
COMPONENTS FOR RESOURCE PROTECTION
Seccomp is a mechanism provided by the Linux kernel to restrict
the system calls available
It has only access to the values of the arguments passed to the
system calls (e.g., configuration flags), and pointers cannot be
dereferenced

eBPF permits to hook programs anywhere in the kernel to safely
modify its functionality at runtime
Use cases: efficient networking, observability, tracing and security

Landlock is a Linux Security Module that enables unprivileged
applications to restrict their filesystem permissions

SOLUTION
Improve the security of JS applications with the introduction of ad
hoc security contexts for the execution of native code

RESULTS
● Mitigation of CVEs targeting executables and libraries widely

used in web applications
● The cost of activating the sandbox is amortized with the increase

in the test duration
● Outperform state-of-the-art solutions in the execution of

common Linux utilities and image processing microservices

● Significantly outperform WebAssembly in the execution of
popular libraries (e.g., libpng, sqlite3), and microservices using
them

SUMMARY
● Execution of native code in JS runtimes represents a clear

security risk
● Our proposal enables native code sandboxing for JavaScript

Runtimes by providing fine-grained access control of system
resources without requiring changes to the application code

● Experiments showcase the mitigation of exploits at the cost of
limited overhead

BACKGROUND
Originally meant to run in the browser to provide advanced
dynamic interactions to web pages, JavaScript is now also being
used on the server-side

To run JavaScript on the server-side, we use JavaScript
runtimes

Despite their differences, here is how we can depict the
architecture of JavaScript runtimes

They complement the standard JavaScript features available in
browsers with additional functions necessary for the development
of applications on the server-side

PROBLEM STATEMENT
Native code is executed outside of the isolated context prepared
by the engine runs with the permissions of the whole app

Native components are often written with memory unsafe
languages and may come with different security assumptions
 one vulnerability away from a series of security problems

SECURITY RISKS
● Violation of the integrity and confidentiality of the application

code and data
● Escalation of privileges by attempting confused deputy

attacks on privileged system services
● Malicious network channels by opening reverse shells

Enable seamless sandboxing of native components your web application most
likely depends upon

NatiSand: Native Code Sandboxing for JavaScript Runtimes
 Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, Stefano Paraboschi

Bun

V8 engine

JavaScriptCore

Node.js

Deno

reduce latency by 5 to 10 ms

reduce latency by 100 to 400 ms

POLICY FORMAT & POLICY GENERATION
● Easy to understand policy syntax
● Writing a policy can be a complex time-consuming task
● Support policy generation with automatic discovery of

filesystem, inter-process communication and network
requirements

EXPERIMENTS

WARNING: SCARY TECHNICAL DETAILS UP AHEAD

