
POSTER: Leveraging eBPF to enhance sandboxing of
WebAssembly runtimes

Marco Abbadini
marco.abbadini@unibg.it

Università degli Studi di Bergamo
Bergamo, Italy

Michele Beretta
michele.beretta@unibg.it

Università degli Studi di Bergamo
Bergamo, Italy

Dario Facchinetti
dario.facchinetti@unibg.it

Università degli Studi di Bergamo
Bergamo, Italy

Gianluca Oldani
gianluca.oldani@unibg.it

Università degli Studi di Bergamo
Bergamo, Italy

Matthew Rossi
matthew.rossi@unibg.it

Università degli Studi di Bergamo
Bergamo, Italy

Stefano Paraboschi
stefano.paraboschi@unibg.it

Università degli Studi di Bergamo
Bergamo, Italy

ABSTRACT
WebAssembly is a binary instruction format designed as a portable
compilation target enabling the deployment of untrusted code in
a safe and efficient manner. While it was originally designed to
be run inside web browsers, modern runtimes like Wasmtime and
WasmEdge can execute WebAssembly directly on various systems.
In order to access system resources with a universal hostcall inter-
face, a standardization effort namedWebAssembly System Interface
(WASI) is currently undergoing. With specific regard to the file sys-
tem, runtimes must prevent hostcalls to access arbitrary locations,
thus they introduce security checks to only permit access to a pre-
defined list of directories. This approach not only suffers from poor
granularity, it is also error-prone and has led to several security
issues. In this work we replace the security checks in hostcall wrap-
pers with eBPF programs, enabling the introduction of fine-grained
per-module policies. Preliminary experiments confirm that our
approach introduces limited overhead to existing runtimes.

CCS CONCEPTS
• Security and privacy→ Software and application security;
Access control; File system security.

KEYWORDS
Sandboxing, Access control, WebAssembly runtime, eBPF

ACM Reference Format:
Marco Abbadini, Michele Beretta, Dario Facchinetti, Gianluca Oldani,
Matthew Rossi, and Stefano Paraboschi. 2023. POSTER: Leveraging eBPF
to enhance sandboxing of WebAssembly runtimes. In ACM ASIA Confer-
ence on Computer and Communications Security (ASIA CCS ’23), July 10–
14, 2023, Melbourne, VIC, Australia. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3579856.3592831

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0098-9/23/07.
https://doi.org/10.1145/3579856.3592831

1 INTRODUCTION
WebAssembly (Wasm) [15] is a popular binary instruction format
that enables the execution of untrusted code in a safe, isolated envi-
ronment. Moreover, it is a portable compilation target for different
languages, and can be executed efficiently on a wide range of plat-
formswithout the need of dedicated hardware.Wasmwas originally
meant to be run inside web browsers, but given the considerable
advantages it brings, many runtimes that allow execution in stand-
alone mode have been developed recently. Popular examples are
Wasmtime, WasmEdge, Wasmer, and WAMR.

To answer the developers’ need to access resources of the host
system from within the runtime, a standardization effort called
WebAssembly System Interface (WASI) [28] is undergoing. Its goal
is to provide a stable and multi-platform system interface. To be
WASI-compliant, each runtime must implement all the calls defined
in the interface with dedicated functions, which are named hostcalls.
However, implementing these functions is non-trivial, since (i) the
code must not introduce violations to the Wasm memory model,
and (ii) it is possible to break the separation between the system and
the isolated environment in which the Wasm module is executed.
The solution adopted by current runtimes leverages WASI Libc [27],
a library providing POSIX-compatible APIs built on top of hostcalls.

Currently, every WASI-compliant runtime implements the pro-
posed file system interface with a libpreopen-like layer [21]. When-
ever the runtime receives a request to open a file, it first checks
whether the path belongs to the authorized list of directories, then
it opens the file on behalf of the Wasm program, redirecting the
content to the caller. Previous work [7, 16, 18] proved the approach
to be error-prone, leaving the system unprotected when a vulnera-
bility was introduced in a hostcall wrapper (Figure 1). Moreover,
this approach provides limited flexibility, as it is associated with
directory-based granularity instead of file-based. Lastly, in order to
audit the policy regulating resource access, one must find the per-
missions by looking at the code. We claim that there is no practical
advantage in having several implementations of the same access
control checks for different runtimes. Our idea is to replace the
user-space runtime-specific security checks with a single in-kernel
implementation that leverages eBPF [26]. There are considerable
advantages in doing so: (i) it permits to decouple the implementa-
tion of hostcall wrappers and the access control details, minimiz-
ing the risk of bugs [3, 17, 25], (ii) it enables the introduction of
per-module policies with file-based granularity, and (iii) it fulfills

https://doi.org/10.1145/3579856.3592831
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3579856.3592831

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Marco Abbadini, Michele Beretta, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano Paraboschi

Wasm
module

+r +rw

hostcalls

No
Access

Pre-open
RO

Pre-open
RW

Buggy Security Checks

Wasm + WASI runtime

Figure 1: Current implementation of WASI by runtimes. A
bug present in a hostcall wrapper permits the module to read
the unauthorized directory on the left (red dotted arrow)

Wasm’s promise of portability as eBPF programs are portable across
different kernel versions [22] and also operating systems, thanks
to Microsoft’s undergoing effort to port eBPF to Windows [20].

2 THREAT MODEL
Our assumptions reflect the threat model employed by Wasm run-
times. We assume that the code executed by the runtime is either
untrusted or it is trusted but potentially affected by security vulner-
abilities due to bugs. The goal of the attacker providing the code is
to bypass the security checks enforced by the runtime to get access
to the host file system. To fulfill this objective, the attacker can
leverage the interface provided by WASI and send any argument.
Runtime escapes caused by memory corruption or alteration of the
program flow are out of scope of our work, since protection can be
provided by other existing solutions (e.g., [7]).

3 ARCHITECTURE
Our analysis starts from the scenario illustrated in Figure 1. Cur-
rently, WASI-compliant runtimes implement dedicated user-space
wrappers to enforce the security boundaries of hostcalls. File sys-
tem access is granted by the user on a set of pre-opened directories
that are specified via CLI before the Wasm module is run (e.g., with
the --dir option). We follow a similar approach, asking the user to
state the permissions of each Wasm module in a JSON policy file.
Contrary to existing runtimes, permissions can be granted with file-
based granularity. Three permissions are available: (i) read to open
and read a file, (ii) write to modify, truncate and append content
to a file, and (iii) delete to remove the file. When permissions are
related to a directory, read translates to listing its content, write al-
lows to create and delete files within it. We extended the Wasmtime
and WasmEdge runtimes to load the policy at startup, and, instead
of pre-opening the directories available to the Wasm module, we
enforce the policy with eBPF. eBPF code is split into programs at-
tached to a kernel- or user-space function called hook point and
executed whenever the hook is reached. Programs have visibility
of function parameters, they can persist state and share it with user
space using maps, and most of all they can enforce security checks
based on this information. Once the policy is encoded inside the
map and the eBPF programs are loaded, the runtime instantiates
the Wasm module selected by the user (arrow A in Figure 2). At
this stage, the modified runtime invokes a dedicated user probe
specifying as a parameter the policy that confines the loaded Wasm
module (B). The argument is captured by a dedicated eBPF program

configure
access policy

Dir2Dir1

Wasm + WASI
runtime

Wasm
module

A

2

Dir0

instantiate

open file
to read 3 open file

to write

BPF LSM

B

hostcalls1

No access Read-only access Read and write access

Figure 2:Workflow of our proposal. The runtime instantiates
the Wasm module (A), and configures the associated policy
calling the traced user probe (B). After the Wasm module is
run, all the hostcalls issued by the program (1) are restricted
by eBPF (2 , 3)

that also annotates the identifier of the thread running the Wasm
interpreter in a tracing map. We highlight that the policy is acti-
vated before the runtime executes the module (i.e., before untrusted
code is interpreted). The consequence is that, from this point on, all
the hostcalls performed by the Wasm module are restricted by our
eBPF programs (arrows 1 , 2). The eBPF programs that make the
security decisions are evaluated every time a file-related kernel se-
curity hook is reached (e.g., security_file_open), and any access
decision is enforced at kernel level. When an unauthorized request
is performed by the Wasm code (3), the related eBPF program
detects the violation and denies the request, returning to the caller
a permission denied error. When the execution of untrusted Wasm
code terminates, another eBPF program is responsible for removing
the access restriction from the thread executing the Wasm runtime.
No further intervention from the runtime is required, as the maps
and the eBPF programs are automatically removed from the kernel
immediately after the process running the runtime terminates.

This architecture offers several advantages. First, it eliminates the
risks coming from buggy user-space security checks (e.g., wrong
filepath resolution [19], wrong directory removal [8]). Then, by
leveraging kernel hook points [26], our approach allows the runtime
developer to focus on the interaction between Wasm code and the
memory unsafe system call, leaving aside authorizations and policy-
related issues. Lastly, access constraints can be audited by simply
looking at the JSON policy, instead of inspecting the code.

4 EXPERIMENTS
To investigate the overhead introduced by our solution we imple-
mented it in WasmEdge and Wasmtime, two industrial state-of-
the-art Wasm runtimes. The evaluation has been performed in the
following test environment: an Ubuntu 22.04 LTS server powered
by an AMD Ryzen 2950X CPU with 16 cores, 128 GB RAM, and
2 TB SSD. In order to assess the performance, we tested one of
the most popular binaries that can be compiled to Wasm with sup-
port to WASI: uutils coreutils, the porting of the coreutils in
Rust [9]. First, we compiled the coreutils with the wasm32-wasi tar-
get, and applied runtime-specific optimization (with wasmedgec [2]

POSTER: Leveraging eBPF to enhance sandboxing of WebAssembly runtimes ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Utility WasmEdge WasmEdge* Wasmtime Wasmtime*

head 32 34 (+6.25%) 14 16 (+14.29%)
sum 134 137 (+2.24%) 130 136 (+4.62%)
tac 149 150 (+0.67%) 152 155 (+1.97%)
wc 285 287 (+0.70%) 309 310 (+0.32%)
shuf 298 300 (+0.67%) 356 358 (+0.56%)
ls 512 526 (+2.73%) 1077 1113 (+3.34%)
seq 1155 1157 (+0.17%) 1526 1533 (+0.46%)
cut 1403 1411 (+0.57%) 359 360 (+0.28%)
join 1601 1603 (+0.12%) 2054 2065 (+0.54%)
split 4416 4694 (+6.30%) 4933 4998 (+1.32%)

Table 1: Average execution time in ms of the coreutils with-
out and with* our approach (% overhead in parenthesis)

for WasmEdge and with wasmtime compile [1] for Wasmtime) to
further speed up the code. Then, we reproduced the benchmarks
reported in the coreutils repository, with the exception of those
that are not portable to WASI due to temporary lack of support
(e.g., the dd utility needs to spawn threads, a feature that is yet to
be implemented [11]). Finally, we repeated the experiments with
our protection in place. The Hyperfine benchmarking tool [10]
was used to log measures, and 1000 runs were performed (with
100 warmups). As shown from the results in Table 1, our approach
introduces a limited overhead, ranging from an additional 0.12% to
6.30% for WasmEdge, and from 0.28% to 14.29% for Wasmtime. As
expected, the highest overhead is experienced by short-living utili-
ties (e.g., head). We also observe that there are notable differences
between the WasmEdge and Wasmtime test execution time for
some utilities (e.g., ls and cut); from our analysis these differences
are mostly caused by the specific post-compilation optimizations.

5 RELATEDWORK
There are several successful solutions that leverage Wasm to sand-
box untrusted code [14, 23, 24]. RLBox [23] is a framework that
facilitates the isolation of third-party libraries in pre-existing soft-
ware. eWASM [24] optimizes the execution of Wasm in embedded
systems with constrained resources. Sledge [14] enables efficient
Wasm-based serverless execution on the edge. The use of our ap-
proach for restricting access to the file system within these frame-
works can strengthen their security assurance.

The memory safety guarantees of Wasm depend on the runtime
implementation [18]. Hence, Bosamiya et al. [7] explore the problem
of producing provably safe sandboxes. WaVe [16] explains that
any interaction with the unsafe interfaces exposed by WASI can
introduce security and safety violations. Thus, the authors proposed
a verified secure runtime system implementing WASI. However,
both works require to redesign the runtime toolchain, while our
solution can be directly integrated into existing runtimes.

The academic and industrial communities have investigated the
use of eBPF for the isolation of software [4, 5, 12, 13]. BPFBox [13]
and BPFContain [12] use an eBPF daemon to confine processes and
services. Cilium [4] provides eBPF-based networking, observability
and security for container workloads. Falco [5] enables lightweight
threat detection in the cluster. These solutions highlight the poten-
tial of eBPF, and provide a simple and flexible confinement of system

resources. However, they focus on containers or services, while our
solution aims at enforcing fine-grained per-sandbox policies.

6 CONCLUSIONS
The results achieved by our approach are promising: not only it
permits to introduce fine-grained policies to restrict file system
access, it is also associated with a limited overhead which is aligned
with the needs of a modern sandbox. The protection is currently
applied only to the file system, but our approach has the potential
to be extended also to network sockets, which are in the first stage
of the standardization process [6]. We believe this could be an
interesting line of research for future work.

ACKNOWLEDGMENTS
We thank the reviewers for their valuable comments and feedback.
This work was supported by the European Commission in the HE
program within the GLACIATION project (No 101070141).

REFERENCES
[1] 2023. CLI Options - Wasmtime. https://docs.wasmtime.dev/cli-options.html
[2] 2023. wasmedgec AOT Compiler - WasmEdge. https://wasmedge.org/book/en/

cli/wasmedgec.html
[3] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi. 2023.

Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses. In ASIACCS.
[4] The Cilium Authors. 2023. Cilium. https://cilium.io
[5] The Falco Authors. 2022. Falco. https://falco.org
[6] D. Bakker. 2023. wasi-sockets. https://github.com/WebAssembly/wasi-sockets
[7] J. Bosamiya, W. S. Lim, and B. Parno. 2022. Provably-Safe Multilingual Software

Sandboxing using WebAssembly. In USENIX Security.
[8] B. Coenen. 2021. feat(wasi): add rename for a directory + fix remove_dir. https:

//github.com/wasmerio/wasmer/commit/e0e12f9d9ff41a512e44bd497324e
[9] The coreutils Authors. 2023. uutils coreutils. https://github.com/uutils/coreutils
[10] P. David. 2023. hyperfine. https://github.com/sharkdp/hyperfine
[11] A. Ene, M. Kolny, and A. Brown. 2023. wasi-threads. https://github.com/

WebAssembly/wasi-threads
[12] W. Findlay, D. Barrera, and A. Somayaji. 2021. BPFContain: Fixing the Soft

Underbelly of Container Security. arXiv (2021).
[13] W. Findlay, A. Somayaji, and D. Barrera. 2020. bpfbox: Simple Precise Process

Confinement with eBPF. In Cloud Computing Security Workshop.
[14] P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, and G. Parmer. 2020. Sledge:

A Serverless-First, Light-Weight Wasm Runtime for the Edge. In International
Middleware Conference.

[15] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner,
A. Zakai, and JF Bastien. 2017. Bringing the web up to speed with WebAssembly.
In Programming Language Design and Implementation.

[16] E. Johnson, E. Laufer, Z. Zhao, D. Gohman, S. Narayan, S. Savage, D. Stefan, and
F. Brown. 2022. WaVe: A Verifiably Secure WebAssembly Sandboxing Runtime.
In IEEE Security and Privacy.

[17] M. Kehoe. 2022. eBPF: The Next Power Tool of SREs. USENIX Association.
[18] D. Lehmann, J. Kinder, and M. Pradel. 2020. Everything old is new again: Binary

security of webassembly. In USENIX Security.
[19] M. McCaskey. 2019. Prevent parent directory from being opened without being

preopened wasi. https://github.com/wasmerio/wasmer/pull/463
[20] Microsoft. 2023. eBPF for Windows. https://microsoft.github.io/ebpf-for-

windows/
[21] MUSEC. 2023. libpreopen. https://github.com/musec/libpreopen
[22] A. Nakryiko. 2021. BPF CO-RE. https://nakryiko.com/posts/bpf-core-reference-

guide/
[23] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner, H. Shacham,

and D. Stefan. 2020. Retrofitting Fine Grain Isolation in the Firefox Renderer. In
USENIX Security.

[24] G. Peach, R. Pan, Z. Wu, G. Parmer, C. Haster, and L. Cherkasova. 2020. eWASM:
Practical Software Fault Isolation for Reliable Embedded Devices. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems (2020).

[25] M. Rossi, D. Facchinetti, E. Bacis, M. Rosa, and S. Paraboschi. 2021. SEApp:
Bringing Mandatory Access Control to Android Apps. In USENIX Security.

[26] The kernel development community. 2023. LSM eBPF Programs. https://docs.
kernel.org/bpf/prog_lsm.html

[27] WebAssembly. 2023. WASI Libc. https://github.com/WebAssembly/wasi-libc
[28] WebAssembly. 2023. The WebAssembly System Interface. https://wasi.dev

https://docs.wasmtime.dev/cli-options.html
https://wasmedge.org/book/en/cli/wasmedgec.html
https://wasmedge.org/book/en/cli/wasmedgec.html
https://cilium.io
https://falco.org
https://github.com/WebAssembly/wasi-sockets
https://github.com/wasmerio/wasmer/commit/e0e12f9d9ff41a512e44bd497324e
https://github.com/wasmerio/wasmer/commit/e0e12f9d9ff41a512e44bd497324e
https://github.com/uutils/coreutils
https://github.com/sharkdp/hyperfine
https://github.com/WebAssembly/wasi-threads
https://github.com/WebAssembly/wasi-threads
https://github.com/wasmerio/wasmer/pull/463
https://microsoft.github.io/ebpf-for-windows/
https://microsoft.github.io/ebpf-for-windows/
https://github.com/musec/libpreopen
https://nakryiko.com/posts/bpf-core-reference-guide/
https://nakryiko.com/posts/bpf-core-reference-guide/
https://docs.kernel.org/bpf/prog_lsm.html
https://docs.kernel.org/bpf/prog_lsm.html
https://github.com/WebAssembly/wasi-libc
https://wasi.dev

	Abstract
	1 Introduction
	2 Threat Model
	3 Architecture
	4 Experiments
	5 Related Work
	6 Conclusions
	Acknowledgments
	References

