
NatiSand: Native Code Sandboxing for JavaScript Runtimes
Marco Abbadini

marco.abbadini@unibg.it
Università degli studi di Bergamo

Bergamo, Italy

Dario Facchinetti
dario.facchinetti@unibg.it

Università degli studi di Bergamo
Bergamo, Italy

Gianluca Oldani
gianluca.oldani@unibg.it

Università degli studi di Bergamo
Bergamo, Italy

Matthew Rossi
matthew.rossi@unibg.it

Università degli studi di Bergamo
Bergamo, Italy

Stefano Paraboschi
stefano.paraboschi@unibg.it

Università degli studi di Bergamo
Bergamo, Italy

ABSTRACT
Modern runtimes render JavaScript code in a secure and isolated
environment, but when they execute binary programs and shared
libraries, no isolation guarantees are provided. This is an important
limitation, and it affects many popular runtimes including Node.js,
Deno, and Bun [20, 61].

In this paper we propose NatiSand, a component for JavaScript
runtimes that leverages Landlock, eBPF, and Seccomp to control the
filesystem, Inter-Process Communication (IPC), and network re-
sources available to binary programs and shared libraries. NatiSand
does not require changes to the application code and offers to the
user an easy interface. To demonstrate the effectiveness and effi-
ciency of our approach we implemented NatiSand and integrated
it into Deno, a modern, security-oriented JavaScript runtime. We
reproduced a number of vulnerabilities affecting third-party code,
showing how they are mitigated by NatiSand. We also conducted
an extensive experimental evaluation to assess the performance,
proving that our approach is competitive with state of the art code
sandboxing solutions. The implementation is available open source.

CCS CONCEPTS
• Security and privacy→ Software and application security;
Access control; Web application security.

KEYWORDS
Sandboxing, Access Control, Web Application Security, JavaScript
Runtime, Deno, Native Code Isolation
ACM Reference Format:
Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Ste-
fano Paraboschi. 2023. NatiSand: Native Code Sandboxing for JavaScript
Runtimes. In The 26th International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID ’23), October 16–18, 2023, Hong Kong, Hong Kong.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3607199.3607233

This work is licensed under a Creative Commons Attribution 4.0 International License.
RAID ’23, October 16–18, 2023, Hong Kong, HongKong
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0765-0/23/10.
https://doi.org/10.1145/3607199.3607233

1 INTRODUCTION
JavaScript (JS) and TypeScript (TS) are popular choices for the
implementation of web applications. This success is motivated by
their flexibility, since both are simple to use for the development
of frontend and backend services, and by the vast ecosystem of
open source packages that are available. For instance, the sole npm
registry collects more than 1.3 million packages [54].

The execution of JS code on the server-side is enabled by a JS
runtime. Since its introduction in 2009, Node.js [62] has been the de
facto solution selected by developers, but recently Deno [37] and
Bun [13] have received considerable attention by the community.
While the three platforms provide distinctive features, they all de-
pend on a key external component, namely the JS engine, V8 [81] in
the case of Node.js and Deno, JavaScriptCore [6] in the case of Bun.
The engine is a sophisticated software that securely renders the JS
code in an isolated sandbox. Runtimes extend the engine providing
components to access resources and functions that are not directly
available to the web application from within the sandbox [38, 60].
Prominent examples are the functions to access the network and to
read/write the filesystem. Runtimes also provide support for the ex-
ecution of native code – i.e., running binary programs installed on
the host operating system and calling functions from the available
shared libraries.

The support provided by the runtime for the execution of na-
tive code greatly simplifies the work of the developer building the
backend of a web application. However, the APIs enabling access to
system resources and the execution of native code also raise secu-
rity concerns, since they effectively break the isolation between the
JS application and the host OS. The ability to control the resources
accessible to a JS program was indeed one of the reasons that led to
the creation of Deno in 2018 [68], and the solution identified by the
community was to configure the resources available to an applica-
tion with simple permission flags [20]. This change also influenced
the design of Node.js, which introduced a similar flag-based con-
trol model1 two years later [61]. Unfortunately, while permissions
are effective in restricting access to the JS application, they do not
provide isolation guarantees when native code is executed, leaving
the host exposed to security breaches [20].

Previous research [25, 74] has already shown that frequently JS
modules depend on components written in native languages such as
C or C++. The reuse of existing utilities permits to take advantage of
popular high performance libraries and, in addition to performance,

1Node.js support for creating security policies is still experimental as of 2023.

https://doi.org/10.1145/3607199.3607233
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3607199.3607233

RAID ’23, October 16–18, 2023, Hong Kong, HongKong Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano Paraboschi

it minimizes the cost of development. Notable examples are: the
node-sqlite3 [79] and deno-sqlite3 [40] database drivers; modules
to perform image/video conversions, such as sharp [58], fluent-
ffmpeg [56] and gm [57]; OCR engines like Tesseract [76]; and the
cryptography modules relying on bcrypt [55]. The 2022 State of
Open Source Security [72] claims that each open source JS project
relies on an average of 174 third-party dependencies; also, each
project is estimated to be affected by 40 vulnerabilities when its
dependencies are taken into account. Taking into consideration that
web applications in most cases process untrusted input, the risk
of security incidents is high. For instance, we identified a sample
of 32 high severity CVEs2 that affect native code used by popular
packages (with 2.6M downloads/week), and allow an adversary
to corrupt the filesystem, perform privilege escalation, execute
arbitrary code, open network connections to exfiltrate data, etc.

Our contribution. We see a security gap in the way modern JS
runtimes execute native code, as neither Node.js, nor Deno, nor
Bun sandbox it. In this work we propose NatiSand, a framework
to provide strong isolation guarantees against the execution of
native code. In detail, NatiSand allows the developer to control
on a native-component basis, access to filesystem, Inter-Process
Communication, and network, effectively reducing the risks coming
from the execution of binary programs and shared libraries. Our
solution is characterized by a compact, generic architecture that fits
nicely with modern runtimes. Internally, it leverages Seccomp [78]
and Linux Security Modules (LSMs), such as Landlock [50] and
eBPF [18] to restrict access to protected resources. In the design
of our solution we paid attention to usability by developers; it is
not necessary to have a full understanding of its advanced security
features to use it. The developer is only required to provide a concise
and readable JSON-formatted policy file, detailing the ambient rights
– i.e., the access privileges available to the components of the web
application that rely on native code. To this end, we provide the
developer a comprehensive and interactive CLI tool to support
policy generation, which, as best practice suggests, can also be
integrated into CI/CD pipelines and run against a set of test cases [3,
66]. Another key advantage of our approach is that it permits to
sandbox native code preserving backward compatibility, namely it
does not require to change existing modules (including third-party
dependencies) to leverage the new security features.

We implemented NatiSand and integrated it into Deno. We
demonstrate the security benefits showing how our solution mit-
igates a number of recent, high-severity vulnerabilities. We per-
formed an extensive experimental evaluation to assess its perfor-
mance. We compare the overhead introduced by our solution to
scenarios in which no native code sandboxing is performed, and
when sandboxing is achieved through other general purpose, state
of the art solutions. The experiments show that, compared to the
alternatives, NatiSand exhibits substantial performance improve-
ments. In addition it also provides an easier interface that does not
require any specific security expertise to be correctly configured.

2The list is reported in Table 3.

2 BACKGROUND
This section overviews the structure of a modern JS runtime. It also
provides a concise description of the components that are used by
NatiSand to build the sandbox.

2.1 JS runtimes
JS code rendering is a complex process, involving tasks such as
code compilation, code optimization, memory allocation, runtime
garbage collection of objects no longer needed, and many others.
To perform these critical tasks, modern JS runtimes rely on engines,
dedicated components implementing the ECMAScript specifica-
tion that were originally developed for web browsers. As already
mentioned in Section 1, Node.js and Deno embed Google’s V8 [81],
while Bun relies on JavaScriptCore [6]. The interoperability be-
tween runtime and engine is achieved with specialized bindings,
which are defined in the node:v8 [63] module in the case of Node.js,
in the rusty_v8 [39] library for Deno, and by webcore [64] in Bun.

While an engine provides all the tools to securely execute JS
code in an isolated context (we call it the JS context), a development
platform requires complementary features to be fully functional.
For instance, a backend web application may need to open net-
work connections, handle several concurrent HTTP requests, or
access the filesystem to read configuration files. To address these
requirements, the architecture of a modern runtime extends the
engine with various runtime-specific components dedicated to the
interaction with the host system. A few well-known functions im-
plemented following this design pattern are: interaction with the
filesystem (e.g., fs, Deno.FsFile), creation of UNIX sockets (e.g., net),
and exposure of HTTP servers (e.g., http, Deno.serveHttp).

From the web application perspective there is no difference be-
tween the functions defined by the ECMAScript standard, and the
ones provided by the runtime (and its extensions) [10, 22]. How-
ever, non-standard APIs are not served directly by the engine, but
are redirected to the runtime leveraging the aforementioned bind-
ings. Since these APIs deliberately permit to break the isolation
between the environment controlled by the engine and the under-
lying system, JS runtimes allow developers to restrict them through
the definition of permissions [20, 61]. Based on the runtime, per-
missions work with different granularities (e.g., single API vs set
of APIs) and different default behavior. For example, Deno uses a
default-deny model requiring the developer’s explicit consent to
access system resources, with effect on multiple APIs [20].

Permissions are intuitive and effective, but they do not offer
significant security guarantees when a module needs to run binary
programs, or import shared libraries to leverage cross-language
function calls [20]. To do so, the web application must be granted
the permissions to call APIs like command or dlopen (e.g., with
allow-run and allow-ffi flags in Deno). In the case of dlopen,
native code is directly copied into one of the processes owned by
the runtime itself before being executed, while with command, the
runtime first delegates to the OS the creation of a process with the
clone system call, then performs an exec to replace the process
image and run the desired program. Independently of the runtime
used, both APIs require to execute code outside of the isolated
context managed by the engine, as shown in Figure 1, which means
that this code runs with the same privileges of the user executing
the entire JS application.

NatiSand: Native Code Sandboxing for JavaScript Runtimes RAID ’23, October 16–18, 2023, Hong Kong, HongKong

JS Runtime
Core module

JS Engine

exec /usr/bin/prog args
JS context

JS Web Application

Rt.dlopen(lib:function)

Rt.command(prog,args)

op call 1library
lib:function(...)

subprocess
op call 2

Native context

Figure 1: Execution of binary programs and shared library
functions by the JS runtime

2.2 Components for resource protection
Landlock. Landlock [50] is a Linux Security Module (LSM) intro-
duced in the kernel starting from release 5.13. The goal of Landlock
is to enable unprivileged applications to restrict their ambient rights
in accordance with the least privilege principle. Ambient rights are
specified by rulesets – i.e., simple structures that associate a set of
permissible actions with a filesystem path (e.g., read and exec over
the resources stored in /tmp). Several rulesets can be combined
to determine the final set of actions available to an application.
To make them effective, a call to the landlock_restrict_self()
function is performed.

The ambient rights granted by Landlock are thread-based, and
are automatically inherited by all the children subsequently created
via clone. After a Landlock sandbox is enforced (either by self
restriction or inheritance), it is only possible to further narrow it.
It is also important to mention that Landlock is stackable, hence it
is fully composable with other LSMs already available on the host,
such as SELinux, AppArmor and SMACK. Although Landlock offers
a simple, yet powerful, sandboxing API, currently, the protection
offered is only limited to the filesystem.

BPF. Berkeley Packet Filter (BPF)was originally devised in 1992 [49].
The goal was to provide an in-kernel facility to filter and multi-
plex network packets, similarly to what was proposed by Mogul
et al. [51]. This version of BPF, which is now commonly referred
to as classic BPF (cBPF), was greatly revised in 2014 resulting in
extended BPF (eBPF) [18]. The new framework provides an environ-
ment to execute programs inside the kernel [30, 32]. This permits
to extend the kernel safely, without changing its source code nor
loading new modules. eBPF has a wide variety of use cases, ranging
from low overhead observability and tracing, to load-balancing,
and container runtime security enforcement.

eBPF code is organized into compact units called programs. Each
program is attached to a specific function named hook point, and
is executed in a non-preemptable fashion every time the hook is
reached. There are several types of hook point both in kernel space
and in user space. Valid examples are [77]: system calls, kernel
tracepoints, network events, function entry/exit points, and LSM
hooks. Specifically, LSM hooks correspond to the functions used
by LSMs (e.g. SELinux) to perform security decisions and are char-
acterized by operating entirely on arguments in kernel memory.

resource

eBPF program
& maps

eBPF
program

load time

user

Verifier

JIT
compiler

syscallskernel

Thread

eBPF maps

bpf syscall

eBPF-aware
thread

eBPF frontend

bpf syscall

runtime

eBPF-aware
thread

Figure 2: Overview of the eBPF architecture

To persist information between distinct invocations of the same
program, data structures named maps are used. Maps also permit
to share data among eBPF programs and user space applications.

eBPF programs are written in bytecode and are loaded into the
kernel using the bpf syscall [43]. This is a privileged operation
that requires a few capabilities, which vary with the nature of the
program [4]. Briefly, CAP_BPF is always required, CAP_PERFMON is
necessary to load tracing-related programs, while CAP_NET_ADMIN
is used to load networking-related ones. After being loaded, each
program undergoes a two-phase process comprising program veri-
fication and JIT compilation. The former is required to guarantee
that the program is safe to execute by the kernel. The second phase
instead ensures the bytecode is optimized, hence it can be run as
efficiently as compiled kernel code on the underlying architecture.
In case no errors are raised, the eBPF program is attached to the
proper hook and it is ready to be executed.

Modern eBPF development is facilitated by the presence of fron-
tends. These frameworks permit to write eBPF programs in a C
dialect, and also assist the developer in automatically performing
the steps needed to load and attach the programs to the intended
hooks (see Figure 2). In our work we rely on libbpf [41], a modern
library leveraging the Compile Once-Run Everywhere (CO-RE) ap-
proach [5], which ensures that the bytecode produced at compile
time works correctly across different kernel versions.

Seccomp. Seccomp [78] is a mechanism provided by the Linux ker-
nel to restrict the system calls available to a userspace application.
The rationale is that the implementation of system calls may be
affected by bugs or errors, therefore reducing the kernel surface
exposed to an unprivileged application narrows the attack surface.

The initial implementation of Seccomp restricted the set of al-
lowed system calls only to exit, sigreturn, read and write (on
previously opened file descriptors) [31]. The implementation was
greatly extended in 2012, and it now permits to intercept system
calls and determine whether each of them is safe to execute. To
this purpose a filter program written in the cBPF dialect must be
provided. Unfortunately, a classic program has only access to the
values of the arguments passed to the system calls (e.g., configura-
tion flags), and pointers cannot be dereferenced to avoid TOCTOU
issues [23].

RAID ’23, October 16–18, 2023, Hong Kong, HongKong Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano Paraboschi

3 SECURITY MOTIVATION
JS runtimes let developers specify the set of access privileges given
to a web application [20, 61]. This is possible through a set of con-
figuration flags that, when specified, allow to constrain how JS code
can access system resources. This is a significant security improve-
ment compared to the past, where applications were able to access
any underlying system resource [73, 87]. However, these constraints
only apply to JS code; any function written in other languages is
executed unconstrained, either through a subprocess or the use
of Foreign Function Interfaces (FFI). Indeed, native code does not
access system resources using the APIs provided by the JS runtime
and the reference monitor of the JS runtime is bypassed [20].

There is a broad variety of applications that rely on the use
of native code. One well-known example is the use of database
drivers; low latency of queries is crucial to satisfy the constraints
on response time of a web application and a pure JS implementation
may not be able to match them. This led to the development of
third-party modules that depend on the code of shared libraries
corresponding to the required database driver (e.g., libsqlite3.so
and libmysqlclient.so). To testify the wide adoption of this practice,
popular modules for both Node.js (e.g., node-sqlite3) and Deno
(e.g., deno-sqlite3) report more than 600 thousand downloads/week.
Notably, the deno-sqlite3module was part of the official showcase of
the performance of Deno when invoking the native code of a shared
library [36]. Previous work [74] demonstrated how this module can
be exploited with harmful effects for the web application and the
underlying system.

Database drivers are just one example of how web application
development relies on native code. Other popular use cases are
audio encoding (e.g., libopus), image processing (e.g., ImageMag-
ick, libvips), video manipulation (e.g., FFmpeg), optical character
recognition (e.g., Tesseract), and many others. The native code may
contain vulnerabilities, which may be exploited and lead to a variety
of security violations.

Filesystem compromise. Guaranteeing the integrity and confiden-
tiality of the application host filesystem is crucial to mitigate risks
of data corruption and exfiltration [9]. As a whole a web application
often has access to many critical resources: databases, executables,
private keys, user confidential files, etc. When native code is exe-
cuted, it can use the same privileges of the web application. In line
with the least privilege principle, the potentially vulnerable com-
ponents should be able to access only the files needed to perform
their duties. Authorizing access only to the needed portions of the
filesystem restricts what can be read, written or run by an attacker,
highly limiting the security risk associated with the presence of
vulnerabilities.

Escalation of privileges. Another relevant attack surface is the
privilege of using the IPC channels provided by the operating sys-
tem (e.g., pipes, message queues, unix sockets). By leveraging IPC,
a compromised binary can establish a communication channel
with system components and attempt a confused deputy attack
to achieve privilege escalation on the host [11, 70]. Given the po-
tential of this attack vector, it is important to limit the scope and
set of IPC channels available to a specific native component only
to those strictly necessary for its benign behavior.

Malicious network channels. Network access is a precious re-
source that a malicious actor can leverage during an attack. A
significant portion of malicious payloads open reverse shells to
gain control of the victim system over the network [12]. In addition,
attackers may open network channels to remotely recover data
obtained on the vulnerable host [69]. Restrictions on how a single
native component of the web application can access the network
can greatly improve the overall security of the application. Network
access should be forbidden or restricted only to domains defined by
the developer, thus restricting the ability of adversaries to perform
data exfiltration or fetch malicious payloads.

Notice that the JavaScript application may require a significant
number of privileges to ensure all of its components operate as
intended. Therefore, the application of sandboxing at runtime-level
rather than native component-level not only is in contrast with the
least privilege principle, it also increases the attack surface, so the
chances of an attack to be successful.

3.1 Threat model
We consider the operating system trusted, although binary utilities
may be malicious due to supply chain attacks, or affected by vul-
nerabilities due to incorrect memory management, improper data
validation, etc. Protection against attacks targeting JS code is out
of the scope of our proposal, since we consider JS engines and the
permissions system enforced by JS runtimes able to securely render
JS code. NatiSand aims to constrain the execution of potentially
malicious, or vulnerable, binary utilities and functions used by JS
applications. This native code accesses system resources uncon-
strained by the security mechanisms offered by the JS runtime, and
its actions may cause severe security breaches. Moreover, the input
processed by the web application is often untrusted and can be un-
sanitized, due to errors in the sanitization process, misconfiguration
or lack of awareness by the developer. Therefore, a malicious actor
can exploit this attack vector by submitting specifically crafted
requests targeting the unconstrained native dependencies of the
web application, compromising the host system. The attack vectors
may take multiple forms, e.g., strings, videos, images, and audio
files, depending on the input provided by the JS application to the
vulnerable components. The goal of our proposal is to mitigate
the security risk by empowering developers with a way to estab-
lish clear security boundaries for the execution of binary utilities
and components depending on them with a per-native-component
granularity.

4 DESIGN AND IMPLEMENTATION
In this section we present NatiSand, our proposal to enable the
isolation of native code for JS runtimes.

4.1 Objectives
We start with the definition of the design objectives.

Security. As a secure sandbox, NatiSand must provide protec-
tion against recent, high-severity vulnerabilities affecting native
components used by web applications. Furthermore, the additional
protection must not result in a loss of functionality. The goal is to
enable the developer to follow the least privilege principle when

NatiSand: Native Code Sandboxing for JavaScript Runtimes RAID ’23, October 16–18, 2023, Hong Kong, HongKong

designing its application, reducing the attack surface in the pres-
ence of vulnerabilities. To do so, NatiSand must be able to execute
distinct native code in separate lightweight compartments isolated
from the rest of the application, and characterized by policy-based
ambient rights. The security restrictions must be enforced indepen-
dently of the method leveraged by the application to execute native
code, giving the developer the power to confine executables, shared
libraries, and functions. Lastly, no root permission should be used
at runtime to configure and activate the isolated compartments.

Usability. An important requirement to consider is usability by
developers. We cannot force them to rewrite their application (or
large parts of it) just to use the sandbox. At the same time, we
cannot expect them to be aware of the internal structure of the
third-party native code used by the application, nor to fully under-
stand the advanced security mechanisms that can be leveraged to
securely sandbox a program. The effort required to take advantage
of NatiSand should be extremely low. Ideally, a single configuration
file specifying the ambient rights associated with each compart-
ment should be enough to successfully configure it. To facilitate
the transition from no sandboxing to complete isolation, a valu-
able solution should permit to start by sandboxing the components
associated with the highest risk, and then gradually extend the
protection to the remainder of the application.

Compatibility. A valuable solution should be generic enough to
be integrated into different JS runtimes without requiring substan-
tial changes to the internal architecture. This also means that it
must be aligned with the current permission-based model imple-
mented by the most widely used platforms. Moreover, it must be
compatible with other access control mechanisms already enabled
by the underlying OS. This refers to the potential of stacking the
sandbox on top of security mechanism adopted by other software.

Performance. Latency and throughput are critical metrics for web
applications, therefore it is important to reduce their degradation to
a minimum. NatiSand aims to introduce lower overhead compared
to current state of the art sandboxing and isolation frameworks.

4.2 High level architecture
NatiSand permits to transparently execute code in ad hoc contexts,
isolated compartments that are characterized by policy-based am-
bient rights. This allows the developer to configure fine-grained
access to confidential or privileged system resources, such as files,
message queues, shared memory areas, sockets, and other resources.

NatiSand separates system resources into three categories:
filesystem, IPC, and network. By default, native code sandboxed by
our solution cannot access any privileged resource in each category.
Indeed, the developer must explicitly grant access to resources us-
ing a JSON-formatted policy file. JSON is a popular format among
the web community and the ability to configure fine-grained per-
missions using a single, easy-to-read text file greatly simplifies the
development activity. No specific knowledge is required to config-
ure the policy, and no effort needs to be spent by the developer to
understand how permissions are enforced.

Internally, NatiSand leverages dedicated Linux Security Mod-
ules to restrict access to each resource category. Filesystem-related
permissions are enforced using Landlock, while the availability of

Native context

JS runtime

taskcontext pool

JS engine

eBPF
programs
& maps

user
kernel

resource access

eBPF
mapsJS context

JS runtime changes

α

1β

bpf landlock seccomp

eBPF frontend

JS application
Rt.command(prog,args)
Rt.dlopen(lib:function)

eBPF
programs

sandboxer

executable / library

2

Core module

1

b

c

Policy

JSON

Landlock

ipc net

3

4c4a

fs

4b

cBPF filters

a

Figure 3: Integration of NatiSand in the JS runtime. Bootstrap:
import security contexts (𝛼 , 𝛽), creation of the context pool
(𝑎, 𝑏, 𝑐). Application runtime: isolated execution of binary
programs and shared library functions (1, 2, 3, 4𝑎, 4𝑏, 4𝑐)

IPC channels to interact with other processes or services already
running on the host is controlled with Seccomp and eBPF. Finally,
eBPF constrains the ability to open new connections and limits the
devices reachable by a context. Three important characteristics are
shared by the selected LSMs: (i) they are lightweight, (ii) they do
not require to leverage root permissions while the application is
running, and (iii) they operate in stacking mode [71], hence they
are compatible with other LSMs already running on the host, such
as AppArmor, SELinux, and SMACK. The stacking behavior also
means that whenever the access decisions of two LSMs do not
match, deny takes precedence. To give an example, Seccomp can
deny the application to create a fifo file, even when Landlock grants
the permission to write in the target directory.

The architecture of our solution is shown in Figure 3. Shortly
after the JS runtime is executed, NatiSand parses the policy file
input by the developer. Based on the policy, a set of sandboxing
and tracing programs along with maps are initialized and loaded
into the kernel. A pool of isolated contexts is also prepared by the
sandbox. At runtime, NatiSand intercepts all the calls to native code
performed by the application and executes them safely in the proper
isolated context. A technical description of how our proposal is
integrated into a modern JS runtime is given in Section 4.3, while
details about its isolation features are reported in Section 4.4. The
policy syntax used by NatiSand to configure permissions, along
with the support to policy generation, are described in Section 5.

RAID ’23, October 16–18, 2023, Hong Kong, HongKong Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano Paraboschi

4.3 Integration with JS runtimes
NatiSand complements the architecture of the JS runtime with the
addition of the sandboxer, a component that parses the policy and
enforces the isolation of native code accordingly. In the follow-
ing we explain the operations performed by the runtime to use it,
referring to Figure 3.

Bootstrap. The JS runtime boot procedure is modified to read the
JSON policy file, which is then parsed by the sandboxer 𝛼 to re-
trieve the information associated with each security context. Based
on the policy, the sandboxer (i) configures the required Seccomp
filters, and (ii) prepares and loads into the kernel the necessary
eBPF programs and maps 𝛽 . The eBPF programs are used to track
the security contexts and enforce network-related and (part of)
IPC-related restrictions (more details in Section 4.4). Maps instead
associate each isolated compartment with a security policy, and
store the ambient rights granted to them. To determine which pol-
icy is associated with a given isolated compartment we leverage
its kernel task_struct identifier, which is used as the key in an
eBPF map of type TASK_STORAGE to lookup the policy identifier.
This information is used as an address within an eBPF map of
type ARRAY_OF_MAPS, and permits to retrieve an inner HASH map
containing the ambient rights. Loading eBPF maps and programs
is a privileged operation that requires the CAP_BPF, CAP_PERFMON,
CAP_NET_ADMIN capabilities to be performed, thus we grant the JS
runtime executable the corresponding Linux file capabilities [17].
After the completion of these steps, the capabilities are no longer
necessary, hence they are dropped. This satisfies the requirement
that root permissions at runtime are not needed for the activation
of security contexts.

The sandboxer is also responsible for the creation of the secu-
rity contexts where native code will be executed at runtime. Each
context is an OS thread with permissions restricted by Landlock,
Seccomp, and eBPF. To avoid paying the performance cost to instan-
tiate each security context during the invocation of executables and
shared libraries, we modified the JS runtime to allocate a thread per
security context defined by the policy, restrict their permissions,
and then, park them in a context pool (a , b , c). With Land-
lock and Seccomp, restriction of privileges is performed calling
the corresponding syscalls from the specific context, while restric-
tion of permissions based on eBPF is simply performed invoking
the uprobe attach_policy reported in Table 1a. As a result, the
task_struct identifier of a given context is annotated in the ded-
icated eBPF map along with the associated policy identifier. This
design choice allows to reuse security contexts, thus minimizing
latency, which, as highlighted in the objectives (Section 4.1), is a
critical metric for web applications.

Application runtime. After the web application is started, two
operations can lead to the execution of native code: (i) the execution
of a binary program in a subprocess, and (ii) the invocation of a
shared library. NatiSand intercepts all the requests originating from
the web application that require to execute native code 1 , and
leverages the sandboxer to assign them to the proper pre-allocated
isolated context 2 . Based on the type of request, a dedicated task
inheriting the selected security context is launched and used to
execute the native code 3 . Specifically, when there is a request

Context lifecycle

uprobe/attach_policy
tp_btf/sched_process_fork
tp_btf/sched_process_exit

Access control

IP
C

fentry/fifo_open
lsm/socket_bind
lsm/socket_connect

N
et
w
or
k lsm/socket_bind

lsm/socket_create
lsm/socket_connect

(a) (b)
Table 1: Hooks and tracepoints monitored by NatiSand

to run an executable, the JS runtime forks a process. On the other
hand, when a shared library should be loaded, a thread is spawned.
The consequence is that any request to access filesystem, IPC, and
network resources will be subject to the restrictions imposed by
the LSMs (4a , 4b , 4c). The approach implemented by NatiSand
ensures that native code is never loaded nor executed in a task
running unconstrained, thus strengthening the boundary between
the web application and the OS.

4.4 Isolation features
Native code executed in isolated contexts can vary from library
functions to entire programs. In the following we detail how Nati-
Sand enforces isolation and summarize the sandboxing features.

Policy inheritance. While Landlock and Seccomp guarantee pol-
icy inheritance after a clone syscall is performed, the eBPF map
that tracks the restricted contexts must be updated explicitly. To
this end, NatiSand relies on the eBPF tracing programs that are
loaded into the kernel during the bootstrap phase and are attached
to the fork and exit tracepoints reported in Table 1a. Whenever
a security context allocates a new task with a fork operation, the
tracing program registers a new entry into the map of restricted
contexts. The entry maps the task identifier of the child to the pol-
icy identifier associated with the parent. When instead a context
terminates its duties and issues an exit, its task identifier is deleted
from the map. No intervention by the developer is required, as
policy inheritance is transparently handled by our solution.

Filesystem. NatiSand restricts access to the filesystem using Land-
lock. The sandbox enforces a straightforward read, write, exec
(RWX) permission model, specified with three allow-list vectors
(e.g., lines 5, 6, and 7 in Listing 1). After the security context has been
activated, the available permissions can only be further restricted.

IPC. To explain the isolation features NatiSand provides, we
start with a description of how programs and libraries generally
use IPC. Native programs often rely on parallelism and concurrency
to achieve high resource utilization. Parallel execution typically
requires to handle synchronization and communication between a
parent and a group of child tasks. In this setting, best practice
suggests to provide the children with the necessary communi-
cation channels through the inheritance properties of the clone
syscall [46]. For instance, when two programs are piped in the Bash
shell, an IPC mechanism, in the form of a pipe, is created by the
shell process and is inherited by the two child programs, so that the
latter can read the output from the former. Similarly, a parent and

NatiSand: Native Code Sandboxing for JavaScript Runtimes RAID ’23, October 16–18, 2023, Hong Kong, HongKong

a child task can leverage an unnamed UNIX socket pair to share
messages [47]. These use cases do not pose a significant security
risk, since (i) the communication happens between tasks associated
with the same security context, and (ii) the IPC channels used to
communicate are not visible to other services running on the host
OS. Conversely, CVE-2020-16125 and CVE-2021-3560 demonstrate
that uncontrolled interaction with globally available IPC channels
used by other services can lead to concrete security problems.

To block the communication between components associated
with incompatible security contexts, NatiSand by default denies
IPC over globally visible communication mechanisms. In this cat-
egory there are fifo (i.e., named pipes), message queues, named
semaphores, non-private shared memory, signals, and UNIX named
sockets. Many of these mechanisms can be fully blocked by denying
access to the related system calls, but in some cases the evaluation
of syscall configuration flags is necessary. For instance, the creation
of shared memory maps is permitted by the sandbox only when
the mmap syscall is invoked with MAP_ANONYMOUS or MAP_PRIVATE.
Similarly, the creation of named special files is allowed only when
the mknod and mknodat syscalls are not invoked with S_IFIFO
and S_IFSOCK. Syscall filtering based on configuration flags is per-
formed efficiently by NatiSand using Seccomp. However, the in-
formation available to Seccomp is not always sufficient to make
the access decision. This is the case for the bind, connect, open,
and openat syscalls. Indeed, information about the type of socket
referenced for the bind and connect syscalls resides in user mem-
ory, and unfortunately Seccomp cannot safely dereference it (due
to TOCTOU risks [23]). Likewise, the open and openat syscalls
do not represent the type of file to be opened through configura-
tion flags, so Seccomp cannot handle the specific case properly.
To solve these problems NatiSand relies on the eBPF programs at-
tached to the hooks reported in Table 1b (which are not affected by
TOCTOU issues, since they operate on arguments that were previ-
ously deep copied by the kernel). In particular, in the case of UNIX
sockets the programs are attached to the lsm/socket_bind and
lsm/socket_connect hooks, while for fifo files the kernel function
fifo_open is used. A summary of the IPC mechanisms controlled
by NatiSand, along with the LSMs leveraged to perform the security
checks, is reported in Table 2.

Network. NatiSand permits to control how each isolated context
connects to network resources. In detail, it permits to completely
revoke access to the network, to connect only to a restricted list of
hosts, and when needed, to use the network without restrictions.
The sandboxer relies on eBPF programs to enforce permissions. The
programs restrict the ability to create, connect, and bind sockets,
and are thereby attached to the LSM hooks reported in Table 1b.

The creation of a socket opens a communication channel and
returns a file descriptor as a result. By default, the sandboxer re-
stricts the available communication domains to Internet Protocol
(IP), denying applications the use of protocol families such as Blue-
tooth, Radio, VSOCK, and many more (this information is directly
available from the arguments input to the socket_create inter-
face). No restrictions are instead applied to UNIX domain sockets
and the type of socket to be opened (e.g., stream, datagram). Open-
ing a connection to a host is permitted only when the developer
grants the isolated context to do so. The eBPF program that checks

IPC Subclass Linux system call Seccomp eBPF

Message
queue POSIX

mq_open, mq_getsetattr,
✓mq_notify, mq_timedreceive,

mq_timedsend, mq_unlink
System V msgctl, msgget, msgrcv, msgsnd ✓

Pipe Named mknod, mknodat, open, openat ✓* ✓

Semaphore POSIX futex, mmap ✓*

System V semctl, semget, semop,
✓semtimedop

Shared
memory

POSIX mmap ✓*
System V shmat, shmctl, shmdt, shmget ✓

Signal Standard kill, pidfd_send_signal, tgkill,
✓tkill

Real-time rt_sigqueueinfo,
✓rt_tgsigqueueinfo

UNIX
socket Named bind, connect, mknod, mknodat ✓* ✓

Table 2: LSMs used by NatiSand to restrict Linux IPC. The
checkmark ✓* indicates when Seccomp needs to evaluate the
syscall configuration flags to make the access decision

the opening of a connection first recovers the policy restricting the
current security context, then uses it as a key to lookup the map of
ambient rights from the ARRAY_OF_MAPS described in Section 4.3.
The ambient rights map is an allow-list that stores the reachable
(i.e., policy allowed) hosts, hence the security check is carried out
with a lookup. Each network resource is uniquely identified by its
IP address and port. Internally, we use the value zero for the port to
represent the permission of opening a connection to a given host
on every port.

Up to now, we have discussed the restrictions when the applica-
tion connects as a client to a service. However, web applications
frequently need to serve incoming requests. To do so, it is necessary
to assign a “name” to a socket – i.e., configuring its address. This
operation is done with the bind syscall, and we decided to permit it
only when the policy gives the current security context access to the
corresponding address and port pair. Again, the value zero for the
port is used as a placeholder to allow binding on every port. On the
other hand, no restrictions are applied to the listen and accept
syscalls. Listen only marks a socket as passive, meaning that it will
be used to accept incoming requests. However, no connection to
a socket can happen if an address was not previously assigned to
it [45]. The same applies to accept, which is used to extract the first
connection request from the queue of pending connections [42].

Limitations. While NatiSand significantly restricts the set of per-
missions and system resources associated with subprocesses and
shared libraries, it provides strong memory isolation guarantees
only when executables are run, as each subprocess is executed
within its own address space. On the other hand, shared libraries
are loaded within the hosting thread address space, hence a native li-
brary bug can impact the web application memory. Several research
works have studied this problem and have proposed countermea-
sures [7, 14, 34, 52, 82, 85]. In general, these works are compatible
with the design of our solution, therefore they could be used in
conjuction with NatiSand to improve isolation of shared libraries.
Among them, BreakApp [82] and BinWrap [14] propose approaches

RAID ’23, October 16–18, 2023, Hong Kong, HongKong Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano Paraboschi

tailored for interpreted languages, but they require either the in-
troduction of wrappers or the execution of remote procedure calls.
RLBox [52] provides strong guarantees against memory corruption,
but it demands the developer to manually retrofit existing code, a
process that can take up to “few days” for each library according to
the authors. Improved intra-process isolation can also be achieved
leveraging dedicated hardware features like Intel Protection Keys
for Userspace (PKU), but as demonstrated by PKU Pitfalls [15] these
solutions can be bypassed using kernel functions that are agnos-
tic of intra-process isolation (i.e., the attacks use the kernel as a
confused deputy). Since NatiSand is completely aligned with the
memory isolation assumptions made by the kernel, our solution is
not affected by this issue.

5 POLICY
In this section we present the structure of the policy file, then we
explain how to generate the permission rules.

5.1 Policy structure
JS applications executed by NatiSand are associated with a policy
file. The policy must be provided by the developer before the ap-
plication is run, and to this end, a CLI flag (e.g., native-sandbox)
needs to be added to the JS runtime. The policy file is formatted in
JSON, with the following structure: a policy defines an array of ob-
jects and each object details the permissions available to a security
context. Within each object, a name is used to identify the context,
a type indicates whether the context applies to an executable, a
library, or a function of a library; the sections fs, ipc and net are used
to configure the corresponding permissions. The structure of the
objects is flexible, and only a name is required to configure a valid
context. As the policy follows a default-deny model, a context that
specifies only its name has no permissions at runtime. An excerpt
from a policy file is shown in Listing 1 (the complete example is
reported in Appendix A), while a summary of the most relevant
policy features is described next.

Name, Type. The name and type elements are used by NatiSand to
determine which policy context must be enforced. The type element
can be set to executable (the default value), library or function.
At runtime NatiSand extracts the absolute path of the native pro-
gram and function name, and based on the information available,
it identifies the most selective entry in the policy. This gives the
developer the flexibility to use different policies in case binaries
and libraries have the same basename, or when different functions
from the same library are invoked. Moreover, since absolute paths
are used, this approach ensures symlinks cannot trick the lookup
of the security context. Listing 1 shows a policy that is enforced
every time the application runs the curl program.

Fs. The fs element is used to configure filesystem-related permis-
sions. Fs stores three optional arrays: read,write and exec. Filesystem
paths are used as array values. As an example, the context detailed
in Listing 1 can read and execute the curl binary, and write to
response.json in the current working directory of the web ap-
plication. In case the developer wants to operate with a coarser
granularity, the value true can be used to replace any of the fs,
read, write and exec arrays to grant access to the whole filesystem.

Listing 1: Example of JSON policy file with single context
1 [{
2 "name": "/usr/bin/curl",
3 "type": "executable",
4 "fs": {
5 "read": ["/usr/bin/curl", ...],
6 "write": ["response.json"],
7 "exec": ["/usr/bin/curl", ...]
8 },
9 "ipc": {
10 "socket": true,
11 },
12 "net": [{
13 "name": "https://www.example.com",
14 "ports": [443]
15 }]
16 }]

Ipc. To restrict IPC access we decided to expose developers a sim-
ple interface where flags can be turned on and off based on their
needs. Six optional flags are available in the policy: fifo, message,
semaphore, shmem, signal, and socket. For example, in Listing 1, curl
is allowed to use abstract, named, and unnamed Unix sockets. It is
up to our sandboxer to abstract away the complexity of the under-
lying architecture and enforce the policy when IPC is performed
between groups of threads associated with separate contexts. No
understanding of the standards available (e.g., System V, POSIX) is
required by developers to restrict the permissions associated with
their application. Similarly to the filesystem case, the developer
can use a coarser granularity by setting the ipc element to true,
enabling all communication mechanisms. Notice that globally avail-
able IPC channels are often bound to filesystem resources, so, while
the granularity of the six flags described above may seem coarse,
finer-grained permissions can be specified leveraging the path as-
sociated with the IPC resource. For example, the developer can
restrict the use of a specific named pipe (pinned to the filesystem)
by using its fully qualified path.

Net. Web application developers are often interested in restrict-
ing the hosts an application can connect to. The policy permits
to specify an array of reachable hosts. Each host is fully qualified
by its URL/IP, and the sequence of permitted ports. As in the case
of the filesystem, the policy permits to grant access to the net-
work without limitations (setting net to true), enable all the ports
for a specific host (setting ports to true), or completely remove
access to the network (leveraging the default-deny behavior). In
Listing 1, the process executing curl is only allowed to connect to
https://www.example.com on port 443.

5.2 Policy generation
While designing NatiSand we opted for a minimal and easy to un-
derstand policy syntax to target a broad spectrum of users. However,
writing a policy for large components may be a tedious and tricky
task, since we do not expect all the developers to be aware of how
binaries and external libraries used by their web application work
internally. To assist the developer, we follow an approach similar
to SlimToolkit [66], where a service is run against a test suite to

NatiSand: Native Code Sandboxing for JavaScript Runtimes RAID ’23, October 16–18, 2023, Hong Kong, HongKong

generate the security profile. Specifically, we developed a CLI util-
ity written in Go that provides generation of policy templates the
developer can understand, modify, and audit. The utility persists
policy-relevant information in a SQLite database, and exposes to
the user many functions that permit to configure multiple contexts,
merge the results collected from multiple tests, and refine policies
interactively. In the following we provide details on the work we
performed for each of the protected subsystems.

Filesystem. The automatic retrieval of the dependencies of a binary
is a well-known problem. Our utility is capable to discover the
dependencies of programs installed as ELF files, and programs that
are spawned by dedicated POSIX or shell wrappers. The utility first
uses ldd [44] to discover the direct and transient dependencies, then,
it relies on strace [48] to monitor the interaction between the kernel
and a traced binary, so to complement the information previously
found with additional filesystem permissions.

IPC. NatiSand adopts a policy language that abstracts away IPC
complexity. Our utility supports policy generation by analyzing the
results of multiple test cases where the Seccomp filter and eBPF
programs of the sandboxer are set to auditing mode. These programs
return the flags to be enabled.

Network. Network rules are relatively easy to write. However, we
do not assume developers to be necessarily aware of every network
connection needed by the native code. So, we automate the gener-
ation of the policy by observing the execution of the binary with
eBPF programs. In fact, these provide a list of the domain names
resolved, their IPs, and those hardcoded IPs the utility connects
to without performing name resolution. To track domain name
resolutions we attach a uprobe to the getaddrinfo function of
the libc library, for IPs we observe network socket connections
using kprobes on socket_bind and socket_connect LSM hooks.
To handle IP address migrations that may occur at runtime, we simi-
larly propose to capture the list of IPs returned by the getaddrinfo
with a dedicated eBPF program, which also updates the eBPF map
of allowed hosts accordingly. By doing so we make sure that the
security checks reflect the policy. This approach can also be ex-
tended monitorng DNS traffic on port 53, hence providing support
for native components that do not rely on libc functions.

Policy generation is subject to limitations: (i) policy generation for
malicious code produces overly permissive policy and obviously
cannot be trusted, (ii) test suite with limited coverage might provide
overly strict policies not allowing the execution of legitimate code.
Overall, the correctness of the policy depends on the test suite
used to collect the permissions. The closer the tests align with
the use of the native utility in production, the more the developer
can consider the policy generated effective. Nonetheless, to have
complete assurance that the policy generated is correct, an auditing
process may be required.

6 CASE STUDY: DENO RUNTIME
There are three well-known alternatives for the execution of JS
code on the backend, namely Node.js, Deno, and Bun. As high-
lighted in Section 2.1, their architectures have strong similarities,
and NatiSand is designed to be compatible with all of them (since no

assumption is made on specific runtime components). Nevertheless
the integration is not trivial, and it requires significant engineering
effort, therefore we integrated NatiSand into only one of them to
demonstrate the achievement of the set objectives (Section 4.1). In
this section we explain our decision, then we highlight the main
architectural changes.

6.1 Runtime selection
Considering (i) popularity among web developers, (ii) availability
and support of third-party modules, and (iii) security-oriented fea-
tures provided by the runtime, we selected Deno. Bun is still in
beta version (v0.5.8), so it is the least used by developers. Node.js is
nowadays the most widely used platform, and it offers developers
the largest collection of open source packages. However, Node.js by
default does not prevent JS applications to access system resources,
and although it recently introduced a module-based permission
model, the feature is experimental [61]. Deno was instead designed
with the protection of the host as one of its main goals [68], thus
no access to privileged system resources is given to JS applications
unless the developer explicitly grants it. Deno provides the Node
Compatibility Mode [21], a feature enabling the reuse of code and
libraries originally built for Node.js. The availability of this function
permits to import packages hosted by Deno on deno.land/x, as
well as modules published to npm. To conclude, Node.js and Deno
prevail over Bun on all three dimensions. Node.js wins over Deno
on popularity (but Deno is quickly growing), they are comparable in
terms of third-party modules, and Deno significantly outperforms
Node.js on security oriented-features, leading us to choose Deno.

6.2 Deno integration
Deno has a modular architecture organized into components. Three
of them are particularly important for NatiSand: (i) rusty_v8, the
package that bridges Deno and the V8 engine implementing the
set of bindings to the V8’s C++ API, (ii) deno_core, which lever-
ages rusty_v8 to expose the interfaces provided by Deno to the JS
application, and (iii) deno, which defines the runtime executable
together with the Command Line Interface.

Bootstrap. Shortly after the Deno executable is run, the deno
component is used to read the permissions granted by the developer
via CLI. We extended this stage to read and parse the policy file
specified with the new native-sandbox flag, then we added the
permissions associated with each security context to the global state
stored by the runtime. To complete the bootstrap phase, we also
integrated the steps to load the necessary eBPF programs and to
initialize the pool of isolated contexts, as explained in Section 4.3.

Application runtime. After the JS application is started, the func-
tion calls that cannot be directly handled by V8 are routed to the
Deno runtime through the bindings defined by rusty_v8. Each of
them is associated with the op_code, a unique code identifying the
operation to be performed. The deno_core component receives such
requests, it checks the permissions available from the global state,
and serves them accordingly. We identified requests that require
to execute native code (e.g., command, dlopen, run), and modified
deno_core so that they are restricted by NatiSand. The op_code along
with the arguments are used to select the proper security context.

RAID ’23, October 16–18, 2023, Hong Kong, HongKong Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano Paraboschi

Listing 2: Code sandboxing with nativeCall()

1 function query(db, stmt) {
2 const sqliteDB = new sqlite3.Database(db);
3 const query = sqliteDB.prepare(stmt);
4 const tuples = query.all();
5 sqlite_db.close();
6 return tuples;
7 }
8 const db = "database.db";
9 const stmt = "SELECT * FROM table";
10 const ts = Deno.nativeCall(query, [db, stmt]);
11 console.log(ts); // print tuples

6.3 Support to fast JS calls
In October 2020 V8 announced the support to fast JS calls [80]. The
function allows V8 to directly invoke optimized native functions
without leveraging the bindings that connect V8 and the embedder
(e.g., JS runtime). This permits to obtain substantial performance
gains, since native function calls can be resolved in nanoseconds.

Deno has introduced unstable support to fast JS calls in July
2022 [35]. The change affected the implementation of the dlopen
API, which is now able to generate an optimized and a fallback (i.e.,
standard) execution path for native functions. The optimized path is
triggered only when V8 is actually able to optimize a symbol, and it
entails the execution of code leveraging the fast call interface. While
the optimized path is associated with minimum overhead, from
a security perspective it permits the web application to execute
native code without the mediation of the JS runtime, invalidating
the security reference monitor of Deno. In our prototype we address
this Deno security issue offering developers two alternatives: (i)
turn off the fast call support and safely rely on the execution of
sandboxed native functionswith NatiSandwithout any code change,
and (ii) enable insecure fast calls but allow to select the JS functions
that need to be isolated with minimal code changes. The second
option permits to take advantage of fast calls when performance
is critical and risks are limited (e.g., arithmetic operations), and at
the same time benefit from the security features NatiSand provides.
To this end, we introduced a new API named Deno.nativeCall().
The API receives, as first argument, the name of the function to be
sandboxed, along with the list of its arguments. Listing 2 shows how
to sandbox the functions from the native database driver sqlite3.

7 EXPERIMENTS
NatiSand must satisfy two properties to be practical: (i) it must mit-
igate real-world vulnerabilities by blocking the associated exploits,
and (ii) it must introduce a limited overhead compared to a scenario
where no protection is applied. In the experimental evaluation, we
first show our solution is able to protect web applications relying
on binary programs and shared libraries affected by high severity
vulnerabilities (Section 7.1), then we investigate the performance
of our approach (Section 7.2). Both tests use a server with Ubuntu
22.04 LTS, an AMD Ryzen 3900X CPU, 64 GB RAM, and 2 TB SSD.

7.1 Exploit mitigation
To conduct our analysis we built a representative sample of vul-
nerabilities targeting executables and libraries widely used in web

Class CVE Id Utility Type Use case

ACE

CVE-2016–3714 ImageMagick bin Image processing
CVE-2019-5063 OpenCV lib Computer Vision
CVE-2019-5064 OpenCV lib Computer Vision
CVE-2020-6016 GNSockets lib P2P networking
CVE-2020-6017 GNSockets lib P2P networking
CVE-2020-6018 GNSockets lib P2P networking
CVE-2020-17541 libjpeg-turbo lib Compress image
CVE-2020-24020 FFmpeg lib Video processing
CVE-2020-24995 FFmpeg lib Video processing
CVE-2020-29599 ImageMagick bin Image processing
CVE-2021-3246 libsndfile lib Audio encoding
CVE-2021-3781 Ghostscript bin PDF processing
CVE-2021-4118 Lightning lib Machine learning
CVE-2021-20227 SQLite lib Query database
CVE-2021-21300 Git bin Clone repository
CVE-2021-22204 ExifTool bin Extract metadata
CVE-2021-37678 TensorFlow lib Machine learning
CVE-2021-43811 Sockeye lib Translation
CVE-2022-0529 Unzip bin Decompress archive
CVE-2022-0530 Unzip bin Decompress archive
CVE-2022-0845 Lightning lib Machine learning
CVE-2022-1292 OpenSSL bin Verify certificate
CVE-2022-2068 OpenSSL bin Verify certificate
CVE-2022-2274 OpenSSL lib Cryptography
CVE-2022-2566 FFmpeg bin Video processing

AFO

CVE-2016-6321 GNU Tar bin Decompress archive
CVE-2017-1000472 POCO lib Common libraries
CVE-2019-20916 Pip bin Dependency fetch
CVE-2022-30333 UnRAR bin Decompress archive

LFI
CVE-2016-1897 FFmpeg bin Video processing
CVE-2016-1898 FFmpeg bin Video processing
CVE-2019-12921 GraphicsMagick bin Image processing

Table 3: Sample of CVEs mitigated by NatiSand

applications. We identified the 32 CVEs reported in Table 3. The
entries are separated into three classes: Arbitrary Code Execution
(ACE), Arbitrary File Overwrite (AFO), and Local File Inclusion (LFI).
The list of vulnerable utilities includes programs used to compress
files (e.g., GNU Tar, RAR, Zip), to process multimedia (e.g., FFmpeg,
GraphicsMagick, ImageMagick), database drivers (e.g., SQLite), and
also Machine Learning libraries (e.g., Lightning, Sockeye, Tensor-
Flow). We highlight that the vulnerabilities affect popular open
source modules with 2.6M downloads/week available from the
npm and deno.land/x archives. Concrete examples are sharp and
fluent-ffmpeg from npm, or flat and sqlite from deno.land/x.

First, we checked that public Proofs of Concept of the CVEs in
Table 3 successfully exploit the vulnerable version of the utilities.
Then, we analyzed whether the vulnerabilities were exploitable
sending the malicious payload through the JS module interface, and
confirmed the feasibility of the attack. The Node compatibility mode
was leveraged to execute in Deno the modules downloaded from
npm. We finally repeated the experiment activating the security
functions provided by NatiSand, and verified that the attack was
no longer successful, while the application was still able to serve
benign requests (i.e., no functionality loss). The only change we

NatiSand: Native Code Sandboxing for JavaScript Runtimes RAID ’23, October 16–18, 2023, Hong Kong, HongKong

introduced in the experiment was the specification of a security
policy through the native-sandbox CLI argument. The policy was
generated using the tool described in Section 5.2. No modification
to the web application, nor its dependencies, was required to benefit
from the new sandboxing capabilities.

From a security perspective it is worth mentioning that NatiSand
can mitigate attacks at multiple levels. For instance, in CVE-2022-
2566 a heap out-of-bound memory bug exists in FFmpeg. The goal
of the attacker is to achieve Arbitrary Code Execution sending to
the web application a malicious MP4 payload. NatiSand denies the
compromised component attempts to access confidential files, open
reverse shells, interact with privileged services through IPC, and
transfer data to unauthorized network hosts. We point out that,
while sandboxing limits the privileges an attacker can gain from
exploiting a vulnerable program, it cannot eliminate vulnerabilities,
nor it can make infeasible to use them in an exploit chain.

7.2 Performance evaluation
To assess the performance of NatiSand we considered a broad set
of programs, including several GNU Core Utilities, executables to
process multimedia, database drivers, and Object Character Recog-
nition engines. The goal is twofold: (i) evaluate the slowdown com-
pared to a scenario where no protection is available (i.e., regular
Deno), and (ii) compare NatiSand with well known sandboxing
and isolation frameworks. In the following we first investigate the
impact on executables, then we analyze libraries.

7.2.1 Executables. In the first batch of experiments we analyze
the overhead associated with executables. Compared to the default
scenario where no protection is available, NatiSand spawns each
program in a dedicated subprocess with its own set of constrained
ambient rights. A handful of general purpose sandboxers can be
adopted to achieve a comparable degree of protection by wrapping
the execution of each subprocess with the chosen sandboxing utility.
In our evaluation, we considered Minijail [28] and Sandbox2 [29].
Minijail is a tool used in ChromeOS and Android to launch and
sandbox other programs based on the set of arguments specified,
while Sandbox2 is a C++ library written by Google that can be used
to sandbox entire programs or portions of them. Both Minijail and
Sandbox2 support multiple containment techniques, such as the
introduction of dedicated user ids, restriction of the Linux capa-
bilities, introduction of policy-based Seccomp filters, and isolation
based on Linux namespaces.

Benchmark I. In the first benchmark we implemented a JS appli-
cation to test the execution of 17 common Linux utilities with four
configurations: Deno, NatiSand, Minijail, and Sandbox2. The appli-
cation uses Deno.run() to spawn each utility in a subprocess, and it
leverages Deno.bench() to determine the duration of each request.
The function ensures that each measure is statistically robust, as it
automatically performs a dynamic number of rounds based on the
duration of the test (i.e., the shorter the test duration, the higher
the number of repetitions). The results are shown in Table 4 (tests
are ordered by increasing execution time). As expected, the cost of
activating the sandbox is amortized with the increase in the test
duration. The tests also show that NatiSand suffers from a smaller
performance degradation compared to Minijail and Sandbox2. This

Utility Deno [ms] Minijail Sandbox2 NatiSand

b2sum 2.37 7.19x 9.37x 2.88x
cut 2.52 7.11x 8.97x 2.86x
sum 2.61 7.00x 8.25x 2.87x
tac 2.76 6.51x 8.21x 2.34x
wc 2.97 6.25x 7.69x 2.44x
dd 3.60 5.29x 6.26x 2.23x
seq 3.80 5.02x 5.96x 2.13x
shuf 4.29 4.68x 5.55x 2.17x
ls 4.75 3.72x 4.68x 1.76x
factor 5.03 4.06x 5.03x 1.86x
join 5.20 4.08x 5.18x 2.05x
head 6.73 3.16x 3.85x 1.56x
ping 12.20 2.27x 2.79x 1.47x
sort 14.37 1.44x 1.77x 1.43x
dig 22.14 1.71x 2.15x 1.17x
wget 53.24 1.18x 1.42x 1.13x
curl 81.27 1.23x 1.24x 1.16x

Table 4: Average execution time for common Linux utilities

GM IM Tesseract0

100

200

300

La
te

nc
y

[m
s]

Deno
NatiSand

Minijail
Sandbox2

GM IM Tesseract0

5

10

15

20

25

Th
ro

ug
hp

ut
 [r

eq
/s

]

Deno
NatiSand

Minijail
Sandbox2

Figure 4: Average latency and throughput for microservices
that execute subprocesses

aspect is particularly evident for short-lived utilities. The reason
is that our approach is integrated by design and, contrary to the
other solutions, leverages lightweight technologies that introduce
a smaller performance footprint.

Benchmark II. While the experiments part of Benchmark I fo-
cus on the server side scenario, with Benchmark II we wanted to
show the overhead experienced by a remote client. To this end, we
used three microservices, each representing a real use case scenario
of high performance native programs. Two microservices rely on
GraphicsMagick and ImageMagick, to perform a sharpen opera-
tion on images input by the client, while the third microservice
relies on Tesseract to perform Optical Character Recognition on
a second sequence of images input by the client. Similarly to the
previous case, the test was repeated for each of the four configura-
tions: Deno, NatiSand, Minijail, and Sandbox2. This time the HTTP
benchmarking tool wrk was used to measure the performance of
each microservice. Network bandwidth and latency are 1 Gbps and
10 ms, respectively, while 100 warmup requests were carried out.
Figure 4 shows the average latency and the throughput observed
over a period of 30 seconds. The results once again confirm the
previous analysis, as longer durations make the cost to setup the

RAID ’23, October 16–18, 2023, Hong Kong, HongKong Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano Paraboschi

native sandbox less relevant. It is worth to mention that NatiSand
exhibits lower overhead compared to Minijail and Sandbox2, with
approximately 5 to 10 ms less latency for each microservice.

Usability. Although general purpose sandboxers can be used to
restrict the permissions associated with executables, to provide a
protection comparable to NatiSand: (i) they force the developer to
introduce changes in the web application, and (ii) they require to
understand in depth the techniques used by the kernel to restrict
ambient rights (e.g., capabilities, namespaces, Seccomp filters). An-
other problem is that to restrict IPC and network with Minijail
and Sandbox2 it is necessary to leverage namespaces, which are
characterized by coarser granularity than NatiSand policies.

7.2.2 Libraries. In the second batch of experiments we analyze
the overhead associated with libraries. Contrary to the default JS
runtime behavior, NatiSand transparently executes native library
functions in dedicated contexts with limited ambient rights. A mod-
ern, valuable alternative approach to isolate libraries is to compile
them to WebAssembly (Wasm), a standardized, portable binary
instruction format executed in a memory safe, sandboxed environ-
ment. This approach has gained considerable attention recently,
as browsers such as Firefox have used it to retrofit some of their
components to safely interface with native libraries [52].

Benchmark III. Similarly to Benchmark I, we implemented a JS
application to highlight the overhead experienced on the server
when native libraries are executed. In this case three configurations
are evaluated: Deno, NatiSand, and Wasm. The application tests the
operations provided by four popular libraries: (i) libxml2, to open
and query XML data, (ii) libpng, to read metadata information and
verify the signature of a png image, (iii) opus to encode and create
an audio trace, and (iv) sqlite3, to open and query the Northwind
database. Test durations were again measured with Deno.bench(),
and the results are reported in Table 5. Deno exhibits a consistent
performance advantage for operations that require up to 30 mi-
croseconds. However, NatiSand proves to be more efficient than
Wasm, which in turn is affected by a substantial overhead in almost
every test. This difference is due to the nature of Wasm; while there
have been improvements, the just-in-time compiled language [65]
remains slower than its native counterpart. Remarkable are the
cases of opus and sqlite3, which used nativeCall and demonstrate
its efficiency.

Benchmark IV. To understand the slowdown perceived by a re-
mote client, we exposed the functions of the libpng, opus, and
sqlite3 libraries with microservices. For each of them, we config-
ured the client to send the input to the server, and measured the
latency and throughput using wrk (as explained in Benchmark II
setup). The results are visualized in Figure 5. Once again the client
observes a small degradation of latency and throughput when using
NatiSand instead of Deno, but the overhead is far less noticeable
compared to the results discussed in Benchmark III. Conversely,
Wasm is affected by a significant degradation of latency. This is
due to the just-in-time compilation of Wasm, and the additional
memory management required to exchange data between the JS
application and Wasm.

Test Deno [`s] Wasm NatiSand

libxml2 (open) 9.33 8.96x 2.51x
libxml2 (query) 11.53 4.35x 1.63x
libpng (verify) 11.58 13.34x 9.61x
libpng (info) 28.33 12.63x 9.39x
opus (encode) 58.67 2.03x 1.55x
opus (create) 203.72 1.70x 1.64x
sqlite3 (open) 63.62 5.68x 1.54x
sqlite3* (query) 143.98 2.43x 1.51x

Table 5: Average execution time for common native libraries
(* marks the use of nativeCall)

libpng opus* sqlite*0

200

400

600

800

La
te

nc
y

[m
s]

Deno NatiSand Wasm

libpng opus* sqlite*0

10

20

30

Th
ro

ug
hp

ut
 [r

eq
/s

]

Deno NatiSand Wasm

Figure 5: Average latency and throughput for microservices
that execute native functions (* marks the use of nativeCall)

Usability. While Wasm offers strong isolation guarantees, it also
comes with drawbacks compared to NatiSand. First of all it requires
the developer to use a Wasm-compatible version of the library. In
our evaluation we used a precompiled version of sqlite3, but we
had to manually compile opus and libpng using the Emscripten
toolchain [24] and the WASI Sdk [84], respectively. Moreover, cur-
rent implementations of the WebAssembly System Interface (WASI)
can only restrict ambient rights programmatically, and filesystem
privileges work at directory granularity. Lastly, Wasm requires
the developer to explicitly allocate, write, and read bytes from the
Wasm module linear memory.

8 RELATEDWORK
Isolation of software has been widely investigated by both the aca-
demic and industrial communities [1, 9, 16, 19, 28, 29, 33, 53, 67].
MBOX [33] features an unprivileged sandboxing mechanism that
prevents a process from modifying the host filesystem by layering
the sandbox filesystem on top of it. The solution is implemented by
interposing syscalls using Seccomp and ptrace. The use of ptrace
required the authors careful attention to avoid the risk of TOC-
TOU attacks, moreover it suffers from non-negligible performance
degradation. DeMarinis et al. [19] propose Sysfilter, a static analysis
framework to reduce the attack surface of the kernel, by restrict-
ing with Seccomp the system call set available to processes. This
approach proves to be effective in limiting the kernel APIs that
can be abused by attackers, but whenever a system call is nec-
essary for the benign behavior of a program, there is no way to
control with Seccomp the specific instance of the resource used.
BPFBox [27], BPFContain [26], and Snappy [8] are security frame-
works that provide confinement of processes and containers with

NatiSand: Native Code Sandboxing for JavaScript Runtimes RAID ’23, October 16–18, 2023, Hong Kong, HongKong

the use of eBPF. These solutions highlight the benefit of eBPF by
providing simple, efficient, and flexible confinement of system re-
sources, however these solutions either require a privileged daemon
or require to load kernel modules to introduce a set of dynamic
helpers. Often, industrial sandboxing solutions take advantage of
multiple protection techniques to support process containment.
This is the case for Minijail [28], and Sandbox2 [29]. Some of the
security mechanisms used are: introduction of new user ids, capa-
bilities restriction, namespace isolation and policy-based Seccomp
filtering. These tools expose a powerful interface meant to be used
by security experts. Similar considerations are shared with other
less mature tools such as Firejail [53] and Bubblewrap [16].

Multiple research efforts have studied the use of third-party com-
ponents in software products [7, 34, 52, 85]. PKRU-Safe [34] pro-
poses an automated method for preventing the memory corruption
of memory-safe languages due to the interaction with unsafe code.
It leverages the compiler infrastructure to provide hardware-backed
memory protection requiring changes to build files, dependencies,
and code (in the form of code annotations). Codejail [85] provides
partial isolation of libraries by spawning a new process and con-
figuring the necessary communication channels to support tight
memory interactions with the main program. To support the change
in the interactions without modifications to the library code it is
necessary to write a wrapper library. Cali [7] is a compiler-assisted
library isolation system that compartmentalizes libraries into their
own process, and automates the configuration of the necessary com-
munication channels by tracking data flow between the program
and the library at link time. RLBox [52] is a framework to isolate
libraries in lightweight sandboxes – i.e., process, Wasm. It facilitates
the retrofitting of applications employing static information flow
enforcement and dynamic checks expressed in the C++ type system.
These solutions were designed for compiled languages, so while
some of the concepts are portable to JS runtimes, the solutions are
not easily adapted to this domain.

A recent study by Staicu et al. [74] highlights how the possibility
to invoke native code from scripting languages undermines the
security assumption of applications. They discuss a methodology
to detect misuses of the native extension API and show how the
exploit of these vulnerabilities in npm packages can lead to web
applications compromise. Previous proposals [14, 82, 86] tackle this
problem by providing solutions to isolate the execution of third-
partymodules.Wolf at the Door [86] reduces the risk associated with
the installation of npm packages by mediating their install-time
capabilities. It enforces complex user-defined policies by leveraging
AppArmor, hence prohibiting unauthorized access to confidential
files and connections using an LSM that currently cannot coexist
with SELinux and SMACK. BreakApp [82] takes advantage of mod-
ule boundaries to compartmentalize npm modules in accordance
with a set of code annotations. Modules are isolated with software,
process, or container isolation, and it is possible to configure the
visibility of the application context available to external modules.
Process and container isolation enable the protection of native code,
however the specification of their permissions are beyond the scope
of the proposal. Cage4deno [2] protects filesystem resources from
subprocesses executed by JavaScript runtimes. BinWrap [14] sepa-
rates the execution of third-party components from the rest of the
application using distinct execution threads for different domains

of trust. The main focus of the proposal is prohibiting arbitrary
accesses to sensitive data stored in the memory of the JS runtime
by leveraging Intel’s MPK/PKU. NatiSand is complementary to the
above solutions since our goal is to specify and enforce permis-
sions on native code dependencies of web applications, rather than
providing memory isolation for untrusted components.

Protecting JS code from being compromised is out of the scope
of NatiSand, nonetheless, since proposals in this domain and ours
both target the web development audience, our proposal shares
some ideas with previous works in this domain [3, 59, 75, 83]. For in-
stance, Ferreira et al. [25] propose a lightweight permission system
providing per-package on/off switches that limit access to Node.js
core modules (e.g., child_process, fs, http). By doing so, it can pro-
hibit access to subprocess, filesystem, and network resources for
the JS code. Similarly, NatiSand takes care of protecting filesystem,
IPC, and network resources, targeting native code. Mir [83] is a
system preventing the compromise of the application by third-party
modules with the enforcement of fine-grained RWX permissions on
every field of every variable in the JS context. NatiSand adopts an
equivalent permission model to contain native code when access-
ing filesystem resources. Another research work enforcing security
boundaries stated in a policy is SandTrap [3]. The approach enforces
fine-grained access control policies on cross-domain interactions
between application code and the third-party modules. The cre-
ation of policy files described by the authors consists in running
test suites to create a policy with acceptable static cross-domain
interaction coverage. We adopt a similar approach in the policy
generation of NatiSand. Note that, differently from our proposal,
solutions protecting JS code can run in user space, thus they do not
limit the portability of the JS runtime to Linux systems.

9 CONCLUSIONS
The increase in scale and complexity of modern web applications
has led to the introduction of new security mechanisms in JS run-
times. Unfortunately, native code execution still represents a clear
risk, since no isolation is provided by all the major platforms. Nati-
Sand solves this problem, introducing new measures to confine the
execution of binaries and shared libraries. The proposal is not depen-
dent on a particular JS runtime, and was designed to be integrated
into different architectures. Considerable attention was dedicated
to usability; little effort is required by developers to sandbox their
applications. Indeed, no specific security expertise is necessary to
benefit from the protection, nor are changes to the application.

We believe that the approach proposed in this paper can con-
tribute to improve the state of the art in this domain and support
the evolution toward more secure software platforms.

AVAILABILITY
The source code and the artifacts produced to support the proposal
are available open source https://github.com/unibg-seclab/natisand

ACKNOWLEDGMENTS
The work was supported by the European Commission within
the GLACIATION project (No 101070141) and by project GRINS
(PE00000018) under the MUR NRRP funded by the EU - NextGener-
ationEU.

https://github.com/unibg-seclab/natisand

RAID ’23, October 16–18, 2023, Hong Kong, HongKong Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano Paraboschi

REFERENCES
[1] Marco Abbadini, Michele Beretta, Dario Facchinetti, Gianluca Oldani, Matthew

Rossi, and Stefano Paraboschi. 2023. Leveraging eBPF to enhance sandboxing
of WebAssembly runtimes. In Proceeding of the 18th ACM ASIA Conference on
Computer and Communications Security (ACM ASIACCS 2023).

[2] Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano
Paraboschi. 2023. Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses.
In Proceeding of the 18th ACM ASIA Conference on Computer and Communications
Security (ACM ASIACCS 2023).

[3] Mohammad M. Ahmadpanah, Daniel Hedin, Musard Balliu, Lars E. Olsson, and
Andrei Sabelfeld. 2021. SandTrap: Securing JavaScript-driven Trigger-Action
Platforms. In Proceeding of the USENIX Security Symposium (USENIX Security).

[4] Alexei Starovoitov. 2020. Introduce CAP_BPF. https://lwn.net/Articles/820560/
[5] Nakryiko Andrii. 2020. BPF Portability and CO-RE. https://facebookmicrosites.

github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
[6] Apple. 2023. JavaScriptCore. https://developer.apple.com/documentation/

javascriptcore
[7] Markus Bauer and Christian Rossow. 2021. Cali: Compiler-Assisted Library Isola-

tion. In Proceedings of the ACM Asia Conference on Computer and Communications
Security (ASIACCS).

[8] Maxime Bélair, Sylvie Laniepce, and Jean-Marc Menaud. 2021. SNAPPY: Pro-
grammable Kernel-Level Policies for Containers. In Proceedings of the ACM Sym-
posium on Applied Computing (SAC).

[9] Andrew Berman, Virgil Bourassa, and Erik Selberg. 1995. TRON: Process-Specific
File Protection for the UNIX Operating System. In Proceedings of the USENIX
Annual Technical Conference (USENIX ATC).

[10] Fraser Brown, Shravan Narayan, Riad S Wahby, Dawson Engler, Ranjit Jhala,
and Deian Stefan. 2017. Finding and preventing bugs in javascript bindings. In
Proceeding of the IEEE Symposium on Security and Privacy (IEEE S&P).

[11] Thanh Bui, Siddharth Prakash Rao, Markku Antikainen, Viswanathan Manihatty
Bojan, and Tuomas Aura. 2018. Man-in-the-Machine: Exploiting Ill-Secured Com-
munication Inside the Computer. In Proceeding of the USENIX Security Symposium
(USENIX Security).

[12] Alexander Bulekov, Rasoul Jahanshahi, and Manuel Egele. 2021. Saphire: Sand-
boxing PHP Applications with Tailored System Call Allowlists. In Proceeding of
the USENIX Security Symposium (USENIX Security).

[13] Bun. 2023. Bun is a fast all-in-one JavaScript runtime. https://bun.sh/
[14] George Christou, Grigoris Ntousakis, Eric Lahtinen, Sotiris Ioannidis, Vasileios P.

Kemerlis, and Nikos Vasilakis. 2023. BinWrap: Hybrid Protection Against Native
Node.js Add-ons. In Proceedings of the ACM Asia Conference on Computer and
Communications Security (ASIACCS).

[15] R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and Max Schuchard. 2020.
PKU Pitfalls: Attacks on PKU-based Memory Isolation Systems. In Proceedings of
the USENIX Security Symposium (USENIX Security).

[16] containers. 2023. Bubblewrap. https://github.com/containers/bubblewrap
[17] Jonathan Corbet. 2006. File-based capabilities. https://lwn.net/Articles/211883/
[18] Jonathan Corbet. 2014. BPF: the universal in-kernel virtual machine. https:

//lwn.net/Articles/599755/
[19] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and Vasileios P

Kemerlis. 2020. sysfilter: Automated System Call Filtering for Commodity Soft-
ware. In Proceedings of the International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID).

[20] Deno Land. 2023. Deno Permission Model. https://deno.land/manual/getting_
started/permissions

[21] Deno Land. 2023. Node compatibility mode. https://deno.land/manual/node/
compatibility_mode.

[22] Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle Zeng, Alexandros
Kapravelos, Gail-Joon Ahn, Tiffany Bao, Ruoyu Wang, Adam Doupé, and Yan
Shoshitaishvili. 2021. Favocado: Fuzzing the Binding Code of JavaScript En-
gines Using Semantically Correct Test Cases. In Proceedings of the Network and
Distributed System Security Symposium (NDSS).

[23] Jake Edge. 2020. Seccomp and deep argument inspection. https://lwn.net/
Articles/822256/

[24] Emscripten Contributors. 2023. Emscripten toolchain. https://emscripten.org/
[25] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. 2021. Con-

taining malicious package updates in npm with a lightweight permission system.
In Proceedings of the International Conference on Software Engineering (ICSE).

[26] William Findlay, David Barrera, and Anil Somayaji. 2021. BPFContain: Fixing
the Soft Underbelly of Container Security. ArXiv preprint (2021).

[27] William Findlay, Anil Somayaji, and David Barrera. 2020. bpfbox: Simple Precise
Process Confinement with eBPF. In Proceedings of the ACM Conference on Cloud
Computing Security Workshop (CCSW).

[28] Google. 2023. Minijail. https://google.github.io/minijail/
[29] Google. 2023. Sandbox2. https://developers.google.com/code-sandboxing/

sandbox2/
[30] Brendan Gregg. 2021. BPF Internals. https://www.usenix.org/conference/lisa21/

presentation/gregg-bpf USENIX Large Installation Systems Administration

Conference (LISA).
[31] Jake Edge. 2015. A seccomp overview. https://lwn.net/Articles/656307/
[32] Michael Kehoe. 2022. eBPF: The Next Power Tool of SREs. https://www.usenix.

org/conference/srecon22americas/presentation/kehoe-ebpf USENIX SREcon
Americas (SRECON).

[33] Taesoo Kim and Nickolai Zeldovich. 2013. Practical and Effective Sandboxing
for Non-root Users. In Proceedings of the USENIX Annual Technical Conference
(USENIX ATC).

[34] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. 2022. PKRU-safe:
automatically locking down the heap between safe and unsafe languages. In
Proceedings of the European Conference on Computer Systems (EuroSys).

[35] Deno Land. 2022. Deno 1.24 Release Notes – Improved FFI call performance.
https://deno.com/blog/v1.24#improved-ffi-call-performance

[36] Deno Land. 2022. Deno 1.25 Release Notes – FFI API improvements. https:
//deno.com/blog/v1.25#ffi-api-improvements

[37] Deno Land. 2023. Deno: A modern runtime for JavaScript and TypeScript. https:
//deno.land/

[38] Deno Land. 2023. Deno API. https://doc.deno.land/deno/stable/
[39] Deno Land. 2023. Rusty V8 bindings. https://github.com/denoland/rusty_v8
[40] Deno Land. 2023. sqlite3 bindings for Deno. https://deno.land/x/sqlite3
[41] libbpf. 2023. libbpf. https://libbpf.readthedocs.io/en/latest/index.html
[42] Linux manual. 2023. accept. https://man7.org/linux/man-pages/man2/accept.2.

html
[43] Linux manual. 2023. bpf. https://man7.org/linux/man-pages/man2/bpf.2.html
[44] Linux manual. 2023. ldd. https://man7.org/linux/man-pages/man1/ldd.1.html
[45] Linux manual. 2023. listen. https://man7.org/linux/man-pages/man2/listen.2.

html
[46] Linux manual. 2023. pipe. https://man7.org/linux/man-pages/man2/pipe.2.html
[47] Linux manual. 2023. socketpair. https://man7.org/linux/man-pages/man2/

socketpair.2.html
[48] Linux manual. 2023. strace. https://man7.org/linux/man-pages/man1/strace.1.

html
[49] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Ar-

chitecture for User-level Packet Capture. In Proceedings of the USENIX Winter
Conference (USENIX).

[50] Mickaël Salaün. 2022. Landlock: unprivileged access control. https://docs.kernel.
org/userspace-api/landlock.html

[51] Jeffrey Mogul, Richard Rashid, and Michael Accetta. 1987. The Packet Filter: An
Efficient Mechanism for User-Level Network Code. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP).

[52] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm,
Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020. Retrofitting Fine Grain
Isolation in the Firefox Renderer. In Proceeding of the USENIX Security Symposium
(USENIX Security).

[53] netblue30. 2023. Firejail. https://firejail.wordpress.com/
[54] npm. 2020. Npm packages. https://blog.npmjs.org/post/615388323067854848/so-

long-and-thanks-for-all-the-packages.html
[55] npm. 2023. bcrypt. https://www.npmjs.com/package/bcrypt
[56] npm. 2023. fluent-ffmpeg. https://www.npmjs.com/package/fluent-ffmpeg.
[57] npm. 2023. gm. https://www.npmjs.com/package/gm.
[58] npm. 2023. sharp. https://www.npmjs.com/package/sharp
[59] Grigoris Ntousakis, Sotiris Ioannidis, and Nikos Vasilakis. 2021. Detecting Third-

Party Library Problems with Combined Program Analysis. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS).

[60] OpenJS Foundation. 2023. Node js API. https://nodejs.org/docs/latest/api/
[61] OpenJS Foundation. 2023. Node Permissions. https://nodejs.org/api/permissions.

html
[62] OpenJS Foundation. 2023. Node.js. https://nodejs.org
[63] OpenJS Foundation. 2023. Node.js V8 APIs. https://nodejs.org/api/v8.html
[64] oven sh. 2023. Webcore bindings. https://github.com/oven-sh/bun/tree/main/

src/bun.js/bindings/webcore
[65] V8 project. 2023. WebAssembly compilation pipeline. https://v8.dev/docs/wasm-

compilation-pipeline
[66] Kyle Quest. 2023. SlimToolkit. https://github.com/slimtoolkit/slim
[67] Matthew Rossi, Dario Facchinetti, Enrico Bacis, Marco Rosa, and Stefano Para-

boschi. 2021. SEApp: Bringing Mandatory Access Control to Android Apps. In
Proceeding of the USENIX Security Symposium (USENIX Security).

[68] Ryan Dahl. 2018. 10 Things I Regret About Node.js. https://youtu.be/M3BM9TB-
8yA European JavaScript Community Conference (JSConf EU).

[69] Fabian Schwarz and Christian Rossow. 2020. SENG, the SGX-Enforcing Network
Gateway: Authorizing Communication from Shielded Clients. In Proceeding of
the USENIX Security Symposium (USENIX Security).

[70] Yuru Shao, Jason Ott, Yunhan Jack Jia, Zhiyun Qian, and Z. MorleyMao. 2016. The
misuse of android unix domain sockets and security implications. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.

[71] Stephen Smalley, Chris Vance, and Wayne Salamon. 2001. Implementing SELinux
as a Linux security module. NAI Labs Report (2001).

https://lwn.net/Articles/820560/
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://developer.apple.com/documentation/javascriptcore
https://developer.apple.com/documentation/javascriptcore
https://bun.sh/
https://github.com/containers/bubblewrap
https://lwn.net/Articles/211883/
https://lwn.net/Articles/599755/
https://lwn.net/Articles/599755/
https://deno.land/manual/getting_started/permissions
https://deno.land/manual/getting_started/permissions
https://deno.land/manual/node/compatibility_mode
https://deno.land/manual/node/compatibility_mode
https://lwn.net/Articles/822256/
https://lwn.net/Articles/822256/
https://emscripten.org/
https://google.github.io/minijail/
https://developers.google.com/code-sandboxing/sandbox2/
https://developers.google.com/code-sandboxing/sandbox2/
https://www.usenix.org/conference/lisa21/presentation/gregg-bpf
https://www.usenix.org/conference/lisa21/presentation/gregg-bpf
https://lwn.net/Articles/656307/
https://www.usenix.org/conference/srecon22americas/presentation/kehoe-ebpf
https://www.usenix.org/conference/srecon22americas/presentation/kehoe-ebpf
https://deno.com/blog/v1.24#improved-ffi-call-performance
https://deno.com/blog/v1.25#ffi-api-improvements
https://deno.com/blog/v1.25#ffi-api-improvements
https://deno.land/
https://deno.land/
https://doc.deno.land/deno/stable/
https://github.com/denoland/rusty_v8
https://deno.land/x/sqlite3
https://libbpf.readthedocs.io/en/latest/index.html
https://man7.org/linux/man-pages/man2/accept.2.html
https://man7.org/linux/man-pages/man2/accept.2.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man1/ldd.1.html
https://man7.org/linux/man-pages/man2/listen.2.html
https://man7.org/linux/man-pages/man2/listen.2.html
https://man7.org/linux/man-pages/man2/pipe.2.html
https://man7.org/linux/man-pages/man2/socketpair.2.html
https://man7.org/linux/man-pages/man2/socketpair.2.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://docs.kernel.org/userspace-api/landlock.html
https://docs.kernel.org/userspace-api/landlock.html
https://firejail.wordpress.com/
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/sharp
https://nodejs.org/docs/latest/api/
https://nodejs.org/api/permissions.html
https://nodejs.org/api/permissions.html
https://nodejs.org
https://nodejs.org/api/v8.html
https://github.com/oven-sh/bun/tree/main/src/bun.js/bindings/webcore
https://github.com/oven-sh/bun/tree/main/src/bun.js/bindings/webcore
https://v8.dev/docs/wasm-compilation-pipeline
https://v8.dev/docs/wasm-compilation-pipeline
https://github.com/slimtoolkit/slim
https://youtu.be/M3BM9TB-8yA
https://youtu.be/M3BM9TB-8yA

NatiSand: Native Code Sandboxing for JavaScript Runtimes RAID ’23, October 16–18, 2023, Hong Kong, HongKong

[72] Snyk. 2022. State of Open Source Security 2022. https://snyk.io/reports/open-
source-security/.

[73] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. Synode:
Understanding and Automatically Preventing Injection Attacks on Node.js. In
Proceedings of the Network and Distributed System Security Symposium (NDSS).

[74] Cristian-Alexandru Staicu, Sazzadur Rahaman, Ágnes Kiss, and Michael Backes.
2023. Bilingual Problems: Studying the Security Risks Incurred by Native Exten-
sions in Scripting Languages. In Proceeding of the USENIX Security Symposium
(USENIX Security).

[75] Jeff Terrace, Stephen R. Beard, and Naga P. K. Katta. 2012. JavaScript in
JavaScript(js.js): Sandboxing Third-Party Scripts. In Proceedings of the USENIX
Conference on Web Application Development (WebApps).

[76] tesseract-ocr. 2023. Tesseract. https://github.com/tesseract-ocr/tesseract
[77] The kernel development community. 2023. LSM BPF Programs. https://docs.

kernel.org/bpf/prog_lsm.html
[78] The kernel development community. 2023. Seccomp BPF (SECure COMPuting

with filters). https://docs.kernel.org/userspace-api/seccomp_filter.html
[79] TryGhost. 2023. Asynchronous, non-blocking SQLite3 bindings for Node.js.

https://www.npmjs.com/package/sqlite3
[80] V8 project. 2020. Unsafe fast JS calls. https://v8.dev/blog/v8-release-87#unsafe-

fast-js-calls
[81] V8 project. 2023. What is V8? https://v8.dev/
[82] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André DeHon,

and Jonathan M Smith. 2018. BreakApp: Automated, Flexible Application Com-
partmentalization. In Proceedings of the Network and Distributed System Security
Symposium (NDSS).

[83] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos
Kallas, Ben Karel, André DeHon, and Michael Pradel. 2021. Preventing Dy-
namic Library Compromise on Node.js via RWX-Based Privilege Reduction. In
Proceedings of the ACM Conference on Computer and Communications Security
(CCS).

[84] WebAssembly. 2023. Wasi SDK. https://github.com/WebAssembly/wasi-sdk
[85] Yongzheng Wu, Sai Sathyanarayan, Ronald H. C. Yap, and Zhenkai Liang. 2012.

Codejail: Application-transparent isolation of libraries with tight program inter-
actions. In European Symposium on Research in Computer Security (ESORICS).

[86] Elizabeth Wyss, Alexander Wittman, Drew Davidson, and Lorenzo De Carli.
2022. Wolf at the Door: Preventing Install-Time Attacks in npm with Latch.
In Proceedings of the ACM Asia Conference on Computer and Communications
Security (ASIACCS).

[87] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Smallworld with High Risks: A Study of Security Threats in the Npm
Ecosystem. In Proceeding of the USENIX Security Symposium (USENIX Security).

A CURL POLICY
Listing 3 reports the policy associated with the execution of the
curl https://www.example.com command. The policy has been
automatically generated using the utility described in Section 5.2.

Listing 3: Example of policy associated with curl
1 [{
2 "name": "/usr/bin/curl",
3 "fs": {
4 "read": [
5 "/etc/gai.conf",
6 "/etc/host.conf",
7 "/etc/hosts",
8 "/etc/ld.so.cache",
9 "/etc/localtime",
10 "/etc/nsswitch.conf",
11 "/etc/passwd",
12 "/etc/resolv.conf",
13 "/etc/ssl/certs/ca-certificates.crt",
14 "/lib/x86_64 -linux -gnu",
15 "/ lib64/ld-linux -x86 -64.so.2",
16 "/usr/bin/curl",
17 "/usr/lib/locale/locale -archive",
18 "/usr/lib/ssl/openssl.cnf"
19],
20 "exec": [
21 "/lib/x86_64 -linux -gnu",

22 "/lib64/ld-linux -x86 -64.so.2",
23 "/usr/bin/curl"
24]
25 },
26 "net": [{
27 "name": "https://www.example.com",
28 "ports": [443]
29 }]
30 }]

https://snyk.io/reports/open-source-security/
https://snyk.io/reports/open-source-security/
https://github.com/tesseract-ocr/tesseract
https://docs.kernel.org/bpf/prog_lsm.html
https://docs.kernel.org/bpf/prog_lsm.html
https://docs.kernel.org/userspace-api/seccomp_filter.html
https://www.npmjs.com/package/sqlite3
https://v8.dev/blog/v8-release-87#unsafe-fast-js-calls
https://v8.dev/blog/v8-release-87#unsafe-fast-js-calls
https://v8.dev/
https://github.com/WebAssembly/wasi-sdk

	Abstract
	1 Introduction
	2 Background
	2.1 JS runtimes
	2.2 Components for resource protection

	3 Security motivation
	3.1 Threat model

	4 Design and implementation
	4.1 Objectives
	4.2 High level architecture
	4.3 Integration with JS runtimes
	4.4 Isolation features

	5 Policy
	5.1 Policy structure
	5.2 Policy generation

	6 Case Study: Deno runtime
	6.1 Runtime selection
	6.2 Deno integration
	6.3 Support to fast JS calls

	7 Experiments
	7.1 Exploit mitigation
	7.2 Performance evaluation

	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A curl policy

