
Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses
Marco Abbadini

marco.abbadini@unibg.it

Università degli Studi di Bergamo

Bergamo, Italy

Dario Facchinetti

dario.facchinetti@unibg.it

Università degli Studi di Bergamo

Bergamo, Italy

Gianluca Oldani

gianluca.oldani@unibg.it

Università degli Studi di Bergamo

Bergamo, Italy

Matthew Rossi

matthew.rossi@unibg.it

Università degli Studi di Bergamo

Bergamo, Italy

Stefano Paraboschi

stefano.paraboschi@unibg.it

Università degli Studi di Bergamo

Bergamo, Italy

ABSTRACT
Deno is a runtime for JavaScript and TypeScript that is receiving

great interest by developers, and is increasingly used for the con-

struction of back-ends of web applications. A primary goal of Deno

is to provide a secure and isolated environment for the execution of

JavaScript programs. It also supports the execution of subprocesses,

unfortunately without providing security guarantees.

In this work we propose Cage4Deno, a set of modifications to

Deno enabling the creation of fine-grained sandboxes for the ex-

ecution of subprocesses. The design of Cage4Deno satisfies the

compatibility, transparency, flexibility, usability, security, and per-

formance needs of a modern sandbox. The realization of these

requirements partially stems from the use of Landlock and eBPF,

two robust and efficient security technologies. Significant attention

has been paid to the design of a flexible and compact policy model

consisting of RWX permissions, which can be automatically created,

and deny rules to declare exceptions. The sandbox effectiveness

is demonstrated by successfully blocking a number of exploits for

recent CVEs, while runtime experiments prove its efficiency. The

proposal is associated with an open-source implementation.

CCS CONCEPTS
• Security and privacy→ Software and application security;
Access control; File system security; Usability in security and
privacy.

KEYWORDS
Sandboxing, Access control, JavaScript runtime, Deno, Subprocess

ACM Reference Format:
Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Ste-

fano Paraboschi. 2023. Cage4Deno: A Fine-Grained Sandbox for Deno Sub-

processes. In ACM ASIA Conference on Computer and Communications Secu-
rity (ASIA CCS ’23), July 10–14, 2023, Melbourne, VIC, Australia. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3579856.3595799

This work is licensed under a Creative Commons Attribution International

4.0 License.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0098-9/23/07.

https://doi.org/10.1145/3579856.3595799

1 INTRODUCTION
JavaScript is currently one of the most popular programming lan-

guages [68]. One of its strengths is versatility, indeed, it can be used

both in the front-end and in the back-end to write fully fledged web

applications. JavaScript was originally meant for the browser, and

its porting on the back-end by Node.js is not without security risks.

As highlighted in previous studies [24, 69, 74, 75, 78], vulnerabilities

affecting the language or the toolchain can lead to severe breaches.

A recent initiative aiming to reduce the risk coming from the exe-

cution of vulnerable or untrusted JavaScript code on the back-end is

Deno [44], a modern, secure, open-source, cross-platform JavaScript

runtime. Contrary to its well-known predecessor (i.e., Node.js),

Deno was designed with security as one of its primary goals [17].

This aspect partly stems from the programming language used to

implement it (i.e., Rust instead of C++), but mostly originates from

its default behavior of executing JavaScript code in a completely

isolated sandbox. Unless otherwise stated by the developer, Deno

prevents any program from accessing the filesystem, network, en-

vironment variables, and even high-resolution time measurements.

Unfortunately, although its permission model allows developers

to grant fine-grained authorizations (read/write/execute privilege

on a single file, permissions to connect to a known hostname, etc.),

dynamic libraries and subprocesses can access system resources

regardless of the permissions granted to the Deno program that

spawned them, essentially invalidating the security sandbox [19].

Research has shown that third-party code accounts for a great

portion of a JavaScript application codebase [74]. The 2022 State

of Open Source Security [66] shows that on average open-source

JavaScript projects rely on 174 third-party dependencies. The prac-

tice of reusing third-party libraries is so widespread that it led the

authors of Deno to implement the Node compatibility mode [21],
which enables the execution of Node packages in Deno. Third-party

modules often depend on subprocesses [23, 32, 69]. There is a broad

spectrum of programs that fall into this category, ranging from

Linux utilities to handle files [56], to programs that process media

(e.g., image/video conversions [55], metadata removal [54]), and

many more. Since these programs (i) are executed outside of a sand-
box, (ii) are potentially exposed to unsanitized input, and (iii) are
often written with unsafe languages, the risk of security violations

is concrete. The 2022 State of Open Source Security reports that, on

average, JavaScript projects are affected by 40 vulnerabilities when

dependencies are taken into account. We focused on the records of

the last 5 years, and have identified a sample of 15 high-severity

https://doi.org/10.1145/3579856.3595799
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3579856.3595799

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi and Stefano Paraboschi

Deno

stdout 1

stderr 2

subprocess 3

Resources V8

fn op_run(...)

exec
/usr/bin/tar V8 sandbox

JS program

let proc =
 Deno.run({...})

Figure 1: High level view of the Deno architecture

CVEs that affect third-party software used by popular packages

(averaging more than 1M downloads/week), and allow an attacker

to perform privilege escalation on the host, open reverse shells,

perform local file inclusion, and corrupt the filesystem.

Our contribution. In this work we propose Cage4Deno: an ex-

tension of the Deno security functions aimed at mitigating vul-

nerabilities that may be introduced when subprocesses are used.

Specifically, we design and implement
1
a solution targeting Linux

systems, which leverages the recent Landlock Linux Security Mod-

ule and the Extended Berkeley Packet Filter (eBPF), to transparently

sandbox processes currently executed outside of the sandbox by

Deno. The primary goal of the proposed protection mechanism is

to preserve the integrity of the filesystem, and preventing access to

confidential resources. While designing Cage4Deno, we paid great

attention to the usability by developers: (i) no understanding of the
kernel security features leveraged by our solution is required to use

it, and (ii) although developers should be knowledgeable about the

functionalities of the program they want to use, we do not expect

them to be fully aware of its functioning under the hood. To this

end, we first design a flexible and compact policy model. It consists

of rules granting read (R), write (W) or exec (X) permissions on

a filesystem node, which propagate towards its descendants, and

deny rules (D) to block the propagation, thus reducing the number

of rules and the effort of the developer. Then, we implement an aux-

iliary open-source tool named dmng to generate the least-privileged
RWX rules required by each program. The tool can be invoked inter-

actively by the developer via CLI, or integrated into CI/CD pipelines

and run against a set of use cases, as best practice suggests. We

also highlight that Cage4Deno preserves backward compatibility,

meaning sandboxing of existing code, including direct or transient

dependencies, can be achieved without code changes.

We demonstrate the security benefits of our solution showing

how it mitigates a number of real-world vulnerabilities, which have

been exploited against popular services (e.g., GitLab [14] and Tik-

Tok [36]). Finally, we perform an experimental evaluation compar-

ing our solution to scenarios with no sandboxing, and sandboxing

with state-of-the-art proposals, showing substantial performance

improvements with respect to the available alternatives.

2 BACKGROUND
This section overviews the frameworks used in our proposal.

1
https://github.com/unibg-seclab/cage4deno

T1

Landlock parent
sandbox

T2

Landlock child
sandbox

T3

T4

1. T1 forks T2

2. T1 restricts self (but not T2)

3. T1 forks T3, T3 inherits the parent sandbox

4. T3 forks T4, T4 inherits the parent sandbox

5. T4 restricts self

1

2

3

4

5

thread

Figure 2: Creation and inheritance of a Landlock sandbox

2.1 Deno
Deno [44] is a runtime for JavaScript and TypeScript embedding

V8 [72], an open-source high-performance JavaScript and Web-

Assembly engine by Google. As already mentioned, Deno can be

seen as an alternative to Node.js, with some key security features

that derive from its design. In detail, it has a modular architecture

organized into three main components: (i) rusty_v8, which defines

the set of bindings to the V8’s API; (ii) deno_core, a package built
on top of rusty_v8 implementing the abstractions required to run

JavaScript (i.e., the JsRuntime); and (iii) deno, a package providing
the Deno executable and the user-facing API.

Among the abstractions implemented in deno_core there are

ops, native functions directly called from JavaScript that expose

services not directly available in V8. These include primitives to

open files, create network sockets, spawn child processes, access

environment variables, etc. From a security perspective, each of

the requests issued by the program running inside the V8 sandbox

(i.e., the op calls) can be monitored by Deno and explicitly blocked

or authorized based on a set of permissions. By default apps run

without any permission, that is why Deno claims to be secure by

default. The permission system categorizes the resources based on

their type (filesystem, environment variables, network, etc.). There

are two granularity levels: access to the whole resource category

(e.g., all the files on the filesystem), and access to a single resource

in the category (e.g., a single file). The resources accessible through

ops are stored by deno_core in a resource table, and are uniquely

identified by integers, similarly to the Unix concept of file descriptor.

The ops and resources interface abstraction gives Deno the abil-

ity to control the information flow between the system and the

sandboxed app. This is a big step forward compared to Node.js in

terms of security. Unfortunately, this level of protection applies only

to the components written in JavaScript. When the app executes a

program on the host leveraging for example the Deno.run() func-

tion, the request is handled by Deno spawning a new subprocess.

As depicted in the high level view of the Deno architecture shown

in Figure 1, this process runs unconstrained on the host (without

sandboxing). This is a limitation of the current security model as,

in case of a vulnerability, the host can be compromised [17].

2.2 Landlock LSM
The Landlock Linux Security Module (LSM) aims to provide de-

velopers with an unprivileged solution to implement application

sandboxing. The availability of Landlock is expected to help mit-

https://github.com/unibg-seclab/cage4deno

Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

BPF program
& maps

source
code

BPF
front-end

bpf syscall

us
er

 s
pa

ce

Verifier

JIT
compiler

syscalls

ke
rn

el
 s

pa
ce

load time runtime

Thread

BPF
programBPF maps

resources

bpf syscall

BPF-aware
thread

Figure 3: Overview of the BPF architecture

igate the security impact of bugs and unintended or malicious

behavior of user-space applications. Also, it is fully composable

with other LSMs like SELinux, AppArmor and Yama.

Currently, Landlock focuses on the protection of the filesystem.

In detail, Landlock classifies kernel resources as objects, permitting

actions over them based on rulesets. As an example, a ruleset can

grant the thread read and exec access to objects stored under /tmp.
Rulesets are created using the landlock_create_ruleset() and
landlock_add_rule() system calls, and subsequently activated

with landlock_restrict_self(). Rules are inherited by the chil-

dren created after sandbox activation, and the actions available can

only be further restricted. The process is detailed in Figure 2.

Although Landlock permits to sandbox a thread ensuring low

performance overhead, there are a few limitations. The most rele-

vant to this paper are: (i) it is not possible to perform any filesystem

topology modification (i.e., arbitrary mounts), and (ii) there is no
support for a deny listing approach during policy creation.

2.3 eBPF
The Extended Berkeley Packet Filter (eBPF, henceforth referred to as

BPF) [33, 41] enables the execution of programs within the oper-

ating system kernel. The programs, which are loaded at runtime,

extend the kernel capabilities, without requiring the developer to

change the kernel source code, nor loading new kernel modules.

BPF programs are non-preemptable event-driven programs that

are run when a certain user- or kernel-space hook point is reached.

Pre-defined hooks include system calls, tracepoints, network events,

function entry/exit, etc. BPF programs are usually written using a

BPF front-end, which provides an abstraction to write programs

in a high-level language, specify attachment points, declare data

structures, and compile the source code into BPF bytecode. A few

BPF front-ends exist; we use libbpf [47, 51] as it elegantly ad-

dresses portability following a Compile Once – Run Everywhere

approach [51]. After a BPF program is compiled to bytecode, it can

be loaded into the Linux kernel via the bpf() system call. This

is a privileged operation that requires the CAP_BPF Linux capabil-
ity, and optionally CAP_PERFMON (to load tracing-related programs)

and CAP_NET_ADMIN (to load networking-related programs) [1]. As

the program is loaded into the kernel, it is subject to the verifica-
tion and JIT compilation phases. The verification phase ensures the

program is safe and does not introduce reliability issues (e.g., termi-

nation is guaranteed, memory requirements are satisfied), while the

Just-In-Time (JIT) compilation translates the generic bytecode to

architecture-specific optimized code. Once completed, the program

is loaded into the kernel and attached to the selected hook. The

architecture of BPF and the loading process are shown in Figure 3.

BPF programs cannot call arbitrary kernel functions and cannot

freely share the information collected with user space. Instead, they

rely on helper functions, a stable API implemented by the kernel

that is used for tasks like manipulating network packets, inspecting

kernel data structures, etc. Among the most frequently used helpers,

there are functions to read and write maps. Basically, maps are data

structures that permit to keep a state between different invocations

of BPF programs, and share data with user-space applications.

BPF’s capabilities have been further extended in 2020 with the ad-

dition of the Kernel Runtime Security Instrumentation (KRSI) [13],

also known as BPF LSM. This feature permits to attach BPF pro-

grams to LSM hooks, and thus enforce access control.

3 CAGE4DENO
This Section gives an overview of Cage4Deno, clarifying the threat

model. We also introduce our design objectives (Section 3.3).

3.1 Overview
Cage4Deno aims to provide a set of sandboxing functions to strengthen

the Deno security model. The proposal arises from the need to pro-

vide isolation for subprocesses spawned with the Deno.run() and

Deno.Command.spawn() functions. As mentioned in Section 1, the

practice of executing subprocesses is heavily used by developers.

Unfortunately, any subprocess that executes this way falls outside

of the Deno security model, essentially invalidating the sandbox

(see Section 2.1). Indeed, an attacker that successfully exploits a

security flaw affecting the utility run by a subprocess can perform

privilege escalation on the host, open reverse shells, perform local

file inclusion, corrupt the filesystem, etc.

Cage4Deno extends Deno giving developers the ability to con-

strain the execution of subprocesses. To do that, the developer

associates each subprocess with a policy file, listing a set of rules.

Rules are straightforward, each of them granting read (R), write (W)
or exec (X) permissions on a filesystem node. To reduce the number

of rules in the policy, the set of RWX permissions is extended with

deny (D). This enables permissions granted on a filesystem node to

propagate towards its descendants, and to block the propagation

with the use of deny rules. The permissions granted by the devel-

oper are then automatically assigned to the subprocess at runtime.

This is achieved by the sandboxer, a new module we added to Deno

that leverages the Landlock LSM and the BPF framework (oper-

ating in stacking mode [79]) to implement the sandbox at kernel

level. This ensures security checks are not bypassable, however

it implies that our solution only works on Linux-based systems

with these features enabled. Nowadays, Landlock LSM is already

available in most systems, BPF LSM not yet. However, bleeding

edge distributions, like Arch Linux, are starting to release with it en-

abled by default.
2
Compared to other well-known general-purpose

2
Enabling BPF LSM on systems not supporting it by default requires replacing the

system kernel with the same release of the kernel, but with BPF LSM available.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi and Stefano Paraboschi

subprocess 3

Resources

us
er

 s
pa

ce
ke

rn
el

 s
pa

ce

sandboxer

exec args

Filesystem
resources

syscalls

BPF prog 1

BPF prog N

…

BPF maps

V8 sandbox Landlock sandboxCage4Deno changes

V8

BPF
front-end

Landlock LSM

JS program

Deno.run({args})

Policy DB

A

Deno

1B

bpf syscall landlock syscalls

1

2

4

3
subprocess

Figure 4: Overview of Cage4Deno implementation. Initial
setup: (A) read the policy and (B) load BPF programs and
write maps according to it. On subprocess request: (1) inter-
cept subprocess creation, (2) create a Landlock-sandboxed
subprocess with BPF deny, and (3) execute the utility. All the
requests issued by the subprocess are restricted according to
the policy (4)

sandboxing solutions like Minijail [30], and Google Sandbox2 [31],

Cage4Deno does not require the developer to know anything about

the advanced security features offered by the kernel to confine a

process. All the developer has to understand is the straightforward

RWX+D permission model. Moreover, Cage4Deno does not require

the developer to understand the internal logic of the utility executed

by the subprocess, all she needs to know are its input and output

(provided by either absolute or relative path). An overview of our

proposal is shown in Figure 4.

3.2 Threat model
Similarly to other research proposals [16, 70, 75], Cage4Deno fo-

cuses on the runtime compromise of possibly buggy or vulnerable

utilities (i.e., binaries or libraries), and does not target actively mali-

cious ones. Therefore, we do not regard the developers of the utili-

ties as malicious actors, but nevertheless, they may inadvertently in-

troduce vulnerabilities into their code. In this setting, attackers may

control arguments of the utilities by passing malicious payloads

through web interfaces or programmatic APIs. Prominent examples

include utilities that offer manipulation capabilities of multimedia

files (e.g., ExifTool, FFmpeg, GraphicsMagick, ImageMagick), or

object de-compression (e.g., GNU Tar). These programs are usually

written in memory-unsafe languages, such as C/C++, and due to

their size and complexity are often the source of vulnerabilities [52].

The constant and extensive exposure to untrusted inputs in web

applications may enable the attacker to trigger these vulnerabilities,

leading to memory corruption issues. Arbitrary file reading or writ-

ing, local file inclusion and remote code execution are only a few of

the possible risks associated with this kind of attack vector. In addi-

tion to that, package managers for languages commonly used in

web development (e.g., npm, pip) do not enforce any kind of permis-

sion system. Thus, attackers can exploit vulnerabilities introduced

by direct or indirect dependencies installed when 3rd party modules

are imported by the application. Previous studies [15, 50, 80] have

reported the risks associated with the propagation of vulnerabilities

coming from dependencies in various software ecosystems. Usually,

the exploitation of this kind of vulnerability leads to breaches that

undermine confidentiality and integrity of data and code that reside

outside the utility under attack. The goal of Cage4Deno is prevent-

ing a compromised utility running inside a Deno subprocess to

violate access confidentiality and integrity of the filesystem. Notice

that preventing integrity violation of the filesystem means, first

and foremost, preserving the integrity of the web application code,

configurations and data.

3.3 Design objectives
Several objectives need to be fulfilled by our proposal to ensure

security, efficiency and ease of use.

O1. Integration with existing solutions (Compatibility): The
proposal must be compatible with the current Deno architec-

ture, and should be considered as an opt-in feature by the

developer (i.e., backward compatible). Also, it has to be stack-

able with other security mechanisms already active on the

host, like SELinux, AppArmor and Yama.

O2. Ease of use (Transparency): To be aligned with the needs of

the web development scenario, the solution must be simple and

easy to use. No specific understanding of the advanced secu-

rity features leveraged by our solution, and of the underlying

operating system, must be required to use it.

O3. Fine-grained access control (Flexibility): Unlike other se-
curity features that create a separated view of global resources

(i.e., Linux namespaces), the solution must enable the developer

to access the whole filesystem, granting access with file-level

granularity rather than volume-level. Also, the developer must

be able to flexibly switch between different policies, without

requiring a host reboot when a new policy needs to be loaded.

O4. Automatic generation of policies (Usability): The proposal
must provide tools to support zero-effort policy creation. With

the exception of its input and output, no specific understanding

of each utility should be required to run it successfully.

O5. Mitigation of vulnerabilities (Security): The proposal must

prove effective in addressing the threat model described in

Section 3.2 andmitigate CVEs affecting common Linux utilities.

O6. Low overhead (Performance): The overhead introduced

with the additional security features must be compatible with

the requirements of Web applications, which tend to prioritize

short response time. It should be lower than the one introduced

by state-of-the-art general-purpose sandboxing solutions, such

as Minijail and Google Sandbox2.

4 DESIGN AND IMPLEMENTATION
This Section illustrates the design and implementation of Cage4Deno.

We initially describe the interface used by the developer to input

the policy, then we detail the changes introduced to support read,

Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

write, exec and deny permissions. A minimal program executing

the tar utility in a subprocess is used as running example. The

approach used to automatically generate the policy to confine tar
is explained in Section 5, while additional BPF implementation

details that focus on performance improvement are discussed in

Appendix A.

4.1 Policy and interface
In the current Deno architecture, attributes and permissions associ-

ated with a program are always specified prior to execution. The

developer provides this information through the Deno command

line interface (CLI) using runtime flags. Runtime flags of the deno
run, which precede the program name in the argument list, are

immediately parsed and added to the global state before the JS

program is executed. This design philosophy permits to directly

address access requests issued by the application at runtime and, in

case no permission is available, the program is promptly terminated.

As an example, consider the program shown in Listing 1. Its pur-

pose is simply to execute the tar utility to extract the compressed

archive input.tgz to the output directory. Since to execute tar
it leverages a subprocess, the argument --allow-run=tar must

be provided, as the lack of such a permission would lead to the

operation being prohibited.

As explained in the overview (Section 3.1), Cage4Deno relies on

the ability to attach a policy to the program. To be compliant with

the current design of Deno, we extended the global state adding

the --policy-file runtime flag. As the name suggests, it receives

as input a policy file. The policy file uses a JSON format, which is

easy to edit and parse, and well-known by web developers. The

file contains an array of policies identified by a policy_name. Each
policy includes four arrays, read, write, exec and deny, listing
a set of filesystem entries. As shown in Figure 4, the life cycle of

Cage4Deno can be divided into two phases: load time and enforcing

time. When Cage4Deno starts, the content of the policy file is read

by the sandboxer (A); to avoid repeating this step each time a new

subprocess is spawned, the rule sets are stored in the permission

state of Deno. Once all policies have been parsed, if any of them

contains negative rules, the sandboxer loads the set of BPF programs

needed to enforce deny, and a map for each policy containing the

corresponding prohibited paths (B). Due to this additional step,

this is the only part of the execution in which Cage4Deno requires

additional privileges compared to Deno. These privileges consist of

the set of Linux capabilities necessary to load BPF components. To

avoid any additional interaction the capabilities are configured as

file capabilities. Once every BPF component has been loaded, we

drop the capabilities, so to avoid running with higher privileges

with respect to Deno at runtime.

After the initial setup, Cage4Deno is responsible of enforcing

the policies provided by the developer. The sandboxer intercepts
subprocess creation requests issued by the JS application at runtime

(1) and, according to the policies available, it restricts the permis-

sions associated with the subprocess (2) before the exec of the
command provided to the Deno.run() is performed (3). During

the subprocess (or any of its children) lifetime, file interactions are

controlled by Landlock and our BPF programs to make sure access

to the requested path is granted according to the policy definition

Listing 1: An example of child process in Deno
1 let a=Deno.run({cmd: ["tar", "xzf", "input.tgz

", "-C", "output"]});
2 await a.status ();

Listing 2: Restricting a child process using policyId

1 let a=Deno.run({cmd: ["tar", "xzf","input.tgz"
, "-C", "output"], policyId:"tarPolicy"});

2 await a.status ();

provided by the developer (4). Two options are available to re-

trieve proper policy from the list: (i) automatically select the one

with policy name matching the utility to be run in the subprocess

(e.g., tar in Listing 1), and (ii) using the policy directly specified by

the developer in the JS code using the newly introduced policyId
option as shown in Listing 2. In both cases, if no policy is found, we

fall back to the default Deno permission model. Option (i) allows
the developer to run the subprocess without modifications to the

JS program, while option (ii) gives more flexibility when multiple

policy profiles for the same utility are available. This interface is

straightforward and is perfectly aligned with the current Deno se-

curity model and architecture (Objective O1). Moreover, it does not

require the developer to understand how the sandboxer leverages
the kernel security features to add the restrictions, while granting

the developer direct observability of the security boundaries put in

place (Objective O2).

4.2 Support to RWX rules
Deno permits to set filesystem-related permissions through the

allow-read, allow-write and allow-run runtime flags. As ex-

plained in the background (Section 2.1), the flags can be used to

configure access to the whole filesystem, or can be refined specify-

ing a list of comma separated filesystem entries. Similarly, we expect

the developer to detail the read, write and exec permissions in-

side the JSON policy file. Listing 3 exemplifies the RWX permissions

associated with the tar example.

The support for RWX permissions was introduced to Deno chang-

ing the implementation of deno_core. Internally, when a program

performs a call to the Deno.run() and Deno.Command.spawn()
functions, the bindings defined in rusty_v8 are used to translate

the request into an op_run. The operation is subsequently sent

to the JS runtime, which is responsible to manage the request. In

the case of a subprocess creation, this is done leveraging the asyn-

chronous Tokio [22] runtime to configure an instance of Command, a
process builder providing fine-grained control over how the process

should be spawned. To apply the correct policy, wemodified process

creation, scheduling a closure (Rust equivalent of a C++ lambda

expression) to be run just before the exec function is invoked. The

closure leverages our sandboxer to create a new Landlock ruleset

consisting of the RWX permissions found in the policy, and then in-

vokes the landlock_restrict_self() syscall to apply it. Thanks

to the policy inheritance property of Landlock, the policy attached

to the process also restricts its children (as explained in Section 2.2).

Should any of them try to access a filesystem location not listed in

the policy, the request is denied.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi and Stefano Paraboschi

Listing 3: RWX+D permissions associated with tar

1 {
2 "policies": [
3 {
4 "policy_name": "tarPolicy",
5 "read": [
6 "/usr/bin/tar",
7 "/home/user/input.tgz"
8],
9 "write": ["/home/user/output"],
10 "exec": ["/usr/bin/tar"],
11 "deny": ["/home/user/output/misc"]
12 }
13]
14 }

From a software development perspective, RWX permission rules

are easy to understand and immediate to write. Contrary to the

use of other frameworks such as the combination of Linux Names-

paces [8] and Control Groups [28], RWX rules also permit to grant

access with file-level granularity on the whole filesystem, and not

only on single volumes (Objective O3).

4.3 Support to deny rules
Deny rules ensure a process has no access privileges over a file or a

directory. Its introduction significantly reduces the overhead of the

developer writing the policy. Unfortunately, the current inode-based
design of Landlock does not provide support for it [64]. Given the

low overhead associated with BPF (Objective O6), its fine-grained
access control capabilities (Objective O3) and its compatibility with

other LSM security mechanisms including Landlock (Objective

O1), we identified BPF as the ideal candidate to implement the

support to deny rules. However, loading BPF programs andmaps is a

privileged operation, so Cage4Deno needs to execute a preliminary

initialization phase with additional permissions (as highlighted in

Section 4.1).

This Section details the work we did to support deny rules. First,

we present the problem of efficiently supporting access control

decisions given a sequence of deny rules, then we explain how to

translate the approach into BPF programs, making clear how the

sandboxer enforces access control at runtime.

4.3.1 Deny listing approach. Similarly to what happens for RWX
rules, we expect the developer to list the deny rules into the JSON

policy file (see Listing 3). Based on the list provided, the sandboxer
instruments the kernel so that, upon receiving an access request

from a sandboxed process, the kernel is able to allow or deny it.

For instance, assume the developer lists in the policy the deny
rules /home/user/data, /home/user/lib and /media. When the

sandboxed process issues an open to /home/user/file the request
is allowed, but when the process tries to access /home/user/data
(or any of its content) the request is denied. So, given a path request

issued by the user, whether it matches exactly one of the rules in

the deny list, or a deny rule is a prefix of the requested path, the

access request is blocked. A classic solution to solve this problem

efficiently can be implemented using a prefix tree (or trie). The

idea is to split each path into a sequence of substrings using / as

BPF Map

r Trie prefix 𝑝𝑖 Hash isLeaf

1 / ℎ𝑎𝑠ℎ (𝑝1) 0

2 /home ℎ𝑎𝑠ℎ (𝑝2) 0

3 /home/user ℎ𝑎𝑠ℎ (𝑝3) 0

4 /home/user/data ℎ𝑎𝑠ℎ (𝑝4) 1

5 /home/user/lib ℎ𝑎𝑠ℎ (𝑝5) 1

6 /media ℎ𝑎𝑠ℎ (𝑝6) 1

(a) (b)
Table 1: Deny prefix tree (a) and BPF𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 (b)

delimiter, treating the substrings as single character prefixes. The

prefixes are then used to build a prefix tree as shown in Table 1a.

At runtime, access requests are simply evaluated traversing the trie.

If a leaf node is visited, we can conclude that a deny rule was hit,

and the access request must be denied. The time complexity of a

trie traversal depends on its maximum height. Given 𝑁 the length

of the longest deny rule 𝐷𝑟𝑖 in the policy,
3
the maximum depth of

the trie is 𝑁 /2 (in the case of a path structured as [/𝑐]+). When a

hashmap is used to implement the trie, each lookup (used to jump

from the parent to the child) takes 𝑂 (1) time, thus traversing the

trie takes 𝑂 (𝑁) time (worst case upper bound).

4.3.2 Implementation using BPF maps. The trie-based approach

presented above cannot be translated directly to a BPF program.

Indeed, there are some constraints a BPF programmust satisfy to be

executed by the kernel (see Section 2.3). The most important, in our

case, is related to the use of memory. The current implementation

of BPF does not provide support for multi-level map-in-map [48]

structures required to implement the trie. Hence, we decided to

translate the trie into a single-level hashmap 𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 storing

all the prefixes represented in the trie, as shown in Table 1b. The

hash of each prefix is used as lookup key, while the value is a

boolean to indicate whether the prefix is a leaf node in the trie.

This representation permits to answer access queries with the same

efficiency of the high-level approach. In fact, the trie traversal is

easily replaced by a sequence of 𝑂 (𝑁) lookups, each taking 𝑂 (1)
time when a hash function is used to process the string representing

the access path. Storing in the map also the prefixes that are not

leaves in the trie increases the size of the map up to𝑂 (𝑀 ·𝑁) given
a list of𝑀 deny rules, yet, it permits to reduce the query time for

all the path prefixes that are not contained in the trie, as the lookup

sequence terminates when a key error (i.e., a miss) occurs.
This design strategy relies on the ability to convert strings to

integers using a cryptographic hash function. Unfortunately, such

function is not currently available in BPF. In Appendix Awe present

this aspect in detail, explaining how we adapted the design to

achieve the best trade-off between query response time andmap size

using an incremental hash function. Other details, such as explicit

collision handling, are also discussed there, as they complement

the design of our proposal.

4.3.3 BPF policy attachment. To enforce access control at runtime,

the sandboxer must be able to retrieve the𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 according to

3
The maximum path length is bounded to 4096 chars in linux/limits.h

Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Thread lifecycle hooks

uprobe/attach_policy
lsm/task_alloc
tp_btf/sched_process_fork
tp_btf/sched_process_exit

Access control hooks

lsm/path_mknod
lsm/path_mkdir
lsm/path_link
lsm/path_symlink
lsm/file_open
lsm/path_rename
lsm/path_rmdir
lsm/path_unlink

(a) (b)
Table 2: Hooks and tracepoints monitored by Cage4Deno

the argument provided by the developer to the Deno.run(), and
then to attach it to the sandboxed process. The attachment of the

proper policy to the sandboxed process is delicate, and requires a set

of programs to be loaded by Cage4Deno into the kernel alongside

the maps. To reduce the runtime overhead, BPF programs, together

with the BPF policy maps associated with all the policies listed in

the JSON policy file, are loaded from user space to kernel space

by Cage4Deno at startup time. These operations are carried out

using libbpf [47]. The programs are separated in two categories:

(i) programs that are needed to trace the lifecycle of a sandboxed

process, and (ii) programs to evaluate the access queries it performs

(according to the strategy described in Section 4.3.2).

The first group of BPF programs, namely the ones used to trace

the process lifecycle, are responsible for maintaining in memory the

map𝑀𝑎𝑝𝑡𝑎𝑠𝑘 of processes running on the system that are subject

to the restrictions imposed by Cage4Deno. Specifically,𝑀𝑎𝑝𝑡𝑎𝑠𝑘 as-

sociates each thread identifier to the proper𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 . The entries

in 𝑀𝑎𝑝𝑡𝑎𝑠𝑘 are updated when one of the hooks listed in Table 2a

is reached. For instance, when a traced process issues the clone
syscall, the tracepoint tp_btf/sched_process_fork is reached,

the related BPF tracing program executed, and the new child pro-

cess, inheriting the policy of the parent, is added to𝑀𝑎𝑝𝑡𝑎𝑠𝑘 .

The second group of BPF programs, the ones that are associated

with the evaluation of the access query, are executed when any of

the hooks listed in Table 2b is reached. The role of these programs

is to check whether the current process (i.e., the process issuing the

access request) belongs to the𝑀𝑎𝑝𝑡𝑎𝑠𝑘 , and accordingly to perform

the sequence of lookups in𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 to allow or deny the request.

5 POLICY GENERATION
A key aspect of our proposal is usability by developers. The straight-

forward RWX+D permission model is functional to achieve ease of

use (Objective O2), however, we believe that it is also important

to offer to the developers tools to support the generation of poli-

cies (Objective O4). Indeed, each policy can be seen as a template

comprising the dependencies to run a program that can be further

extended with information related to the input, the output, and the

restrictions the program may be subject to. This section details the

work we did to support the process, explaining how our solution

can be leveraged to generate the RWX rules shown in Listing 3.

The retrieval of the dependencies used by a program is a re-

curring problem. Just to mention a few, it occurs in the Google

Sandboxed API project, where the Sandbox2 sandboxing utility [31]

Listing 4: Semi-automatic generation of tar policy (Listing 3)
1 # Set the active policy_name for a program
2 dmng -c tar --setcontext tarPolicy
3 # Add the dependencies of tar to the template
4 dmng -c tar -t -s
5 # Add the input to the template
6 dmng -c tar -a input.tgz -p r--
7 # Add the output to the template
8 dmng -c tar -a output -p -w-
9 # Add the denials
10 dmng -c tar -a output/misc -d
11 # Serialize the entries into a JSON file
12 dmng --serialize tar_policy_file

leverages ldd (acronym for List Dynamic Dependencies) to retrieve

the dependencies used by programs available on the host as Ex-
ecutable and Linkable Format (ELF) files; or in SlimToolkit [61],

where a containerized service is run against a test suite to auto-

matically create Seccomp [9] and AppArmor [10] security profiles

matching the least-privilege principle. In Cage4Deno, we adopt a

similar approach, which retrieves the files a program should be able

to read, write, or execute to work as intended. Moreover, we need

to provide the developer with functions to manage multiple policies

simultaneously (updating the lists of dependencies and denials),

and to serialize them into the JSON format as shown in Listing 3.

The solution we adopted was to develop dmng, a CLI tool writ-
ten in Go (∼3.5k lines of code), which ships within Cage4Deno,

allowing the developer to automatically generate RWX rules, and
interactively refine, the policy. The utility supports the retrieval of

program dependencies that are available on the host as ELF files,

and those that are spawned by dedicated POSIX or shell wrappers.

It can also be used with programs loading dynamic modules at run-

time (e.g., media processors loading custom encoders), or programs

executing several binaries. To support these use cases, dmng relies

on both ldd and strace. The former was preferred to objdump
and readelf since it can be used to recover the so called transient
dependencies of programs available as ELF files; while the latter

is a diagnostic, debugging and instructional user-space utility for

Linux that is used to trace programs at runtime.

Similarly to the approach presented in SandTrap [3], the devel-

oper can use dmng to run a test suite against a program (or a script).

This apparoach allows the developer to reuse existing tests to gener-

ate RWX rules that satisfy multiple execution paths of the binary. By

using strace, dmng monitors the interactions between the threads

spawned by the tested utility and the kernel for a certain amount

of time (usually less than 2𝑠). In this time frame, the file-related

syscalls issued by the set of threads, along with their arguments,

are captured and saved to a log file. The log is then used by dmng to
generate the RWX rules accordingly. The list of syscalls monitored

comprises the ones wrapped by the standard system functions

execve(), open(), create(), link(), mkdir(). The dmng tool ex-

poses to the developer many functions to inspect, add, update or

remove the entries associated with the policy template. Specifically,

it allows to add deny rules, which generation cannot be automated.

It also implements heuristics to reduce the number of RWX rules,

thus improving their readability, and facilitating policy auditing,

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi and Stefano Paraboschi

when explicitly requested by the developer. This inherently comes

with the downside of producing coarser permissions. The process is

called permission pruning and it is based on common security prac-

tices, like the identification of write-or-exec (W^X) memory regions,

but also contextual information about the specific region of the

filesystem being considered (e.g., there are no practical advantages

in assigning fine-grained permissions under /usr/share/fonts/,
while it is certainly useful to do so under /home/user/Documents).
For this, the paths are arranged into a Trie, and then the above

heuristics are used to incrementally prune leaf nodes untill the

developer’s target number of rules is met.

For each of the programs to be restricted, a sequence of com-

mands may be input by the developer to synthesize the final policy

(state is persisted between tests using a SQLite database). Since

the developer can work with distinct programs and many policies

simultaneously, a cache is used to store the active context (i.e., the

current policy) of each program (line 2 in Listing 4). Then, each

context is customized adding the dependencies as previously de-

scribed. For instance, in line 4 dmng collects all the dependencies
required by tar using dynamic tracing, and in line 10 the developer

manually adds the deny rule. After all the policy contexts have

been configured, the policy is serialized into the JSON format as

expected by Cage4Deno (line 12). Appendix B reports the complete

tar policy produced following the instructions in Listing 4.

In this paper we employ dynamic analysis for the automatic

generation of policies, however this is widely known for producing

results whose completeness depends on the test suite coverage [77].

To address this limitation, the current approach could be comple-

mented by either source or binary code analysis. Relevant works

(e.g., [16]) use static analysis to pinpoint the system calls, however

they do not keep track of parameter values. On the other hand, Au-
toArmor [45] uses static taint analysis to perform semantics-aided

program slicing from network API invocations, and then uses these

slices to extract access control attributes. The approach also looks

promising for the generation of file system policies.

6 EXPERIMENTS
In this Sectionwe present the experimental evaluation of Cage4Deno.

The evaluation considers two aspects of our solution: exploit mit-

igation (Section 6.1), and performance overhead (Section 6.2). To

perform our evaluation we used the following test environment: an

Ubuntu 22.04 LTS server powered by an AMD Ryzen 3900X CPU

with 12 cores (24 threads), 64 GB RAM, 2 TB SSD. Then, we replaced

the pre-installed Linux Kernel v5.15 with the same release of the

kernel, but with BPF LSM available (Landlock LSM is enabled by

default).

6.1 Exploit mitigation
The primary goal of this Section is to demonstrate the capability of

Cage4Deno to mitigate real CVEs (Objective O5). Focusing on the

records of the last 5 years, we selected a sample of 15 vulnerabili-

ties affecting common web application utilities, such as ExifTool,

FFmpeg, Git, GNU Tar, GraphicsMagick, Ghostscript, ImageMagick,

OpenSSL, Pip, UnRAR, and Unzip. The CVEs we considered are clas-

sified into Remote Code Execution (RCE), Local File Read (LFR), and

Arbitrary File Overwrite (AFO). Their details are reported in Table 3.

CVE ID Utility Use case

Local File Read (LFR)

CVE-2016-1897 FFmpeg v3.2.5 Video processing

CVE-2016-1898 FFmpeg v3.2.5 Video processing

CVE-2019-12921 GraphicsMagick v1.3.31 Image processing

Arbitrary File Overwrite (AFO)

CVE-2016-6321 GNU Tar v1.29 Archive decompression

CVE-2019-20916 Pip v19.0.3 Dependency fetch

CVE-2022-30333 UnRAR v6.11 Archive decompression

Remote Code Execution (RCE)

CVE-2016–3714 ImageMagick v6.9.2-10 Image processing

CVE-2020-29599 ImageMagick v7.0.10-36 Image processing

CVE-2021-3781 Ghostscript v9.54.0 PDF processing

CVE-2021-21300 Git v2.30.0 Clone repository

CVE-2021-22204 ExifTool v12.23 Image processing

CVE-2022-0529 Unzip v6.0-25 Archive decompression

CVE-2022-0530 Unzip v6.0-25 Archive decompression

CVE-2022-1292 OpenSSL v3.0.2 Certificate verification

CVE-2022-2566 FFmpeg v5.1 Image processing

Table 3: Sample of CVEs mitigated by Cage4Deno. Despite
being discovered in 2016, CVEs 1897, 1898, and 6321 have
seen recent exploitation in 2018 [67] and 2021 [36]

These vulnerabilities have been selected as they represent exam-

ples of 0-click exploits, they can lead to severe security breaches,

and they target utilities extensively used by web applications. In

general, similar considerations extend to a broader set of CVEs.

In our analysis we reproduced each of the vulnerabilities adapt-

ing public Proofs of Concepts. For each of them, we provide a

single-click test showcasing the sandboxing capabilities added to

Deno. In particular, we show that: (i) the attacker can successfully

exploit the vulnerability when Deno is used (despite its permission

model being in place), and (ii) the attack is unsuccessful when the

sandboxing functions offered by Cage4Deno are used. The only

difference between case (i) and (ii) is that a policy is provided with

the --policy-file argument. This aspect testifies how simple it is

to benefit from the sandboxing functions we have introduced (Ob-

jective O2). The policy files used to restrict each utility have been

automatically generated with the dmng tool described in Section 5.

Table 4 reports the number of rules generated for the selected list

of utilities without applying any form of policy minimization (i.e.,

pruning). As shown in the table, the utilities require less than 115

permissions to work as intended, with pip requiring the largest set.
From a security standpoint, it is worth noting that Cage4Deno

can block the attacks at multiple levels. For instance, in CVE-2020-

29599, in which a crafted picture is sent to ImageMagick to execute

a target command (e.g., id), Cage4Deno does not allow RX access to
/usr/bin, blocking /usr/bin/echo first (which is used to inject id
in a subshell), and then the target command itself (i.e., usr/bin/id).
In this case, the denial is due to the Landlock sandbox allowing

access solely to /usr/bin/convert (i.e., the ImageMagick binary).

Instead, when we consider CVE-2016-6321, in which a decompres-

sion of an archive permits the attacker to overwrite a target file,

Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Utility #rules Deno [ms] Cage4Deno [ms]

cat 9 3.05±0.23 3.81±0.25
GraphicsMagick 81 10.16±1.02 12.16±1.12
UnRAR 25 13.86±1.97 15.84±2.71
ImageMagick 17 17.49±2.14 18.74±2.26
Unzip 15 20.90±3.95 22.66±3.62
OpenSSL 17 27.80±4.93 30.10±7.50
Git 26 66.52±4.75 72.46±5.22
ExifTool 38 109.20±6.67 112.88±4.25
GNU Tar 14 114.52±7.21 125.48±6.89
FFmpeg 12 321.50±9.55 336.70±9.78
Ghostscript 20 449.96±18.19 455.66±21.37
Pip 115 3022.52±20.55 3203.32±20.84

Table 4: Preliminary test showing the execution time of
utilities reported in Table 3 over 500 runs (as 𝜇 ± 𝜎)

we show how deny rules can be used to prevent filesystem corrup-

tion. As a final note, we highlight the ability to simultaneously use

distinct policies for a single utility. To give an example, in CVE-

2021-21300 several distinct policies can be assigned to pip. By doing
so, the developer can select a dedicated policy based on the Python

virtual environment currently in use.

Popular packages affected by the aforementioned vulnerabili-

ties can be found in both deno.land/x and npm package archives.
Among them, we selected astrodon and fast_forward from the

former, fluent-ffmpeg and gm from the latter (executed in Node

compatibility mode). We confirmed that the vulnerable versions of

the binaries are still exploitable through themediation of third-party

modules, and Cage4Deno proves to be effective in their mitigation

without code modification to the application and its dependencies.

6.2 Performance evaluation
A requirement of our proposal is that it must not introduce a large

runtime overhead compared to the scenario in which the developer

relies solely on the basic functions offered by Deno (Objective O6).
This is fundamental, as any additional delay could negatively affect

the end-user experience or increase the cost to host the application.

To investigate this aspect, we performed tests comparing the exe-

cution time of an application using vanilla Deno with respect to

the same application subject to access restrictions with Cage4Deno.

A second interesting aspect to consider in the evaluation is the

overhead introduced by our proposal compared to general-purpose

sandboxing solutions proposed by the industry. Finally, we evaluate

how our solution scales with the numer of rules in the policy.

6.2.1 Runtime overhead. In our analysis we expected the runtime

overhead to vary according to the size of the policy and the number

of filesystem requests performed by the sandboxed utility. We there-

fore conducted a preliminary test involving the utilities affected by

the CVEs detailed in Section 6.1. For each of them, we measured the

execution time of vanilla Deno and Cage4Deno. The results of the

test are reported in Table 4. The data clearly show that the largest

overhead is associated with the larger policies and the shorter exe-

cution time. To further highlight this aspect, we imagined the worst

case scenario in which a simple binary is used to perform a single

access to the filesystem. As shown in row 1 of Table 4, printing the

25 50 75 100 125 150
permissions

10

20

30

40

50

ru
nt

im
e

[m
s]

Sandbox2
Cage4Deno

Minijail
Deno

(a) Server execution time

25 50 75 100 125 150
rules

0

5

10

15

ov
er

he
ad

 [%
]

RWX+D
RWX

D

(b) Client perceived overhead

Figure 5: Deterioration of overhead varying the policy size

content of an empty file using the cat binary is associated with

the greatest overhead, roughly 25% of the execution time. cat is

characterized by a minimal execution time, and requires only 9

rules in the policy to work as intended, thus proving to be the best

candidate to highlight the overhead introduced by Cage4Deno.

To evaluate how our solution scales with the increase of rules in

the policy, we set up a second test. We again used cat, but this time

we added to its minimum set of permissions a varying number of

RWX rules, ranging from 25 to 150. To measure the execution time we

relied on the benchmarking module provided by the Deno standard

library [18], and to ensure the statistical value of the results we

repeated the test 500 times. Initially, we compared the execution

time of vanilla Deno and Cage4Deno. While Cage4Deno inevitably

introduces an overhead, its performance degradation (compared to

Deno’s) ranges between 0.8 and 2.5 ms, which is a reasonable price

for the additional security guarantees it provides.

To further inquire, we compared Cage4Deno with two general-

purpose sandboxing solutions: (i) Minijail [30], and (ii) Sandbox2, a
key component of the Sandboxed API [31] framework. As shown

in Figure 5a, the execution time associated with the use of Minijail

is 5.52 to 5.63 times slower compared to the one of Cage4Deno, and

Sandbox2 exhibits even a worse degradation, which is never less

than 8.15 times. To investigate the principal components causing

the overhead, we profiled the execution of each tool with perf.
Each of them presented two distinct phases: (i) sandbox setup, and
(ii) restricted execution. For Minijail and Sandbox2 the first phase is

dominated by creating the mount namespace, changing root direc-

tory, and performing a bind-mount for all the files needed to run

the utility. For Cage4Deno, equivalent protection can be achieved

with only the creation and enforcement of the Landlock rulesets. As

for the execution phase, Minijail and Sandbox2 suffer slowdowns

whenever performing filesystem operations due to the execution

of kernel code paths related to the resolution of namespaces and

bind mounts. In addition, Sandbox2 reference monitor architecture

requires inter-process communication between the tracee and its

tracer, which further degrades performance. On the other hand,

Cage4Deno only pays the overhead of evaluating the Landlock

security checks.
4
This validates our design choices, proving that

our solution can provide significantly better performance with re-

spect to industrial general-purpose sandboxing solutions. Moreover,

Figure 5a depicts an interesting trend. Among the sandboxing alter-

natives, not only Cage4Deno delivers the best performance, but it

4
The flame graphs used for the analysis are available in the repository of the project.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi and Stefano Paraboschi

also exhibits the slowest linear growth with respect to the increase

of the number of rules, making it the best option when a large

number of policy rules is necessary.

6.2.2 Overhead associated with deny rules. The previous tests do
not take into account the deny rules. In fact, both Minijail and

Sandbox2 do not support the presence of negative permissions. It

is then important to measure the overhead introduced by them, as

well as its degradation when the policy size increases. To better in-

vestigate the overhead experienced by end-users when Cage4Deno

is used on the back-end, we evaluated the response time of a single

HTTP endpoint that responds to incoming request with the content

printed by the cat command. To generate the HTTP requests we

relied on JMeter [5], a tool written in Java designed to load test

and measure the performance of web applications. Specifically, we

configured it to generate 100 warm up requests and measured the

latency of the following 5000. To simulate the overhead experienced

by end users of a web application, we also set up a network delay

of 10±5 ms (with a normal distribution) using tc [4], a Linux utility
to configure and shape the network traffic. The test is executed

four times with the following policy configurations: (i) no policy
(i.e., vanilla Deno), (ii) only positive rules (i.e., RWX), (iii) only deny

rules, and finally (iv) a policy characterized by the same number

of RWX and D rules. Again the number of rules in the policy ranges

between 25 and 150.

In general, the results reported in Figure 5b confirm the trend

shown in Figure 5a, with an overhead increasing almost linearly

with the number of rules in the policy. This is a positive aspect,

since it applies to both RWX and D rules. The relative overhead

perceived by clients, with respect to the default implementation

of Deno, ranges from 2.74% to 10.21% for policies listing only RWX
rules. This attests that the cost associated with Landlock is low, but

it increases linearly with the number of rules (in accordance with

the current inode-based implementation of the LSM). On the other

hand, the use of BPF is distinguished by a higher initial cost, but

the performance degradation introduced when the number of deny

rules increases is smaller compared to the one measured with pure

RWX policies, since it ranges between 10.17% and 12.79%. Moreover,

policies composed of both rule types still exhibit a linear trend,

with a client perceived overhead ranging from 11.99% to 17.24%.

It is important to note that the presence of deny rules not only

improves the readability and maintainability of the policy, but can

also improve the performance as it permits to reduce the overall

number of rules in the policy.

7 RELATEDWORK
Several approaches to strengthen the security guarantees provided

by JavaScript execution environments have been proposed by both

industry and academia. While developing Cage4Deno we focused

on solutions that target runtimes and are therefore applicable to the

server-side scenario. Our proposal complements them providing

effective isolation of subprocesses using recent technologies. In the

following, we separate the related works into four main categories.

Secure JavaScript sandboxes. Several works have been proposed

to strengthen the security guarantees offered by JavaScript runtimes

before the advent of Deno [3, 20, 49, 57–59, 71, 74, 75, 78].

Secure EcmaScript (SES) [49] is a runtime library to execute third-

party code safely in lightweight compartments. Essentially, SES

implements a frozen execution environment in which scripts have

no abilities to interfere with each other. An alternative for the

safe execution of untrusted third-party JavaScript code is vm2 [59].
Its peculiarity is that it overrides the built-in require, enabling
the developer to restrict access to a pre-defined set of modules.

SES and vm2 have been effective in mitigating the vulnerabilities

coming from unverified or untrusted third-party JavaScript code,

since they allow the developer to practically limit the APIs exposed

to the sandboxed JavaScript program. However, when access to a

dangerous API such as Deno.run() or child_process.spawn()
is granted, no restriction on the subprocess is enforced.

Another interesting approach to reduce the security risks coming

from the use of third-party modules is BreakApp [74]. The authors
use module boundaries to automate compartmentalization of sys-

tems and enforce security policies. To this end, BreakApp spawns

and executes modules in protected compartments, while preserving

their original behavior. Compartments are characterized by three

levels of isolation: sandbox, process, and container level. While the

approach is powerful and ensures strong security properties when

the container level is used, it is not straightforward to setup fine-

grained filesystem permissions when the process level is selected.

Mir [75] is a relevant proposal to mitigate the security risks com-

ing from third-party modules through the use of library-specialized

contexts. Mir applies a fine-grained RWX permission model to every

field of every free variable name in the context of an imported

library, with permissions inferred through static and dynamic anal-

ysis. SandTrap [3] shares with Mir the idea of protecting read, write

and call on entities (primitive values, functions, objects) and con-

struct policies on cross-domain interaction. The goal again is to

mitigate the security risk coming from the use of third-party mod-

ules, but in the Trigger-Action Platforms (TAPs) framework. While

both the approaches can mitigate several JavaScript vulnerabilities,

no restriction is applied on code executed outside of the runtime.

Wolf at the Door [78] is a recent proposal to reduce the risk

coming from the installation of third-party modules. The authors

propose to use the Apparmor LSM to detect install time anom-

alies such as connection to unknown hosts or read of confidential

files. The security checks are enforced based on a policy typically

written from the package maintainer. The approach protects the

host against undesired behavior of third-party packages installed

through npm, but the protection is enforced only at install time.

Isolation and sandboxing of unsafe libraries. The problem of

isolating subprocesses addressed by Cage4Deno shares strong simi-

larities with the isolation and sandboxing of third-party libraries.

This area has received significant attention recently, and many

proposals have been published [29, 37, 43, 52, 60, 62, 63, 65, 73, 76].

Galeed [62], PKRU-Safe [43], and NoJITsu [60] guarantee strong

isolation of unsafe components with the use of Memory Protec-

tion Keys (MPK). Galeed and PKRU-Safe preserve the memory

safety of Rust code when used in conjunction with unsafe code (e.g.,

C/C++). NoJITsu brings hardware-backed, fine-grained memory

access protection to JavaScript engines, thus successfully hinder-

ing a wide range of memory corruption attacks. Differently from

Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

previous solutions, RLBox [52] achieves sandboxing of third-party li-
braries through software-based-fault isolation. RLBox facilitates the

retrofitting of existing applications using a type-driven approach

that significantly ease the burden of securely sandboxing libraries in

existing code. These solutions are complementary to Cage4Deno, as

they can be used in conjunction with it to enforce trust boundaries

in the interaction between Deno and its subprocesses.

General-purpose sandboxers. To reduce the impact of poten-

tially vulnerable processes, several approaches leveraging system

call interposition have been proposed [7, 12, 16, 30, 31, 42, 53].

TRON [7] is a discretionary access control system. The authors

designed a Unix based capability system to limit process access

to files, directories and directory trees. Although the approach

allows fine-granularity access control, it suffers from two major

drawbacks: (i) it requires modifications on the kernel, and (ii) it
requires programs changes to make them capability-aware.

Another interesting initiative to implement unprivileged sand-

boxes is MBOX [42]. MBOX executes a program in a sandbox, and

prevents it from modifying the host filesystem by layering the sand-

box filesystem on top of it. Only at the end of the execution the user

can examine changes in the layered filesystem and commit them

back to the host. To do so, MBOX interposes system calls using

Seccomp filters, and relies on ptrace to enforce permissions. How-

ever, the use of ptrace is prone to TOCTOU attacks [39], and as

experimented by the authors, it can lead to non-negligible overhead.

In practice, system call interposition is often used to limit the set

of system calls available to a program [16, 61, 77]. This effectively

limits the capabilities of an attacker expoiting the program, and

reduces the attack surface of the kernel [46]. Nowadays, most solu-

tions rely on Seccomp filtering, a Linux kernel feature that allow to

filter system calls based on their identifiers and parameter values.
While valid, Seccomp filters can neither dereference pointers to

user memory, nor actionably use file descriptor numbers, thus they

are not suitable to perform access control of filesytem resources.

These solutions can be used in conjunction with Cage4Deno to

reduce the attacker capabilities and the attack surface of the kernel.

In Section 6 we have already compared Cage4Deno to other

general-purpose sandboxing solutions such as Minijail [30], and
Sandbox2 [31]. These tools support multiple types of containment

techniques such as the introduction of new user ids, restriction

of capabilities, policy-based Seccomp filtering, and namespace iso-

lation. Both the tools are powerful and flexible, but they are not

specifically aimed towards protecting web applications. Thus, they

are not optimized for the execution of short-lived programs, and

they target security experts, making them of difficult use to a wider

audience. Specifically, to achieve comparable protection to our RWX
rules, the developer needs to configure them to: (i) create a new
mount namespace, (ii) change the root directory of the binary, and

(iii) remount every part of the file hierarchy necessary for the func-

tioning of the binary under the new root. On the other hand,Minijail

and Sandbox2 use well enstablished kernel features available in

every modern Linux kernel version, and can be used without addi-

tional privileges provided there is no need to bind-mount privileged

resources. Similar considerations can be made about Firejail [53]
and Bubblewrap [12]; sandboxing tools functionally comparable to

Minijail and Sandbox2, but less mature.

BPF-based sandboxers. Other proposals have used BPF as the

primarymeans to enforce access control policies [2, 6, 11, 25–27, 38].

BPFBox [27] and BPFContain [26] are runtime security frame-

works focusing on the containment of processes and containers,

respectively. Comparing Cage4Deno to both the proposals, (i) we
do not require a privileged runtime daemon to keep track of the

traced processes (single point of failure), (ii) we rely on Landlock

to enforce RWX permissions so to guarantee low runtime overhead,

and (iii) we provide a tool for the automatic generation of policies.

Snappy [6] strengthens the security of containers using names-

paces and BPF policies. To support the programmable policies de-

scribed, the authors introduced in the kernel a set of new dynamic
helpers. Jia et al. [38] present a mechanism to define advanced

syscall filtering policies with the extended BPF. This is currently

achieved by hooking syscall tracepoints that cause system-wide

performance degradation and are still subject to TOCTOU attacks.

On the other hand, Jia et al. successfully address these limitations

proposing changes to the Linux kernel. These proposals require to

recompile the kernel with the addition of ad hoc functions not part

of the kernel codebase, thus limiting their usability and portability.

There are also industrial solutions using BPF, for instance: Cil-
ium [11] and Falco [25]. The former provides BPF-based networking,

observability and security between container workloads, the latter

is a threat detection engine for clusters. Both operate at the con-

tainer granularity; hence, developers may find it difficult to set up

fine-grained permissions with these frameworks.

These proposals demonstrate the value of BPF in securing dif-

ferent types of system resources. Extending our proposal to the

protection of non-filesystem resources is promising for future work.

8 CONCLUSIONS
Web development is a fast-paced environment characterized by

tight time constraints. In this vast ecosystem, we specifically con-

sidered the role of Deno, amodern and secure runtime for JavaScript

and TypeScript. Our proposal presents a way to improve the Deno

securitymodel by sandboxing the invocation of subprocesses, which

represent an important attack vector of web applications. As shown

in the experimental evaluation, Cage4Deno effectively mitigates

real CVEs affecting widely-used utilities in web applications. More-

over, it exhibits significantly better performance with respect to

other general-purpose sandboxing solutions. We paid great atten-

tion to reduce the overhead of the developer willing to strengthen

the security of its application. This is achieved not only by ex-

posing a simple and clear interface to the developer (requiring no

mandatory code changes), but also providing a command line tool

to generate least-privileged, yet human-readable, access control

policies. We believe the proposed approach is general enough to

be applied to other runtimes, since they share the same design as

Deno regarding the unconstrained execution of subprocesses (e.g.,

Node.js and Bun). This is a promising line of research we plan to

explore in the future.

ACKNOWLEDGMENTS
We thank our shepherd Dokyung Song and the reviewers for their

valuable feedback. The work was supported by the European Com-

mission within the GLACIATION project (No 101070141).

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi and Stefano Paraboschi

REFERENCES
[1] A. Starovoitov. 2020. CAP_BPF. https://lwn.net/Articles/820560/

[2] M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi.

2023. Leveraging eBPF to enhance sandboxing of WebAssembly runtime. In

ASIACCS.
[3] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson, and A. Sabelfeld. 2021.

SandTrap: Securing JavaScript-driven Trigger-Action Platforms. In USENIX Secu-
rity.

[4] W. Almesberger. 1999. Linux Network Traffic Control – Implementation

Overview.

[5] Apache. 2022. JMeter. https://jmeter.apache.org/

[6] M. Bélair, S. Laniepce, and J. Menaud. 2021. SNAPPY: Programmable Kernel-Level

Policies for Containers. In SAC.
[7] A. Berman, V. Bourassa, and E. Selberg. 1995. TRON: Process-Specific File Pro-

tection for the UNIX Operating System. In USENIX ATC.
[8] E. W. Biederman. 2006. Multiple Instances of the Global Linux Namespaces. In

Ottawa Linux Symposium (OLS).
[9] C. Canella, M. Werner, D. Gruss, and M. Schwarz. 2021. Automating Seccomp

Filter Generation for Linux Applications. In CCSW.

[10] Canonical. 2022. AppArmor. https://apparmor.net.

[11] Cilium. 2022. Cilium. https://github.com/cilium/cilium

[12] containers. 2022. Bubblewrap. https://github.com/containers/bubblewrap

[13] J. Corbet. 2019. KRSI. https://lwn.net/Articles/808048/

[14] CVE Mitre. 2021. Gitlab Exiftool vulnerability. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-22205

[15] A. Decan, T. Mens, and E. Constantinou. 2018. On the Impact of Security Vulner-

abilities in the npm Package Dependency Network. In MSR.
[16] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis. 2020.

sysfilter: Automated System Call Filtering for Commodity Software. In RAID.
[17] Deno Land. 2022. Deno Permission Model. https://deno.land/manual/getting_

started/permissions#permissions

[18] Deno Land. 2022. Deno standard library for testing. https://deno.land/std/testing

[19] Deno Land. 2022. Deno Subprocess. https://deno.land/manual@v1.26.0/

examples/subprocess

[20] Deno Land. 2022. Deno Workers. https://deno.land/manual@v1.26.0/runtime/

workers

[21] Deno Land. 2022. Node compatibility mode. https://deno.land/manual/node/

compatibility_mode.

[22] Docs.rs. 2022. Tokio. https://docs.rs/tokio/0.2.0/tokio/index.html

[23] dsherret. 2022. dax. https://github.com/dsherret/dax.

[24] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and W. Lee. 2021.

Towards Measuring Supply Chain Attacks on Package Managers for Interpreted

Languages. In NDSS.
[25] Falco. 2022. Falco. https://github.com/falcosecurity/falco

[26] W. Findlay, D. Barrera, and A. Somayaji. 2021. BPFContain: Fixing the Soft

Underbelly of Container Security. arXiv (2021).

[27] W. Findlay, A. Somayaji, and D. Barrera. 2020. bpfbox: Simple Precise Process

Confinement with eBPF. In CCSW.

[28] X. Gao, Z. Gu, Z. Li, H. Jamjoom, and C. Wang. 2019. Houdini’s Escape: Breaking

the Resource Rein of Linux Control Groups. In CCS.
[29] A. Ghosn, M. Kogias, M. Payer, J. R. Larus, and E. Bugnion. 2021. Enclosure:

Language-Based Restriction of Untrusted Libraries. In ASPLOS.
[30] Google. 2022. Minijail. https://google.github.io/minijail/

[31] Google. 2022. Sandbox2. https://developers.google.com/code-sandboxing/

sandbox2/

[32] Google. 2022. zx. https://github.com/google/zx.

[33] B. Gregg. 2021. BPF Internals. https://www.usenix.org/conference/lisa21/

presentation/gregg-bpf USENIX LISA.

[34] H. Tao. 2022. BPF: Introduce ternary search tree for string key. https://lore.

kernel.org/bpf/20220331122822.14283-1-houtao1@huawei.com.

[35] H. Tao. 2022. BPF: Support for string key in hash-table. https://lore.kernel.org/

bpf/20211219052245.791605-1-houtao1@huawei.com

[36] hackerone. 2021. External SSRF and Local File Read due to vulnerable FFmpeg.

https://hackerone.com/reports/1062888

[37] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen, and M.

Marty. 2019. Hodor: Intra-Process Isolation for High-Throughput Data Plane

Libraries. In USENIX ATC.
[38] J. Jia, Y. Zhu, D. Williams, A. Arcangeli, C. Canella, H. Franke, T. Feldman-

Fitzthum, D. Skarlatos, D. Gruss, and T. Xu. 2023. Programmable System Call

Security with eBPF. arXiv (2023).

[39] Z. Junyuan and R. Guo. 2021. Phantom Attack: Evading System Call Monitoring.

https://defcon.org/html/defcon-29/dc-29-speakers.html#guo DEFCON.

[40] J. Karásek, R. Burget, and O. Morský. 2011. Towards an Automatic Design of

Non-Cryptographic Hash Function. In TSP.
[41] M. Kehoe. 2022. eBPF: The Next Power Tool of SREs. https://www.usenix.org/

conference/srecon22americas/presentation/kehoe-ebpf USENIX SREcon.

[42] T. Kim and N. Zeldovich. 2013. Practical and Effective Sandboxing for Non-root

Users. In USENIX ATC.
[43] P. Kirth, M. Dickerson, S. Crane, P. Larsen, A. Dabrowski, D. Gens, Y. Na, S.

Volckaert, and M. Franz. 2022. PKRU-safe: automatically locking down the heap

between safe and unsafe languages. In EuroSys.
[44] Deno Land. 2022. Deno: JavaScript runtime. https://deno.land/

[45] X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen. 2021. Automatic Policy Generation

for Inter-Service Access Control of Microservices. In USENIX Security.
[46] Y. Li, B. Dolan-Gavitt, S. Weber, and J. Cappos. 2017. Lock-in-Pop: Securing

Privileged Operating System Kernels by Keeping on the Beaten Path. In USENIX
ATC.

[47] libbpf. 2022. libbpf. https://libbpf.readthedocs.io/en/latest/index.html

[48] M. K. Lau. 2017. BPF map-in-map support. https://www.mail-archive.com/

netdev@vger.kernel.org/msg159387.html

[49] M. S. Miller. 2022. Draft Proposal for SES (Secure EcmaScript). https://github.

com/tc39/proposal-ses

[50] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and N. Nystrom.

2015. Use at Your Own Risk: The Java Unsafe API in the Wild. SIGPLAN (2015).

[51] A. Nakryiko. 2020. BPF CO-RE. https://facebookmicrosites.github.io/bpf/blog/

2020/02/19/bpf-portability-and-co-re.html

[52] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner, H. Shacham,

and D. Stefan. 2020. Retrofitting Fine Grain Isolation in the Firefox Renderer. In

USENIX Security.
[53] netblue30. 2022. Firejail. https://firejail.wordpress.com/

[54] Npm. 2022. fluent-ffmpeg. https://www.npmjs.com/package/fluent-ffmpeg.

[55] Npm. 2022. gm. https://www.npmjs.com/package/gm.

[56] Npm. 2022. sane. https://www.npmjs.com/package/sane.

[57] G. Ntousakis, S. Ioannidis, and N. Vasilakis. 2021. Detecting Third-Party Library

Problems with Combined Program Analysis. In CCS.
[58] OpenJS Foundation. 2022. Worker threads. https://nodejs.org/api/worker_

threads.html

[59] P. Simek. 2022. Proposal for VM2: Advanced vm/sandbox for Node.js. https:

//github.com/patriksimek/vm2

[60] T. Park, K. Dhondt, D. Gens, Y. Na, S. Volckaert, and M. Franz. 2020. NoJITsu:

Locking Down JavaScript Engines. In NDSS.
[61] K. Quest. 2022. SlimToolkit. https://github.com/slimtoolkit/slim

[62] E. Rivera, S. Mergendahl, H. Shrobe, H. Okhravi, and N. Burow. 2021. Keeping

Safe Rust Safe with Galeed. In ACSAC.
[63] M. Rossi, D. Facchinetti, E. Bacis, M. Rosa, and S. Paraboschi. 2021. SEApp:

Bringing Mandatory Access Control to Android Apps. In USENIX Security.
[64] Mickaël Salaün. 2022. Landlock. https://landlock.io/

[65] D. Schrammel, S. Weiser, R. Sadek, and S. Mangard. 2022. Jenny: Securing Syscalls

for PKU-based Memory Isolation Systems. In USENIX Security.
[66] Snyk. 2022. State of Open Source Security 2022. https://snyk.io/reports/open-

source-security/.

[67] Snyk. 2022. Zip Slip Vulnerability. https://snyk.io/research/zip-slip-vulnerability

[68] Stack Overflow Insights. 2022. Annual survey of the Stack Overflow community.

https://survey.stackoverflow.co/2022/

[69] C. Staicu, M. Pradel, and B. Livshits. 2018. Synode: Understanding and Automati-

cally Preventing Injection Attacks on Node.js. In NDSS.
[70] C. Staicu, S. Rahaman, Á. Kiss, and M. Backes. 2023. Bilingual Problems: Studying

the Security Risks Incurred by Native Extensions in Scripting Languages. USENIX
Security (2023).

[71] J. Terrace, S. R. Beard, and N. P. K. Katta. 2012. JavaScript in JavaScript(js.js):

Sandboxing Third-Party Scripts. In WebApps.
[72] V8 project. 2022. What is V8? https://v8.dev/

[73] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Druschel, and

D. Garg. 2019. ERIM: Secure, Efficient In-process Isolation with Protection Keys

(MPK). In USENIX Security.
[74] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon, and J. M. Smith.

2018. BreakApp: Automated, Flexible Application Compartmentalization. In

NDSS.
[75] N. Vasilakis, C. Staicu, G. Ntousakis, K. Kallas, B. Karel, A. DeHon, and M. Pradel.

2021. Preventing Dynamic Library Compromise on Node.js via RWX-Based

Privilege Reduction. In CCS.
[76] A. Voulimeneas, J. Vinck, R. Mechelinck, and S. Volckaert. 2022. You Shall Not

(by)Pass! Practical, Secure, and Fast PKU-Based Sandboxing. In EuroSys.
[77] Z. Wan, D. Lo, X. Xia, L. Cai, and S. Li. 2017. Mining Sandboxes for Linux

Containers. In ICST.
[78] E. Wyss, A. Wittman, D. Davidson, and L. De Carli. 2022. Wolf at the Door:

Preventing Install-Time Attacks in npm with Latch. In ASIACCS.
[79] W. Zhang, P. Liu, and T. Jaeger. 2021. Analyzing the Overhead of File Protection

by Linux Security Modules. In ASIACCS.
[80] M. Zimmermann, C. Staicu, C. Tenny, and M. Pradel. 2019. Smallworld with High

Risks: A Study of Security Threats in the Npm Ecosystem. In USENIX Security.

https://lwn.net/Articles/820560/
https://jmeter.apache.org/
https://apparmor.net
https://github.com/cilium/cilium
https://github.com/containers/bubblewrap
https://lwn.net/Articles/808048/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22205
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22205
https://deno.land/manual/getting_started/permissions#permissions
https://deno.land/manual/getting_started/permissions#permissions
https://deno.land/std/testing
https://deno.land/manual@v1.26.0/examples/subprocess
https://deno.land/manual@v1.26.0/examples/subprocess
https://deno.land/manual@v1.26.0/runtime/workers
https://deno.land/manual@v1.26.0/runtime/workers
https://deno.land/manual/node/compatibility_mode
https://deno.land/manual/node/compatibility_mode
https://docs.rs/tokio/0.2.0/tokio/index.html
https://github.com/dsherret/dax
https://github.com/falcosecurity/falco
https://google.github.io/minijail/
https://developers.google.com/code-sandboxing/sandbox2/
https://developers.google.com/code-sandboxing/sandbox2/
https://github.com/google/zx
https://www.usenix.org/conference/lisa21/presentation/gregg-bpf
https://www.usenix.org/conference/lisa21/presentation/gregg-bpf
https://lore.kernel.org/bpf/20220331122822.14283-1-houtao1@huawei.com
https://lore.kernel.org/bpf/20220331122822.14283-1-houtao1@huawei.com
https://lore.kernel.org/bpf/20211219052245.791605-1-houtao1@huawei.com
https://lore.kernel.org/bpf/20211219052245.791605-1-houtao1@huawei.com
https://hackerone.com/reports/1062888
https://defcon.org/html/defcon-29/dc-29-speakers.html#guo
https://www.usenix.org/conference/srecon22americas/presentation/kehoe-ebpf
https://www.usenix.org/conference/srecon22americas/presentation/kehoe-ebpf
https://deno.land/
https://libbpf.readthedocs.io/en/latest/index.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg159387.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg159387.html
https://github.com/tc39/proposal-ses
https://github.com/tc39/proposal-ses
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://firejail.wordpress.com/
https://www.npmjs.com/package/fluent-ffmpeg
https://www.npmjs.com/package/gm
https://www.npmjs.com/package/sane
https://nodejs.org/api/worker_threads.html
https://nodejs.org/api/worker_threads.html
https://github.com/patriksimek/vm2
https://github.com/patriksimek/vm2
https://github.com/slimtoolkit/slim
https://landlock.io/
https://snyk.io/reports/open-source-security/
https://snyk.io/reports/open-source-security/
https://snyk.io/research/zip-slip-vulnerability
https://survey.stackoverflow.co/2022/
https://v8.dev/

Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

A BPF DETAILS
In the following we detail, as a complement, some of the issues we

found working with the current implementation of BPF, explaining

how we solved them.

A.1 Hashing & collision handling
As anticipated in the design and implementation of deny rules (Sec-
tion 4.3), the current implementation of the BPF framework does

not provide support for map-in-map structures [48]. Moreover, sup-

port for using string keys in a map is still limited [35]. At the time

of writing, a patch for providing this option, along with efficient

ternary search support to lookup the map [34], are under active

development on bpf-next, the branch dedicated to the features

and improvements that should eventually land in BPF. Nonetheless,

we had to cope with the temporary limitation of using an integer

key to lookup the𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 , hence, we had to find a way to trans-

form the string prefixes stored in the trie to fixed size integers. A

typical approach to solve this problem is to use a hash function.

Given the need to preserve the ability to search for prefixes effi-

ciently, we opted for using an incremental hash function. Given

𝑆𝑟 , the string representing the access path, an incremental hash

function permits to compute ℎ𝑎𝑠ℎ(𝑆𝑟 [𝑖]), the hash of the prefix

terminating at character 𝑖 , in constant time given the hash of the

prefix terminating at 𝑖 − 1. In our case we relied on djb2 [40], a non-
cryptographic low-complexity incremental hash function proposed

by D. J. Bernstein.

The use of a hashing function also required us to handle the col-

lisions explicitly. Indeed, collisions may occur during map creation,

and at runtime upon receiving an access request. Basically, this

means that every time a key is found in the policy map𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 ,

a collision check has to be performed to determine whether a deny

rule was hit. The best trade-off between query response time and

size of the policy map has been achieved adapting the separate hash

chaining approach, in which a fixed size array is used to store a

sequence of colliding paths. To explain how it works we introduce

the following example. Let us assume to have three deny rules in

the policy: /home/user/data, /home/user/lib and /media. Also,
let us assume that the djb2 hash of /home/user/lib and /media
collide. Instead of using the deny rules to build a prefix tree, we can

build the policy map𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 as shown in Table 5. Upon receiving

an access request 𝑆𝑟 , the verifier computes the incremental hash for

each of its prefixes, and then performs a sequence of map lookups.

In case no lookup is successful, the verifier concludes that no deny

rule was hit, hence the access request is granted. Conversely, the

verifier must check whether a deny rule was hit, or a collision

was found. To do that, the verifier compares the access request

𝑆𝑟 , and each of the colliding paths associated with the lookup key.

Algorithm 1 details the procedure.

The time complexity of the proposed approach varies according

to the presence of collisions. When none occurs, the worst case time

complexity is given by the total hashing time 𝑂 (𝑁), plus the total
lookup time 𝑂 (𝑁) (i.e., in the worst case 𝑆𝑟 is structured as [/𝑐]+,
hence 𝑁 /2 lookups each taking 𝑂 (1) time are performed). Instead,

each time a collision occurs (or a deny rule is hit), the verifier incurs

in an𝑂 (𝑁 · 𝐿) extra time, where 𝐿 is the length of the longest colli-

sion chain. Similarly to other research proposals [40], the results

BPF Map
Deny rule hash Array of colliding paths
𝑑 𝑗𝑏2(𝐷𝑟1) /home/user/data→ ∅
𝑑 𝑗𝑏2(𝐷𝑟2, 𝐷𝑟3) /home/user/lib→ /media→ ∅

Table 5: 𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 with separate hash chaining (assuming
the hashes of /home/user/lib and /media colliding)

Algorithm 1 Modified deny rule verifier

1: procedure Deny_Verifier(𝑆𝑟)

2: 𝑡𝑎𝑠𝑘 ← 𝑏𝑝 𝑓 _𝑔𝑒𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑎𝑠𝑘_𝑏𝑡 𝑓 ()
3: if ¬𝑡𝑎𝑠𝑘 ∈ 𝑀𝑎𝑝𝑡𝑎𝑠𝑘 then
4: return 0 ⊲ Grant request

5: 𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 ← 𝑀𝑎𝑝𝑡𝑎𝑠𝑘 [𝑡𝑎𝑠𝑘]
6: for each 𝑝𝑟𝑒 𝑓 𝑖𝑥 in 𝑆𝑟 do
7: if 𝑑 𝑗𝑏2(𝑝𝑟𝑒 𝑓 𝑖𝑥) ∈ 𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 then
8: 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑐ℎ𝑎𝑖𝑛 ← 𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 [𝑑 𝑗𝑏2(𝑝𝑟𝑒 𝑓 𝑖𝑥)]
9: for 𝐷𝑟 in 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑐ℎ𝑎𝑖𝑛 do
10: if 𝑖𝑠𝑃𝑟𝑒 𝑓 𝑖𝑥 (𝐷𝑟 , 𝑝𝑟𝑒 𝑓 𝑖𝑥) then
11: return -EPERM ⊲ Deny request

12: return 0 ⊲ Grant request

presented in our Experimental Evaluation showed a limited impact

associated with the presence of collisions (see Section 6). It is worth

mentioning that the number of collisions can be reduced using a

cryptographic hash function, at the expense of a lower efficiency.

With regard to the size of the policy map, given𝑀 the number of

deny rules in the policy, a space of 𝑂 (𝑀 · 𝑁) is required.

A.2 Map types
BPF provides several map types to the developer. Each of them is

characterized by distinct performance and functions. In Sections 4.3

and A.1 we illustrated our construction of the verifier, detailing

the role of 𝑀𝑎𝑝𝑡𝑎𝑠𝑘 and 𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 . The former permits to keep

track of the processes subject to the control of Cage4Deno and to

associate them with a policy map, while the latter stores the restric-

tions listed in a policy. Since the content and number of entries

of𝑀𝑎𝑝𝑡𝑎𝑠𝑘 varies at runtime, in the implementation we opted for

the TASK_STORAGE map type, which permits to be modified calling

the bpf_task_storage_get() and bpf_task_storage_delete()
BPF helpers.With regard to𝑀𝑎𝑝𝑝𝑜𝑙𝑖𝑐𝑦 , nomodification is permitted

after the creation of the map. The only parameter to be minimized

is the lookup time, hence we opted for the HASH map type.

A.3 Stack limitation
The maximum path length on a Linux system is bounded to 4096

characters (in linux/limits.h). Unfortunately, the stack size of a

BPF program is limited to 512 bytes. To circumvent this limitation,

we stored each access path outside of the BPF stack, in a dedicated

PERCPU_ARRAY map. As the name suggests, each CPU core execut-

ing a BPF program has an instance of the PERCPU map, which can

hold a different state. However, the content of an instance cannot

be modified for the whole duration of the check performed by the

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi and Stefano Paraboschi

verifier (except for the verifier itself), as BPF programs are non-

preemptable. Therefore, the use of the PERCPU type bypasses the

BPF stack limitation without requiring any additional concurrency

primitive (e.g., spinlocks).

B GNU TAR POLICY FILE
Listing 5 reports the policy associated with GNU Tar. The policy has

been generated using dmng according to the procedure described

in Listing 4.

Listing 5: Example of policy associated with tar

1 {
2 "policies": [
3 {
4 "policy_name": "tarPolicy",
5 "read": [
6 "/usr/local/bin/tar",
7 "/usr/lib/locale/locale -archive",
8 "/usr/share/locale/locale.alias",
9 "/usr/bin/gzip",
10 "/lib/x86_64 -linux -gnu/libc.so.6",
11 "/ lib64/ld-linux -x86 -64.so.2",
12 "/etc/ld.so.cache",
13 "/home/user/input.tgz",
14],
15 "write": [
16 "/home/user/output"
17],
18 "exec": [
19 "/usr/local/bin/tar",
20 "/usr/bin/gzip",
21 "/lib/x86_64 -linux -gnu/libc.so.6",
22 "/ lib64/ld-linux -x86 -64.so.2"
23],
24 "deny": [
25 "/home/user/output/output/misc"
26]
27 },
28 }

	Abstract
	1 Introduction
	2 Background
	2.1 Deno
	2.2 Landlock LSM
	2.3 eBPF

	3 Cage4Deno
	3.1 Overview
	3.2 Threat model
	3.3 Design objectives

	4 Design and Implementation
	4.1 Policy and interface
	4.2 Support to RWX rules
	4.3 Support to deny rules

	5 Policy generation
	6 Experiments
	6.1 Exploit mitigation
	6.2 Performance evaluation

	7 Related Work
	8 Conclusions
	Acknowledgments
	References
	A BPF details
	A.1 Hashing & collision handling
	A.2 Map types
	A.3 Stack limitation

	B GNU Tar policy file

