
BACKGROUND
● WebAssembly runtimes enable the execution of WebAssembly

programs outside of the browser
● the new use-case comes with additional requirements and, as a

result, to access the underlying system the WebAssembly
System Interface (WASI) has been standardized

PROBLEM STATEMENT
The WASI filesystem sandbox is implemented using WASI-libc,
which exposes syscalls on top of a libpreopen-like layer

This method has the following limitations:
● WASI-compliant runtimes must provide their own implementation

of syscalls wrappers
● no protection when the runtime is affected by a vulnerability
● limited access control granularity (directory-level)

RISKS INTRODUCED BY THE CURRENT DESIGN
● directory-level permissions force the developer to separate

confidential and non-confidential files into distinct folders; when
this structure is not adopted, confidential data may be leaked by
buggy or untrusted modules

● runtimes may behave differently due to corner cases in the
preopen logic, leading to ambiguity in sandbox definition

METHODOLOGY
● constrain access to the filesystem through the Landlock LSM
● evaluate the performance overhead w.r.t. current solutions on

benign and malicious WASI modules

IDEA
Replace the runtime preopen logic with a call to Landlock. In the
example below the host .pem keys can be accessed read-only.

ADVANTAGES
● access control enforced by the Kernel
● no need for a custom libc implementation
● same behavior across different runtimes
● file-level granularity, instead of directory-based access
● preliminary evaluation shows limited overhead compared to

current implementation (~1% overhead)

Enhancing the security of WebAssembly
runtimes using Linux Security Modules

Hardening WASI using Landlock LSM
Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Stefano Paraboschi, Matthew Rossi

let mut state_builder = WasiState::new("genrsa-wasi");
let state = state_builder
 .args(&["genrsa", "-out", "keys/key.pem", "2048"])
 .preopen(|p| p.path("keys/key.pem").read(false).write(true).create(true))?
 .build()?;

let status = Ruleset::new()
.handle_access(AccessFs::from_all(ABI::V1))?.create()?

 .add_rules(rules_from_vec(&vec![keys/key.pem],
 ACCESS_FS_ROUGHLY_WRITE))?

 .restrict_self()?;

GET A COPY OF THE POSTER!

Avoid storing permissions in a global state,
use instead the kernel API to set
permissions at process level.

