Lightweight Cloud Application Sandboxing

Marco Abbadini, Michele Beretta, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano Paraboschi

Universita degli Studi di Bergamo, Bergamo, Italy
name.surname@unibg.it

Abstract—Modern cloud applications can quickly grow to
an elaborate and intricate tangle of services. In this scenario,
paying attention to security aspects is important to mitigate the
impact of incidents. Indeed, several research works and industrial
standards recommend the integration of least privilege policies to
prevent disruptions such as file system tampering. Unfortunately,
technologies like containers virtualize file system resources with
a volume-based approach, which may be overly coarse.

In this work we address this problem proposing an approach
that restrict application access to file system resources with a
resource-based granularity. To this end, we develop a flexible and
intuitive tool that relies on instrumentation to collect, merge, and
audit the activity traces generated by any application component.
We then demonstrate how this information is used to create fine-
grained access policies, and introduce sandboxing using recent
kernel security modules, strengthening the security boundary of
the whole application. In the experimental evaluation we show-
case the mitigation capabilities associated with our approach, and
the low performance footprint. The proposal is associated with
an open source implementation.

Index Terms—Cloud, monitoring, instrumentation, sandbox

I. INTRODUCTION

Cloud applications are often built of many components, each
implementing a specific set of business requirements. Compo-
nents naturally evolve, their requirements may change, and as
the overall scale of the application grows it can be challenging
to ensure a high security standard. Many factors contribute
to making this objective hard to achieve; the most common
ones are: the presence of buggy components, the reliance on
potentially vulnerable native libraries written with memory
unsafe languages, and broad access to system resources.

Several research works have investigated the scenario (e.g.,
[11, [2], [3], [4], [5]). For instance, Staicu et al. [1] explain
the security problems that arise when web applications interact
with native extensions. BinWrap [2] and NatiSand [3] analyze
recent vulnerabilities and integrate new security measures in
the Node.js and Deno runtimes to improve isolation and limit
access to confidential resources. Lastly, Zimmermann et al. [4]
present an extensive study of third-party dependencies, finding
that large parts of the entire web ecosystem can be impacted by
security issues even when individual packages are vulnerable
or they include malicious code on purpose.

Recently, industry standards have also emerged to encourage
organizations to proactively include new security measures. A
notable example is the NIST SP 800-190 [6], which focuses
on environments that adopt microservices, containers and
Kubernetes. The production environment is given particular

The code is available at https://github.com/unibg-seclab/dmng

attention, with the goal of finding and stopping malicious
threats in real time. The directive clearly indicates that there is
a need for policies to defend against vulnerabilities that could
lead to disruptions, such as modification of important files.
The same regulation also provides instructions to prevent the
tampering of the file system, prompting that applications and
containers must be run with a set of permissions as minimal
as possible, namely following the least privilege principle.

Powered by the recent eBPF kernel technology, frame-
works like Tetragon [7] and Falco [8] have been proposed
to monitor cloud applications, identify unexpected security-
relevant events, and act on them (e.g., denying access). While
effective, they tend to introduce non-negligible overhead when
fine-grained policy rules are used [9]. We argue that the
combined use of classical operating system access control and
sandboxing mechanisms may lead to a more resource efficient
solution to isolate application components. For instance, the
recent Landlock LSM [10] permits a process to restrict itself
ensuring strong security guarantees with minimum perfor-
mance footprint. Furthermore, the integration of Landlock,
or an equivalent security mechanism, in cloud applications
significantly mitigates the risk associated with the exploitation
of a vulnerability, as the amount of resources available to a
potential attacker is greatly reduced.

Unfortunately, to benefit from this protection developers
must obtain a policy that clearly states the resources an
application component must be granted access to, and the
related permissions. This is far from trivial in the case of
complex applications. Indeed, the list of resources can vary
based on the production environment, or be subject to changes
when different inputs are provided. All these reasons hold back
the potential of sandboxing, and cloud applications may solely
rely on the coarse isolation provided by the virtual machine
or the container in which the application is executed.

Our contribution: In this paper we propose a new ap-
proach to systematically integrate fine-grained sandboxing in
cloud applications that is aligned with the current regulations
and best practices. In detail, we provide an intuitive, open-
source solution to retrieve all the file system resources required
by an application component, to build and customize least
privilege policies. We then showcase how policies are used
to sandbox programs with Landlock, mitigating the impact
of severe CVEs. The approach we propose is flexible and
does not depend on the toolchain leveraged to build each ap-
plication component. The experiments showcase the minimal
performance footprint at runtime, and highlight the ability to
monitor the application without affecting its execution state.

https://github.com/unibg-seclab/dmng

II. MOTIVATION

This Section explains the threat model and the motivation.

A. Threat model

We assume that the code part of the cloud application
(including native code executed by it) is trusted and not mali-
cious, but potentially affected by vulnerabilities due to bugs.
In this scenario, an attacker may leverage web interfaces or
programmatic APIs to send the application malicious payloads
with the goal of exploiting such vulnerabilities. This attack
vector may leave the application exposed to, e.g., arbitrary
file read and write, file system compromise, and execution
of arbitrary programs; all of which can lead to an inconsistent
state of the application and its volumes. We aim at the creation
of fine-grained, component-specific policies that are used by
developers to gradually introduce sandboxing, mitigating the
impact of vulnerabilities. This approach is complementary to
the use of containers, as a compromised process running in a
container can still damage all the resources available to it.

B. Dependency identification

An important use case for cloud applications is represented
by services that handle media resources such as videos, photos,
and audio. These applications typically rely on an extensive
set of editing libraries and codecs to perform a number of
operations like crop, scale, introduction of effects, format con-
version, and compression. This software is usually available as
dynamic libraries that are loaded and executed depending on
the type of operation to be performed, on the input source,
and on the hardware support available. A solution able to
automatically collect all the resources used by a component
for a set of test cases can significantly help the developer
detecting and isolating the dependencies of the application.
C. Mitigation of bugs

Open source libraries and programs are used exten-
sively while developing cloud applications. Examples include
database drivers, media processing libraries, and encoding
utilities. This software is often trusted, but it may be subject to
vulnerabilities as explained in Section II-A. When vulnerable
third-party code is executed by the application, it can be
targeted and compromised by an attacker who sends malicious
payloads, as described in [11], [12], [13]. Popular cases are the
Server-Side Request Forgery and Arbitrary File Read vulner-
abilities found in FFmpeg and exploited against TikTok [14],
and the Remote Command Execution vulnerability found in
ExifTool and exploited against GitLab [15]. Other examples
include: 1) CVE-2020-24020, CVE-2022-2566, CVE-2020-
2499 associated with video processing software, 2) CVE-2022-
1292, CVE-2022-2068, CVE-2022-2274 related to crypto-
graphic software, and 3) CVE-2021-4118, CVE-2021-37678,
CVE-2022-0845 targeting machine learning software.

With our approach we aim to support the progressive
introduction of fine-grained policies that are used to sandbox
the application or any of its components, making harder for
an attacker to tamper the file system, corrupt data, or exfiltrate
sensitive information such as private keys or database entries.

D. Performance and usability

Modern cloud applications are often packaged in containers
and deployed in Kubernetes clusters as Pods. To improve their
security and isolation Kubernetes provides a few integrated
tools. For example, RBAC policies can be used to govern
the behavior of software resources through service accounts.
Unfortunately, these policies can only restrict access to Ku-
bernetes APIs, therefore they are not suitable for fine-grained
restriction of permissions at an application component level.
The same limitation is shared with Seccomp profiles, which
can limit the kernel interface available to the cloud application,
but are only applied at container level [16] and cannot operate
depending on the specific requested resource [17].

Recent solutions based on eBPF, like Tetragon and Falco,
enable the introduction of fine-grained policy rules to over-
come the previous limitations. To this end, they load into the
kernel dedicated filters which are run system-wide every time
a security event like the opening of a file or the execution
of a program occurs. Based on the content of the policy, and
therefore the filters, these frameworks can grant or deny a
particular action, effectively restricting the privileges available
to a cloud application. However, as mentioned in Falco’s
documentation [9], these approaches can introduce overhead
subject to large variability. This is due to the evaluation of
filters every time a certain hook point (e.g., a syscall) is
triggered, and the need of multiple hooks to enforce a given
security policy. Furthermore, these frameworks do not assist
the developer in the generation of application-specific policies.

With our proposal we aim at giving the developer a com-
plementary approach to secure applications and limit the file
system resources accessible to them. Our idea is that the devel-
oper can benefit from the advantages brought by technologies
like Landlock (i.e., strong security guarantees, low overhead),
while at the same time rely on eBPF-based technologies, but
only to monitor a restricted subset of important security events.

ITI. APPROACH OVERVIEW

Frequently, developers start building cloud applications
from base container images, which are subsequently cus-
tomized and extended with third-party software (e.g., web
frameworks, database drivers, etc.). Once the application has
been developed, it is released to the staging area, a replica of
the production environment, not accessible from the outside,
where developers and cloud architects can test new features so
to detect design flaws and prevent unexpected errors to hit the
production environment. The similarity to the production area
makes it the best candidate to generate accurate least privilege
policies to restrict the permissions available to the application.

To operate as intended, each application component requires
access to system resources like programs, scripts, dynamic
libraries, shared memory, and files. We simply call these
resources requirements. In order to collect them, we provide an
intuitive open source tool called Dmng that performs service
instrumentation as shown in Figure 1. In detail, the tool
leverages ptrace and eBPF to setup and activate temporary
probes that register the actions performed by an application

STAGING PRODUCTION

Cloud Application Dmng Cloud Application
Requirements ks

extraction CI.OUd, = Component A N

Application)
: - wE
Policy : + — | 8 [— =
template | : _| § Component B [{— >
.................... Activity traces ‘ \W
Analysis and]
Component C customization Policy Component C
p : I Policy
: Traced by Dmng !Eﬂll"g [l sandboxA [——J] Sandbox B

Fig. 1: Approach overview: 1) Dmng uses probes to trace the application components A and B, 2) activity traces are saved
into a SQLite DB, 3) requirements are extracted from the traces and used to build security policies, finally 4) policies are
leveraged by the sandboxer to secure the application in production

component, making it possible to track file-opening requests,
reading and writing of data, use of shared memory and
execution of native code via subprocesses and shared libraries.
All these requests are automatically registered into a database
and subsequently used to generate policy templates. Together
with the file system path, each requirement is associated
with permissions. Compatibly with Unix-like systems, three
permissions are available: read, write, and exec. The pol-
icy templates generated by Dmng can then be interactively
modified by the developer with the addition, modification or
removal of policy rules. After the changes are committed, the
policy is serialized into a JSON file and it is ready to be used
to sandbox the application.

Sandboxing can be introduced with several technologies and
frameworks; given that we aim to restrict file system resources,
we provide a sandboxing utility based on Landlock that parses
the set of requirements needed by the application (i.e., path
and permission pairs) from the JSON policy file generated
by Dmng, and it restricts the permissions accordingly. We
selected Landlock due to its outstanding performance and
stackability property. Indeed, the use of Landlock allows us to
be compatible with systems that already rely on other LSMs
(e.g., AppArmor, SELinux). We highlight that, whenever two
or more LSMs are available on the host, a single denial
prevents the access to a resource (i.e., deny takes precedence).

After the cloud application has been deployed to the pro-
duction environment it is important to ensure that services are
running as expected, there are no anomalies, and proactive
measures are taken to identify potential threats. By default,
access to any file system resource not listed in the policy is
blocked by Landlock. However, there may be cases in which
the developer would like to generate reports on the set of
requested resources by the application. To enable this, Dmng
allows to temporarily observe and record the activity traces
generated by any application component without changes to
the application itself nor its execution state. These checks are
not bypassable, which is a considerable advantage compared

to alternative techniques that either rely on LD_PRELOAD or
perform instrumentation through code dependency injection.

The following sections are organized as follows. Section IV
details the technologies used to support policy generation and
implement monitoring. Section V clarifies the structure of the
policy. Section VI describes sandboxing through Landlock.
Lastly, Section VII showcases the mitigation capabilities and
investigates the performance overhead.

IV. CLOUD APPLICATION INSTRUMENTATION

Our solution implements two methods to collect the require-
ments and generate the policy. The first uses ptrace and is
based on syscall argument inspection, the second leverages
eBPF, which dynamically extends the kernel attaching dedi-
cated probes on relevant in-kernel file system-related events.
Both approaches are used to instrument the application, how-
ever, using ptrace significantly affects performance and thus
is meant to be used only during staging. On the other hand,
eBPF has lighter impact on performance, hence it can be used
also in production.

A. Ptrace-based instrumentation

Ptrace is a functionality implemented by the kernel aimed
at debuggers and code analysis tools that permits a process,
called the tracer, to control and observe the activity performed
by another process, the tracee. In our implementation, Dmng
acts as the tracer for any application component. To this
end, it prepares a parent and a child process as shown in
Figure 2, and then uses the ptrace system call to instruct the
kernel that the child will be traced by the parent (through the
PTRACE_TRACEME request). After this step is completed,
Dmng injects into the child process the component to be
run, and then starts it. While being traced, every time an
event occurs, the tracee is stopped by the kernel and a
notification is sent to the tracer, which has the possibility
to inspect and perform changes before the execution of the
tracee is resumed. Dmng leverages ptrace to capture all file
system-related syscalls, effectively monitoring the requests

TRACER TRACEE
clone
Dmng } { Child process |
[ptrace (PTRACE_TRACEME)
[exec(apphcaﬂon)
notify (i
|‘ L syscall entry]
[inspection]

[resume

Fig. 2: Dmng acts tracer for the application, inspecting the
arguments of every syscall

issued to the kernel by the component. The syscalls and their
arguments are recorded by the tracer and saved to the SQLite
database mentioned in Section III. The set of monitored
syscalls includes interfaces such as open, openat, creat, execve,
link, linkat, mkdir, and the related permission flags (e.g.,
O_APPEND, O_CREAT, O_RDONLY). It is important to
point out that Dmng automatically captures and monitors the
possible children spawned by the tracee, and it is also capable
to identify the set of dynamic libraries they depend upon.

When the developer wants to stop the tracing process, Dmng
detaches itself from the tracing of the child process with the
PTRACE_DETACH request and it terminates the child process
by sending a SIGKILL signal.

B. eBPF-based intrumentation

Similarly to other recent security and observability frame-
works, like Cilium [18], and Tetragon [7], Dmng relies on the
eBPF technology to implement continuous monitoring. The
eBPF subsytem allows to change at runtime the behavior of
the kernel without changing its implementation nor adding
new modules. Briefly, it permits to do so by loading compact
programs within the kernel, which are evaluated (without
preemption) by a virtual machine-like component every time a
certain hook point is reached. There are many types of hooks
within the kernel, examples are network events, tracepoints,
and LSM functions. To store data persistently between dif-
ferent eBPF program invocations and to share data between
kernel and user space, data structures called maps are used.
They provide abstractions such as arrays and hashmaps. It is
important to mention that eBPF programs must be safe to
run within the kernel and must not introduce bugs. To ensure
these conditions are met, the eBPF susbsystem automatically
performs the two stages of Program Verification and Just-In-
Time Compilation at load time; only if both terminate without
exceptions then the loading of the program is successful.

Dmng activates eBPF-based tracing on a given application
component using its thread identifier. To this end, it leverages
the libbpf [19] frontend to load into the kernel the eBPF
programs and maps needed to perform tracing, and then starts

Dmng Application
eBPF programs ﬁ@ fin
E g
& maps ® buffer
user | S 7400\ W (NS R
kernel @

JIT
compiler

task storage

eBPF

— |load time

Fig. 3: Dmng uses libbpf to load the eBPF tracing programs
and maps, then it polls data from the shared ring buffer

collecting data. The process is shown in Figure 3. The set of
eBPF programs comprises of: 1) dedicated programs to trace
the application component lifetime, and 2) programs to moni-
tor the file system-related events generated by the component.
The former group of programs ensure that monitoring extends
to tasks spawned through the clone system call by the compo-
nent. Hence, they are attached to the sched_process_fork and
sched_process_exit kernel tracepoints. Instead, the programs
that record file system-related events are attached to hooks
reported in Table I. Whenever one of these hooks is triggered,
the attached program writes the requirement path and the
related permission to a ring buffer shared with the Dmng
user space process. This permits Dmng to poll data regularly,
and then to save it in the already mentioned SQLite database
(Section III).

We highlight that the collection of data using this method
has minimal invasiveness: no changes must be introduced in
the code of the application, nor it is necessary to restart it to
setup the process. Indeed, when the developer wants to stop
tracing, the eBPF programs and maps loaded by Dmng are
automatically removed, leaving the system unmodified.

V. PoLICY

In this section we present the structure of the policy,
explaining how it can be customized. We also discuss aspects
such as coverage and effectiveness.

Policy structure: The policy obtained from Dmng is a
JSON file structured as a list of objects as shown in Listing 1.
For each of them, a field policy_name identifies the application
component the policy applies to, while the sections read, write
and exec are used to configure the related permissions. The
structure of the policy is flexible, and for each object only the
field policy_name is required. Since the policy implements a
default-deny model, an object that does not list any section in
its body has no runtime permission, hence the corresponding
component cannot access any file system resource. Listing 1
shows an example in which a component called filter is granted
execution access to the Awk program (together with its shared
libraries) to process the read-only users.csv dataset.

TABLE I: List of file system traced hook points

Hook name

fentry/security_file_fcntl
fentry/security_file_ioctl
fentry/security_file_lock
fentry/security_file_mprotect
fentry/security_file_open
fentry/security_file_receive
fentry/security_file_set_owner
fentry/security_inode_getattr
fentry/security_path_chmod
fentry/security_path_chown
fentry/security_path_chroot
fentry/security_path_link
fentry/security_path_mkdir
fentry/security_path_mknod
fentry/security_path_rename
fentry/security_path_rmdir
fentry/security_path_symlink
fentry/security_path_truncate
fentry/security_path_unlink
lsm/bprm_check_security
lsm/mmap_file

Policy customization: Dmng provides a CLI interface that

works simultaneously with multiple data sources to produce
the list of requirements. By default, it implements the logic
to automatically merge the requirements collected with ptrace
and the eBPF programs. Moreover, it permits to customize
the policy interactively by adding, changing and removing
requirements. For instance, it allows to delete requirements
based on the permission mask (e.g., r_x, r—-), or change the
permission associated with all the requirements that match a
given path regex (e.g., /usr/bin/libnet. x).
A useful feature implemented by Dmng is permission pruning.
This function takes advantage of the structure of the Directory
Tree [20] to help the developer lower the number of require-
ments in the policy by reducing the granularity of permissions.
The reduction in granularity is based on a pruning goal set by
the developer that represents the desirable maximum number
of policy rules associated with an application component. To
implement this feature, Dmng first uses the policy template to
build a trie (or prefix tree), then starts pruning its branches
iteratively following a best effort approach, until the pruning
goal is achieved. The rationale is that there are areas of the
file system in which fine granularity brings strong security
guarantees (e.g., /1ib), but there are also many other areas
where fewer rules make the policy more concise without af-
fecting security (e.g., /share). So, it is important to consider
contextual information about the current prefix path to guide
the pruning process. Moreover, we want to comply with the
write xor execute memory protection policy whereby every
file may be either writable or executable, but not both. Thus,
limiting the propagation of potentially insecure configurations
(e.g., no dynamic library stored in /1ib must be writable
and executable by the application). After the pruning process
terminates, the changes to the template are audited by the
developer, and can be committed or discarded.

Listing 1: Example of JSON file with single policy
{

1

2 "policies": [{

3 "policy_name": "filter",

4 "read": [

5 "/1lib/x86_64-linux—gnu/libsigsegv.so.2",
6 "/1lib/x86_64-1linux-gnu/libreadline.so.8",
7 "/1lib/x86_64-1linux—-gnu/libmpfr.so.6",

8 "/1ib/x86_64-1linux—gnu/libgmp.so.10",

9 "/1lib/x86_64-1linux—-gnu/libm.so.6",

10 "/1lib/x86_64-1linux—gnu/libc.so.6",

11 "/1ib/x86_64-1linux—gnu/libtinfo.so.6"’,
12 "/1lib64/1d-1inux-x86-64.s0.2",

13 "/usr/bin/awk",

14 "users.csv"

15 1,

16 "exec": [

17 "/1lib/x86_64-linux-gnu/libsigsegv.so.2",
18 "/1lib/x86_64-1inux—-gnu/libreadline.so.8",
19 "/1lib/x86_64-1linux—gnu/libmpfr.so.6",

20 "/1lib/x86_64-1linux—gnu/libgmp.so.10",

21 "/1lib/x86_64-1linux—-gnu/libm.so.6",

22 "/1lib/x86_64-1linux—gnu/libc.so.6",

23 "/1lib/x86_64-1linux—-gnu/libtinfo.so.6"’,
24 "/1ib64/1d-1inux-x86-64.s0.2",

25 "/usr/bin/awk"

26]

27 3

28 }

Coverage and effectiveness: To generate the policy tem-
plates, Dmng registers the activity performed by the appli-
cation while a set of test cases is executed. This approach
is similar to the one proposed by the Slim toolkit [21] to
identify the dependencies of a container and minify its image,
and to the one followed by the Google Sandbox2 utility [22]
to retrieve the requirements of programs distributed as ELF
files. However, test-based policy generation can be subject
to coverage issues if the set of test cases is not exhaustive.
Another aspect worth mentioning is that poorly structured
applications may benefit less from the isolation properties
provided by sandboxing. Since Dmng supports the sandbox-
ing of components with a per-thread policy, we recommend
to leverage this function and execute potentially vulnerable
components in dedicated compartments.

VI. APPLICATION SANDBOXING

In this work we implement the sandbox leveraging Land-
lock, an unprivileged sandboxing mechanism officially merged
into the Linux kernel in 2021 (version 5.13), with the goal
of mitigating the security impact of bugs and unintended
or malicious behavior in user-space application. The main
reasons why Landlock was preferred to alternative sandboxing
solutions such as Google Sandbox2 [22] are: 1) it does not
rely on a proxy to implement the restrictions, hence it ensures
low overhead at runtime, and 2) it is directly implemented
within the kernel, thus it provides strong security guarantees.
This section clarifies how policies are enforced with Landlock.
Furthermore, it explains how rwx policy rules are translated
into the Landlock permission model, and how restrictions are
inherited by new components dynamically spawned at runtime.

2)
. 1
Sandboxer g!) Cl.OUd.
JSONIL, application
3)

1) Sandboxer starts the app
2) Sandboxer activates the app sandbox 4)

TABLE II: Sample of CVEs reproduced in our evaluation

CVE

A crafted AVI video is used to read arbitrary files
CVE-2016-1897
CVE-2016-1898

Software Version

FFmpeg v2.X

3) App starts component A (who inherits the

parent sandbox) Component A

A bug in the PDF codec enables arbitrary code execution
CVE-2020-29599 ImageMagick v7.0.10-36

4) Sandboxer restricts component A’'s sandbox

Fig. 4: Landlock sandbox setup and inheritance

The sandboxer is an extension of Dmng written in Rust
that receives the JSON policy as input and modifies the
application start procedure setting the permissions available to
components before they are executed. The first task performed
by the sandboxer is then to translate the rwx policy rules into
the action-based permission model implemented by Landlock.
In detail, Landlock groups permissions into rulesets, which
collect the actions (e.g., FS_EXECUTE, FS_READ_FILE)
permitted on each object (e.g., file, directory). The sandboxer
separates the available actions to match the rwx categories,
and then leverages the landlock_create_ruleset() and land-
lock_add_rule() interfaces to populate the rulesets accordingly.
To activate the restrictions, a call to landlock_restrict_self{() is
perfomed. The process is illustrated in Figure 4.

An important property defined by Landlock is policy inheri-
tance. Whenever a new component is dynamically spawned by
the application in a child process, it automatically inherits the
restrictions set on the parent. Moreover, after a ruleset has been
activated, no new permissions can be granted to a component,
as the ruleset can only be further restricted. Figure 4 shows the
policy inheritance process for a generic application. The figure
also shows how the inherited ruleset is further narrowed with
a subsequent call to landlock_restrict_self{) by the component.

VII. EXPERIMENTS

This section presents our experimental evaluation. In the
first part (Section VII-A), we reproduce a sample of CVEs
affecting open source software, and showcase how the sandbox
mitigates the exploits. In the second part (Section VII-B), we
analyze the performance overhead. Specifically, we implement
an application that performs various operations on media
resources, and then evaluate the degradation of latency when
sandboxing and eBPF-based monitoring are activated. The
tests have been executed on a workstation with Arch Linux,
kernel version 6.4, an AMD Ryzen 5 7600X CPU, 32 GB
RAM, and 1 TB SSD.

A. Mitigation of vulnerabilities

To demonstrate the importance of the introduction of sand-
boxing, we selected the sample of high severity vulnerabilities
reported in Table II. These vulnerabilities affect software
extensively used in cloud application development such as
FFmpeg, ImageMagick, OpenSSL and Exiftool. For each of
them, we installed on the system a vulnerable version of the
program or library, and then verified it was exploitable using

Improper sanitisation allows command injection
CVE-2022-1292 OpenSSL v3.0.2

Improper neutralization of user data in the DjVu file format
is used to run arbitrary executables

CVE-2021-22204 ExifTool v12.23

public Proofs of Concept when the input is sent through pro-
grammatic APIs or web interfaces. Subsequently, we leveraged
Dmng to generate least privilege policies. Finally, we repeated
the execution of the previous tests starting each vulnerable
component with our sandboxer. When benign input was sub-
mitted to the application, we were able to conduct the tests
without loss of functionality. When instead malicious input
was used, Landlock correctly blocked the exploit, limiting
access to only resources listed in the policy. We highlight that,
in general, similar protections extend to a broader set of CVEs.

B. Overhead

As mentioned in Section II, an important use case for
cloud applications is represented by services that handle
media resources such as videos, photos and audio. Therefore,
to evaluate the overhead associated with our approach we
implemented a Rust application that, upon receiving a request,
leverages third-party software to apply several transformations
on a media resource. Our goal is to measure the latency
of the application to perform a given operation. Three test
configurations are used: 1) no sandboxing is applied, hence no
protection, 2) sandboxing is enabled leveraging our Landlock-
based sandboxer, and 3) sandboxing is enabled plus eBPF-
based continuous monitoring provided by Dmng is activated.
Each operation is repeated 1000 times, and the measures are
reported with 95% confidence intervals. Moreover, we focus
on the server-side execution time, hence we do not consider
the delay introduced by the network, which may make harder
to visualize latency degradation for short-lived operations.

The first set of experiments focuses on image processing.
In detail, the application leverages convert to copy, enhance,
resize, sharpen, rotate and swirl images with 32x32, 640x480
and 1920x1080 resolutions. The results are shown in Figure 5.
Inevitably, sandboxing introduces a slight degradation of la-
tency compared to a scenario without protection. However, the
overhead is non-negligible only for short-lived operations that
last less than 10 ms, a duration that is considerably less than
the average network delay. When instead eBPF-based mon-
itoring is enabled, the data show worse latency degradation,
especially for operations that last less than 50 ms. Remarkable
is the case 640x480, in which the average operation overhead
associated with eBPF-based monitoring is 47.6%.

mmm None mmm landlock mmm Landlock+eBPF mmm None mmm Landlock mmm Landlock+eBPF Emm None W= Landlock W= Landlock+eBPF
S X
2 - g © 5
n m - oM X O o
8 o RSB J 58
o 2
T 6 —_
15 £
g g
E4 =
2
0 " " " " " -
Copy Enhance Resize Sharpen Rotate Swirl Copy Enhance Resize Sharpen Rotate Swirl Copy Enhance Resize Sharpen Rotate Swirl
(a) 32x32 image resolution (b) 640x480 image resolution (c) 1920x1080 image resolution
Fig. 5: Latency associated with various operations for an image processing application
mm None MM Landlock EEE Landlock+eBPF w None MM Landlock EEE Landlock+eBPF mmm None mmm Landlock mmm Landlock+eBPF
X
P 600 o e
80 eq 5000 £
gl o
S 5004
4000
— 60 — —
7 2 400 3 £
o o o 30007 : 2
£ 40 £ 3007 E
i . . 2000+
2004
204 XX R §
100 w001 o 33 23
(]
m —

ol
Decode

Decode

Copy Cut Loop Extract Audio Copy

(a) 6 seconds 480p video

(b) 1 minute 480p video

04
Cut Loop Extract Audio Decode

Copy Cut

Loop Extract Audio

(c) 10 minutes 480p video

Fig. 6: Latency associated with various operations for a video processing application

The second set of experiments focuses on video process-
ing. In detail, the application leverages ffimpeg to decode,
copy, cut, loop and extract audio from videos with 480p
resolution and with 6 seconds, 1 minute, and 10 minutes
duration respectively. The results are shown in Figure 6. The
overhead introduced by sandboxing is perceptible only for the
decode and copy operations on the shortest video (6 seconds).
However, it never exceeds 18.3%. As expected, the overhead
becomes practically negligible for operations that take longer
than 100 ms. The same considerations extend to the eBPF-
based monitoring, which again confirms to be associated with
more degradation compared to the Landlock-only solution.

VIII. RELATED WORK

Several research works have highlighted the importance of
sandboxing and isolation techniques in modern software [23],
[24], [25], [26], [27], [28]. Indeed, sandboxing plays a key role
in many systems and is integrated in software such as browsers
(e.g., Chrome [29], Firefox [30]), service managers (e.g.,
Systemd [31]) and document viewers (e.g., Acrobat [32]).

With specific reference to the cloud scenario, many recent
proposals have investigated the use of sandboxing to mitigate
vulnerabilities [3], [12], [33], [11], [1], [2], [4], [13]. In
NatiSand [3] and Cage4Deno [12] the authors modify the
Deno runtime to control the permissions available to appli-
cations running native code. BinWrap [2] proposes similar

measures to restrict the permissions available to Node.js native
add-ons. SandDriller [11] describes an approach based on
dynamic analysis for detecting sandbox escape vulnerabilities
for Node.js applications. Zimmermann et al. [4] and Fer-
reira et al. [13] study the risks associated with vulnerable
or malicious third-party dependencies and propose possible
install (and update) time countermeausures. In general, all the
previous proposals address the issues associated with a specific
runtime ecosystem. Conversely, we aim to secure applications
independently of their build toolchain or runtime.

Virtual machines and containers are two fundamental tech-
nologies in modern cloud architectures. Both permit to virtual-
ize resources and execute applications in an isolated environ-
ment. Virtual machines ensure stronger security guarantees at
the cost of higher resource utilization with respect to contain-
ers. The main reason is that applications executed in separate
virtual machines have a distinct set of resources and do not
share the same kernel [34], [35]. With specific reference to our
scenario, both these technologies are associated with coarse
granularity. Indeed, when working with them developers grant
the application access to volumes rather than single resources.
So, we provide a complementary approach to enable the
introduction of fine-grained, per-resource access rules.

Modern industrial platforms like Cilium [36] and Falco [8]
rely on eBPF as the primary means to enforce security

policies in cloud applications. Cilium provides networking,
observability, and security functions for container workloads,
while Falco implements a threat detection engine for clusters.
These solutions can prove difficult to configure. Moreover, as
already mentioned in the paper, the performance of eBPF-
based solutions is associated with large variability when
fine-grained rules are used [9]. Therefore, we propose to
complement these solutions by assisting the developer in the
generation of least privilege security policies and using recent
sandboxing technologies like Landlock, to reduce the overhead
and strengthen the security boundary of the application.

IX. CONCLUSIONS

The mitigation of security bugs and vulnerabilities that
affect cloud applications is an important topic. In this work, we
presented an approach to support the introduction of security
policies to restrict the file system resources available to an
application. To facilitate adoption, a central aspect in our
proposal is the support to policy generation. We provide an
open source tool to generate and customize least privilege
policies leveraging the powerful, yet complex, ptrace and eBPF
kernel technologies. Compared to virtualization technologies
such as VMs and containers, which are associated with coarse
granularity, we demonstrate that our proposal enables the
introduction of fine-grained, per-resource access rules. The ex-
periments showcase the capability of our approach to mitigate
severe CVEs at the cost of limited overhead.

While currently the protection is limited to the file system,
the isolation can be extended to other subsystems (e.g., the
network). This is a promising line of research for future work.

ACKNOWLEDGMENTS

This work was funded by the European Commission - Hori-
zon Europe within the GLACIATION project (101070141), by
the European Union - NextGenerationEU within the GRINS
project (PEO0000018), and by the Ministero dell’Universita e
della Ricerca - PRIN within the POLAR project.

REFERENCES

[1] C.-A. Staicu, S. Rahaman, A. Kiss, and M. Backes, “Bilingual Problems:
Studying the Security Risks Incurred by Native Extensions in Scripting
Languages,” in USENIX Security Symposium, 2023.

[2] G. Christou, G. Ntousakis, E. Lahtinen, S. Ioannidis, V. P. Kemerlis,
and N. Vasilakis, “BinWrap: Hybrid Protection Against Native Node.js
Add-ons,” in ACM ASIA Conference on Computer and Communications
Security, 2023.

[3] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi,
“NatiSand: Native Code Sandboxing for JavaScript Runtimes,” in Re-
search in Attacks, Intrusions and Defenses, 2023.

[4] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Smallworld
with High Risks: A Study of Security Threats in the Npm Ecosystem,”
in USENIX Security Symposium, 2019.

[5]1 R. Jolak, T. Rosenstatter, M. Mohamad, K. Strandberg, B. Sangchoolie,
N. Nowdehi, and R. Scandariato, “Conserve: A framework for the
selection of techniques for monitoring containers security,” Journal of
Systems and Software, 2022.

[6] NIST, “Application Container Security Guide,” 2023. [Online].
Available: https://csrc.nist.gov/publications/detail/sp/800- 190/final

[7]1 The Tetragon authors, “Tetragon,” 2023. [Online]. Available: https:
/Itetragon.cilium.io/

[8] The Falco Authors, “Falco,” 2023. [Online]. Available: https://falco.org

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]
[19]
[20]
[21]
(22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]
[31]

[32]

[33]

[34]

(35]

(36]

, “What is the performance overhead or resource utilization
of Falco?” 2023. [Online]. Available: https://falco.org/about/faq/
#what-is- the- performance-overhead-or-resource-utilization- of-falco

M. Salaiin, “Landlock: unprivileged access control,” 2022. [Online].
Available: https://docs.kernel.org/userspace-api/landlock.html

A. AlHamdan and C. Staicu, “SandDriller: A fully-automated approach
for testing language-based JavaScript sandboxes,” in USENIX Security
Symposium, 2023.

M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi,
“Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses,” in ACM
ASIA Conference on Computer and Communications Security, 2023.
G. Ferreira, L. Jia, J. Sunshine, and C. Kistner, “Containing malicious
package updates in npm with a lightweight permission system,” in
International Conference on Software Engineering, 2021.

Hackerone, “External SSRF and Local File Read via video upload
due to vulnerable FFmpeg HLS processing,” 2021. [Online]. Available:
https://hackerone.com/reports/1062888

CVE Mitre, “Gitlab Exiftool vulnerability,” 2021. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22205

The Kubernetes Authors, “Restrict a Container’s Syscalls with seccomp,”
2023. [Online]. Available: https://kubernetes.io/docs/tutorials/security/
seccomp/

J. Jia, Y. Zhu, D. Williams, A. Arcangeli, C. Canella, H. Franke,
T. Feldman-Fitzthum, D. Skarlatos, D. Gruss, and T. Xu, “Programmable
system call security with ebpf,” in arXiv, 2023.

The Cilium Authors, “Cilium,” 2023. [Online]. Available: https:
/[cilium.io

libbpf, “libbpf,” 2023. [Online]. Available: https:/libbpf.readthedocs.io/
en/latest/index.html

Linux man pages, “hier,” 2023. [Online]. Available: https://man7.org/
linux/man-pages/man7/hier.7.html

Slim.Al, “SlimToolKit,” 2023. [Online]. Available: https://github.com/
slimtoolkit/slim

Google, ‘“sandbox2,” 2023. [Online]. Available: https://developers.
google.com/code-sandboxing/sandbox2

T. Kim and N. Zeldovich, “Practical and Effective Sandboxing for Non-
root Users,” in USENIX Annual Technical Conference, 2013.

C. Wright, C. Cowan, J. Morris, James, S. Smalley, and G. Kroah-
Hartman, “Linux Security Module framework,” in Ottawa Linux Sym-
posium, 2002.

A. Berman, V. Bourassa, and E. Selberg, “TRON: Process-Specific
File Protection for the UNIX Operating System,” in USENIX Annual
Technical Conference, 1995.

S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner,
H. Shacham, and D. Stefan, “Retrofitting Fine Grain Isolation in the
Firefox Renderer,” in USENIX Security Symposium, 2020.

M. Rossi, D. Facchinetti, E. Bacis, M. Rosa, and S. Paraboschi, “SEApp:
Bringing Mandatory Access Control to Android Apps,” in USENIX
Security Symposium, 2021.

M. Albanese, A. De Benedictis, D. D. de Macedo, and F. Messina,
“Security and trust in cloud application life-cycle management,” Future
Generation Computer Systems, 2020.

Chromium, “Sandbox,” 2023. [Online]. Avail-
able: https://chromium.googlesource.com/chromium/src/+/refs/heads/
main/docs/design/sandbox.md

MozillaWiki, “Sandbox Architecture,” 2023. [Online].
https://wiki.mozilla.org/Security/Sandbox/Process_model
Debian, “Service sandboxing,” 2023. [Online]. Available:
/Iwiki.debian.org/ServiceSandboxing

Adobe Inc., “Sandbox protections,” 2023. [Online]. Avail-
able: https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/
sandboxprotections.html

M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi, and
S. Paraboschi, “POSTER: Leveraging eBPF to enhance sandboxing of
WebAssembly runtimes,” in ACM ASIA Conference on Computer and
Communications Security, 2023.

V. Casola, A. De Benedictis, M. Rak, and U. Villano, “Security-by-
design in multi-cloud applications: An optimization approach,” Infor-
mation Sciences, 2018.

——, “Monitoring data security in the cloud: A security sla-based
approach,” in Security and Resilience in Intelligent Data-Centric Systems
and Communication Networks, 2018.
The Cilium Authors, “Cilium,” 2023.
/lcilium.io

Available:

https:

[Online]. Available: https:

https://csrc.nist.gov/publications/detail/sp/800-190/final
https://tetragon.cilium.io/
https://tetragon.cilium.io/
https://falco.org
https://falco.org/about/faq/#what-is-the-performance-overhead-or-resource-utilization-of-falco
https://falco.org/about/faq/#what-is-the-performance-overhead-or-resource-utilization-of-falco
https://docs.kernel.org/userspace-api/landlock.html
https://hackerone.com/reports/1062888
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22205
https://kubernetes.io/docs/tutorials/security/seccomp/
https://kubernetes.io/docs/tutorials/security/seccomp/
https://cilium.io
https://cilium.io
https://libbpf.readthedocs.io/en/latest/index.html
https://libbpf.readthedocs.io/en/latest/index.html
https://man7.org/linux/man-pages/man7/hier.7.html
https://man7.org/linux/man-pages/man7/hier.7.html
https://github.com/slimtoolkit/slim
https://github.com/slimtoolkit/slim
https://developers.google.com/code-sandboxing/sandbox2
https://developers.google.com/code-sandboxing/sandbox2
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md
https://wiki.mozilla.org/Security/Sandbox/Process_model
https://wiki.debian.org/ServiceSandboxing
https://wiki.debian.org/ServiceSandboxing
https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/sandboxprotections.html
https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/sandboxprotections.html
https://cilium.io
https://cilium.io

	Introduction
	Motivation
	Threat model
	Dependency identification
	Mitigation of bugs
	Performance and usability

	Approach overview
	Cloud application instrumentation
	Ptrace-based instrumentation
	eBPF-based intrumentation

	Policy
	Application sandboxing
	Experiments
	Mitigation of vulnerabilities
	Overhead

	Related work
	Conclusions
	References

