policies that are defined at cluster level, and are evaluated automati-
cally every time pod creation requests are submitted to Kubernetes.

1

https://doi.org/10.1145/3708821.3735343
https://doi.org/10.1145/3708821.3735343


ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Matthew Rossi, Michele Beretta, Dario Facchinetti, and Stefano Paraboschi

These policies are tailored on the previously mentioned use cases
(i.e., multi-tenancy, data sovereignty, incompatible security levels),
and mutate each pod creation request to ensure the selection of
a policy-compliant execution node. In the following sections, we
will first look at the native Kubernetes capabilities for limiting pod
assignment, and then provide a detailed explanation of our solution.
Finally, we will illustrate the experimental evaluation, showing the
limited overhead associated with our approach.1

2 Native node filtering capabilities
As mentioned in Section 1, Kubernetes assigns pods to nodes based
on many factors like the availability of resources in the cluster, the
pod’s resource requirements, and the distribution of the workloads.
It also provides native methods to customize this process. We briefly
explain the advantages and drawbacks associated with each of them.

Node labels and selectors. Node labels [4] are key-value pairs
attached to nodes.When paired with the definition of node selectors
in the pod specification, they allow to restrict the group of nodes
eligible for execution to the ones matching all required node labels.
While this is a viable solution, it has limited flexibility, hence it is
only suitable for simple use cases.

Node affinity. Node affinity [3] complements node selectors cre-
ating a set of additional rules. These rules can express requirements
(i.e., requiredDuringSchedulingIgnoredDuringExecution) and
preferences (i.e., preferredDuringSchedulingIgnoredDuringEx-
ecution), allowing the scheduler to assign a pod even when it
cannot find a node that satisfies all the constraints. Node affinity
rules can quickly become complex to write and hard to validate,
especially when using multiple matchExpressions clauses (e.g.,
In, NotIn, Exists, DoesNotExist, Gt, Lt).

Taints and tolerations.While node selection and affinity attract
pods to a set of nodes, taints [7] allow nodes to repel pods that do
not specify the corresponding taint tolerations. This capability is
useful when a hardware feature is present only on few nodes in
the cluster, and needs to be reserved for a specific set of pods that
benefit from it. Taints are represented with simple key-value pairs
and their resulting effect (e.g., NoSchedule). Therefore, they lack
flexibility and do not allow the definition of complex expressions.

Although these features offer a solid starting point, it is essential
to acknowledge their limitations. Indeed, they require all develop-
ers operating on the cluster to manually introduce a compliant and
effective set of constraints. Moreover, since this activity is cumber-
some and error prone, it can easily lead to security incidents due to
lack of training, unclear company guidelines, or misconfigurations.

3 Our approach
The primary goal of this work is to improve workload isolation by
automatically enforcing governance guidelines at the cluster level,
without relying solely on handwritten policy constraints. In the
following we clarify the threat model and illustrate our approach.

Threat model. In a Kubernetes cluster there is a risk of security
incidents when workloads with incompatible security requirements
and/or sensitivity levels are deployed on the same nodes. Indeed,
workloads that process untrusted input can be compromised by an
1The code is available at https://github.com/matthewrossi/k8s-secure-scheduling

Pod creation 
request

YAML

Gatekeeper

Original
resource

Mutated
resource

Admission
review

Allowed
or

Denied

Mutation Validation

Node PodCluster Control 
plane SchedAPI Etcd

Figure 1: The architecture of our solution: Kubernetes sched-
uling capabilities are enhanced by OPA Gatekeeper, which
automatically mutates and validates pod creation requests
to enforce cluster-defined policies

attacker, potentially gaining code execution at node level. When
this happens, all workloads running on the node are exposed to
the attacker, hence applications can suffer disruptions and failures,
user data can be lost or leaked, and the company can be held liable
and suffer financial and reputational damage.

Our solution.We propose to strengthen Kubernetes scheduling
decisions using OPA Gatekeeper [6], an open source policy and
governance framework for Kubernetes built on the Open Policy
Agent (OPA) engine. In detail, Kubernetes delegates runtime policy
decisions to the Gatekeeper admission controller. Gatekeeper acts
as a bridge between the Kubernetes API server and OPA, fetching
the relevant information associated with the pod resource defini-
tion, and invoking OPA to evaluate a set of cluster policies. Policies
operate at the cluster level, and implement the use cases presented
in Section 1. OPA Gatekeeper employs them in two stages: mu-
tation and validation. During mutation Gatekeeper modifies the
pod resource definition to include elements from a policy template,
supporting the developer in the correct definition of pod scheduling
constraints. During validation instead, OPA ensures pod creation
requests comply with the cluster policy guidelines, allowing to
admit (or reject) pod creation requests at runtime.

This approach does not require to modify extensively the ar-
chitecture of an existing cluster (Figure 1). We only assume that
(i) nodes in the cluster have already been labelled meaningfully
(e.g., with information about tenant, geographical location, and sen-
sitivity level), and (ii) the developer can leverage a comprehensive
set of labels to classify pods based on their security needs (e.g., a
pod processes sensitive data, it must be deployed in given region).

Our solution brings several advantages: (i) policy enforcement
is automated by Gatekeeper, this avoids manually replicating er-
ror-prone node filtering definitions; (ii) policies are decoupled from
the pod specification, simplifying pod definition and improving de-
veloper productivity; andmost importantly, (iii) Gatekeeper ensures
policies are applied consistently over the cluster, independently of
the tenant that implements or deploys the workload.

2

https://github.com/matthewrossi/k8s-secure-scheduling


POSTER: Policy-driven security-aware scheduling in Kubernetes ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

Table 1: 90th percentiles for the evaluation of policies re-
garding data sovereignty (DS), multi-tenancy (MT), and in-
compatible security levels (ISL) scenarios. Mutation does not
introduce scheduling changes in unconstrained use cases

Scenario Latency [𝜇𝑠]
Mutation Validation Scheduling

DS (EEA) 900.09 900.73 942.77
DS (US) 900.12 900.57 982.35
DS (unconstrained) 900.17 900.76 925.56

MT (tenant-A) 900.23 900.32 951.11
MT (tenant-B) 900.21 900.41 944.19
MT (unconstrained) 900.07 900.14 926.24

ISL (sensitive) 900.12 900.50 942.34
ISL (unhardened) 900.30 900.54 936.39
ISL (unconstrained) 900.21 900.24 916.22

4 Evaluation
We performed a set of experiments to measure the time associated
with the mutation and validation stages of pod creation requests,
along with their subsequent pod scheduling latency.

The experiments have been performed on a server with Ubuntu
24.04 with kernel 6.8.0, a 128 cores AMD 7985WX CPU, 256 GiB of
DDR5 RAM, and 2 TB SSD. To setup the Kubernetes cluster we used
kind 0.27.0, Docker 28.0.1 for control plane nodes, the containerd
1.7.25 container runtime, KWOK2 v0.6.1 to simulate worker nodes,
and ClusterLoader23 to run performance tests. OPA Gatekeeper
3.18.2 was used to mutate and validate scheduling requests, and
Prometheus 2.25.0 to gather the test metrics.

To assess the accuracy of our test environment in measuring the
impact of our solution on control plane components, we initially
run a small-scale test with 3 control plane nodes, comparing the
performance associated with the use of 10 real versus 10 simulated
worker nodes. As expected, simulating workers still provides accu-
rate control plane performance measures. So, we proceeded with
the creation of 3 control plane nodes, on which our solution is run,
and a total of 1k simulated worker nodes for the creation of 30k
pods (with 500 qps). Table 1 shows the results for each use case.
The measures report the 90th percentile of the latency introduced
to mutate and validate pod creation requests, as well as the pod
scheduling time. In all use cases these steps are completed within
1𝑚𝑠 . Finally, we monitored the API availability and confirmed that
our solution does not affect the normal functioning of the cluster,
as availability always remains at 100% even under heavy load.

5 Related Work
Several approaches improve the isolation in a Kubernetes cluster.

Kubernetes namespaces. Namespaces [5] provide a mechanism
for isolating groups of API resources within a single cluster. They
are useful to avoid name clashes and play a significant role in
the definition of resource quotas (e.g., memory, CPU). However,
namespaces are not meant to influence scheduling decisions, so
2https://github.com/kubernetes-sigs/kwok
3https://github.com/kubernetes/perf-tests/tree/master/clusterloader2

a privileged pod or a container breakout can affect workloads in
other namespaces on the same node.

Sandboxing. In Kubernetes, workloads can benefit from the iso-
lation provided by sandboxed runtimes, such as gVisor [16] and
Firecracker [11], as well as take advantage of common kernel-based
sandboxing solutions [8–10, 13, 14]. While all these techniques of-
fer strong security guarantees, they also increase complexity, and
inevitably introduce higher overhead and resource utilization.

Node isolation.With node isolation, a set of nodes is dedicated
to running pods having a particular security profile. In Workload
Security Rings [12], a proposal by Google, this technique is used
to mitigate the risk of lateral movement, as sensitive workloads
are never co-located with the ones that process untrusted data.
However, their approach is only available in Borg [15], while our
solution can replicate this behavior on Kubernetes.

6 Conclusions and future work
The results achieved by our approach are promising: not only it
permits to automatically apply cluster-level policies during pod
creation without significant architectural changes, but it is also asso-
ciated with a negligible performance impact. Future work includes
the exploration of real-time threat-informed policy adaptation and
the extension of our solution to multi-cluster deployments.

Acknowledgments
This work was supported in part by the EC under project GLACIA-
TION (01070141), by the Italian MUR under PRIN project POLAR
(2022LA8XBH), and by projects SERICS (PE00000014) and GRINS
(PE00000018) in the NRRP MUR program funded by the EU–NGEU.

References
[1] 2023. CNCF Annual Survey. https://cncf.io/reports/cncf-annual-survey-2023/
[2] 2024. Kubernetes adoption, security, and market trends report. https://www.redhat.

com/en/resources/kubernetes-adoption-security-market-trends-overview
[3] 2025. Assign Pods to Nodes using Affinity. https://kubernetes.io/docs/tasks/

configure-pod-container/assign-pods-nodes-using-node-affinity/
[4] 2025. Assign Pods to Nodes with Node labels. https://kubernetes.io/docs/concepts/

scheduling-eviction/assign-pod-node/#built-in-node-labels
[5] 2025. Namespaces | Kubernetes. https://kubernetes.io/docs/concepts/overview/

working-with-objects/namespaces/
[6] 2025. OPA Gatekeeper. https://open-policy-agent.github.io/gatekeeper/website/
[7] 2025. Taints and Tolerations – Kubernetes. https://kubernetes.io/docs/concepts/

scheduling-eviction/taint-and-toleration/
[8] M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi.

2023. Lightweight Cloud Application Sandboxing. In CLOUDCOM.
[9] M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi.

2023. POSTER: Leveraging eBPF to enhance sandboxing of WebAssembly run-
times. In ASIACCS.

[10] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi. 2023. NatiSand:
Native Code Sandboxing for JavaScript Runtimes. In RAID.

[11] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and D.
Popa. 2020. Firecracker: Lightweight Virtualization for Serverless Applications.
In NSDI.

[12] M. Czapiński and R. Wolafka. 2023. Workload Security Rings. https://www.
usenix.org/publications/loginonline/workload-security-rings

[13] M. Rossi, M. Beretta, D. Facchinetti, and S. Paraboschi. 2025. POSTER: Transparent
Temporally-Specialized System Call Filters. In ASIACCS.

[14] Y. Sun, D. Safford, M. Zohar, D. Pendarakis, Z. G., and T. Jaeger. 2018. Security
Namespace: Making Linux Security Frameworks Available to Containers. In
USENIX Security.

[15] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes.
2015. Large-scale cluster management at Google with Borg. In EuroSys.

[16] E. G. Young, P. Zhu, T. Caraza-Harter, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. 2019. The true cost of containing: a gVisor case study. In HotCloud.

3

https://github.com/kubernetes-sigs/kwok
https://github.com/kubernetes/perf-tests/tree/master/clusterloader2
https://cncf.io/reports/cncf-annual-survey-2023/
https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-overview
https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-overview
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://open-policy-agent.github.io/gatekeeper/website/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://www.usenix.org/publications/loginonline/workload-security-rings
https://www.usenix.org/publications/loginonline/workload-security-rings

	Abstract
	1 Introduction
	2 Native node filtering capabilities
	3 Our approach
	4 Evaluation
	5 Related Work
	6 Conclusions and future work
	Acknowledgments
	References

