
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Multi-dimensional indexes for point and range
queries on outsourced encrypted data

Sabrina De Capitani di Vimercati∗, Dario Facchinetti†, Sara Foresti∗,
Gianluca Oldani†, Stefano Paraboschi†, Matthew Rossi†, Pierangela Samarati∗
∗ Università degli Studi di Milano, Italy – Email: firstname.lastname@unimi.it
† Università degli Studi di Bergamo, Italy – Email: firstname.lastname@unibg.it

Abstract—We present an approach for indexing encrypted data
stored at external providers to enable provider-side evaluation of
queries. Our approach supports the evaluation of point and range
conditions on multiple attributes. Protection against inferences
from indexes is guaranteed by clustering tuples in boxes that are
then mapped to the same index values, so to ensure collisions for
individual attributes as well as their combinations. Our spatial-
based algorithm partitions tuples to produce such a clustering
in a way to ensure efficient query execution. Query translation
and processing require the client to store a compact map. The
experiments, evaluating query performance and client-storage
requirements, confirm the efficiency enjoyed by our solution.

Index Terms—Data outsourcing, query execution, privacy

I. INTRODUCTION

The use of cloud providers for the storage of data is
increasingly a necessity for most Big Data applications. Cloud
providers offer storage with high levels of availability, reliabil-
ity, scalability and performance, all associated with a relatively
low cost, deriving from the large economies of scale enjoyed
by cloud providers. A common concern when using cloud
providers for the storage of sensitive data is the threat to the
violation of confidentiality of the outsourced data [1]. Whereas
violations of integrity or availability can produce effects that
are visible to the customer, violations of confidentiality are
usually hard to detect. This scenario is represented by the
well-known honest-but-curious threat model [2]. The classical
solution to this threat is represented by the use of encryption,
so that the control of the physical representation of the data
does not give access to the information content, as long as the
cloud provider does not have access to the encryption key.

A major problem in this context is then enabling the
fine-grained access and retrieval of data that are stored in
encrypted form at the server. For real world applications,
data are typically structured in relational tables, and access
requests represented by SQL queries. In the past twenty years,
the research and development community have dedicated
significant effort to this problem, considering different lines
of investigations. Possible approaches include: i) the use of
searchable encryption (e.g., [3]), supporting the evaluation of
conditions on encrypted data; ii) the use of trusted hardware
components at the server (e.g., Intel SGX), offering a trusted

This work was supported in part by the EC within the H2020 Program under
projects MOSAICrOWN and MARSAL, by the Italian Ministry of Research
within the PRIN program under project HOPE, and by JPMorgan Chase &
Co under project “k-anonymity for AR/VR and IoT/5G”.

execution environment residing at, but not accessible by, the
server (e.g., [4]); iii) the association with the encrypted data
of metadata working as indexes offering support for the evalu-
ation of conditions (e.g., [5], [6]). All these approaches repre-
sent valid alternatives depending on the application scenario.
The first two, while enjoying strong protection guarantees,
suffer from a significant performance overhead, making them
still not applicable in many practical scenarios. On the other
hand, indexes, while applicable in practice, may suffer from a
possible exposure to inferences, as they might leak information
on the values behind them. The vulnerability of indexes
typically resides in the frequencies of their occurrences, which
can bear relationship with the plaintext values. Frequencies
of both individual attributes values as well as combinations
of them can be exposed to inference. A solution to this
problem is guaranteeing indexes with collisions (i.e., mapping
different plaintext values into the same index value), so to
provide confusion and indistinguishability. Unfortunately, this
is easier said than done, as constructing such an index requires
addressing two (interconnected) aspects which are far from
being trivial. First, an inevitable curse of dimensionality, while
it can easily provide collisions and indistinguishability over
one attribute, it is not so when multiple attributes need to
be considered. The problem is complicated by the second
aspect, which is the need to guarantee effectiveness of indexes
(in terms of the limited overhead caused by spurious tuples
returned to the clients due to collisions) and their efficiency
(in terms of low performance overhead) for query execution. A
third non trivial aspect is the need to limit the storage required
at the client for (re)constructing indexes to translate queries on
original plaintext data into queries on indexes at the server.

In this paper, we address all these problems and propose a
multi-dimensional index (i.e., an index on multiple attributes)
that is robust against inference exposure and, at the same
time, performs well for query execution and requires lim-
ited storage at the client side. Our multi-dimensional index
ensures not only that index values on individual attributes
are guaranteed to appear at least a given number of times
(i.e., no peculiar frequencies can be exploited for inference
attacks) but that the same holds for their combination. In
other words, each combination of index values enjoys the
property of having at least a given number of occurrences.
Besides providing protection against static inference attacks
(which can no longer exploit frequencies of index values), our

approach guarantees protection against dynamic observations
from the storage provider, since tuples with the same index
values are indistinguishable from one another (so are queries
over them). The price to pay for such a protection is the
overhead in query execution: being tuples with the same
indexes indistinguishable one from the others since any query
touching one of them would return all the others as well. It is
therefore important to carefully group tuples for indexing so
to limit the overhead in query execution and hence guarantee
performance. While this can be trivial when only one attribute
is to be indexed, it is far from being so (it is an NP-hard
problem) when multiple attributes need to be indexed.

Our approach for index construction employs a spatial-
based representation of tuples to be outsourced and a clever
algorithm performing recursive cuts on such space, resulting
in a partitioning of tuples for indexing. As confirmed by the
experimental evaluation, our proposal provides for effective
and efficient query evaluation, enjoying limited overhead and
limited storage requirements at the client side.

II. BASIC CONCEPTS

We frame our work in the context of relational database
systems (which are still at the basis of almost all applica-
tions). We then illustrate our approach with reference to the
outsourcing of a relation r defined over schema R(a1, . . . , an),
where each attribute aj is defined over a domain d(aj), for
j = 1, . . . , n. In the following, we use notation val(aj)
to denote the set of values of attribute aj stored in r (i.e.,
val(aj) = SELECT DISTINCT aj FROM R). As an exam-
ple, Figure 1(a) illustrates a relation r with three attributes:
Name, State, and Age. Here, d(Age)={0, . . . , 120} and
val(Age)={27, 30, 35, 38, 42, 45, 50}. To protect the confi-
dentiality of data and make them non-intelligible to the storage
provider, the owner encrypts the relation at the tuple level
before outsourcing it, using a symmetric encryption scheme
with a key shared with authorized users only. Queries on
the encrypted relation are supported via a set of indexes
associated with a set I={a1, . . . , al}⊆R of attributes in the
original relation on which conditions need to be evaluated in
the execution of queries (State and Age for our running
example). An encrypted and indexed relation is formally
defined as follows.

Definition 2.1 (Encrypted and indexed relation): Let r be a
relation over schema R(a1, . . . , an), and I = {a1, . . . , al} ⊆
R be a subset of the attributes in R. The encrypted and indexed
version of r is a relation re over schema Re(et, i1, . . . , il)
where ∀t ∈ r, ∃te ∈ re such that te[et]=Ek(t), with Ek
a symmetric encryption function with key k, and te[ij] the
index value derived from t[aj], j = 1, . . . , l.

According to this definition, the encrypted and indexed
version re of relation r has an attribute et, which is the
encrypted representation of the tuples in the plaintext relation,
and an attribute ij , which is the index for attribute aj in I,
j = 1, . . . , l. Figure 1(d) illustrates an example of encrypted
and indexed version of the relation in Figure 1(a), where

State and Age are indexed. For simplicity, in the example
we use Greek letters to represent index values.

Our goal is to compute a multi-dimensional index that is
effective and efficient for the execution of queries with support
for equality (=) and range (>,≥, <,≤) conditions.

III. MULTI-DIMENSIONAL TUPLE PARTITIONING

Our approach for partitioning tuples for indexing employs
an algorithm similar to the one used by the Mondrian
anonymization algorithm [7], [8]. While similar, our algorithm
bears differences to accommodate the fact that we need to
cluster tuples to produce obfuscated indexes performing well
for query evaluation (in contrast to cluster tuples for seman-
tically meaningful generalization). Our partitioning process
works then in a multi-dimensional space, with one dimension
for each indexed attribute, and where tuples correspond to
points in the multi-dimensional space where their coordinates
correspond to the values of the indexed attributes in the tuples.
Figure 1(b) shows the two-dimensional representation for the
indexing of attributes State and Age of the relation in
Figure 1(a). Since more tuples can have the same values for
the indexed attributes, a point in the multi-dimensional space
can correspond to more than one tuple, which is represented
in the figure with the number of occurrences associated with
it (omitted in our example since it is always equal to 1).

To construct the multi-dimensional space on which the
algorithm operates, by partitioning tuples in boxes of at least b
tuples, we classify attributes to be indexed into two categories:
• continuous attributes (e.g., Age in Figure 1(a)), charac-

terized by a total order relationship on their domain, and
on which range conditions need to be supported;

• nominal attributes (e.g., State in Figure 1(a)), which do
not have a semantic order in their domain and hence on
which only equality conditions make sense.

When partitioning tuples in boxes, care must be taken to
put as much as possible tuples with the same values for an
attribute in the same box. Also, for continuous attributes,
close values should fall as much as possible in the same
space. (Note that this might intrinsically not be possible for
all attributes.) Consistently with these observations, values
of continuous attributes are considered in their natural (we
assume increasing) order along the axis of their dimension,
while values of nominal attributes are considered in increasing
order of their relative frequencies in the tuples.

The partitioning process works recursively, cutting, at each
step, a space (the whole space in the first step) with respect to
a selected attribute and a value in its domain as threshold. The
cut divides the space in two sub-spaces, each containing the
points (i.e., the tuples) falling on its side of the cut. The process
is recursively repeated on each of the two resulting sub-
spaces, and terminates when any further cut would generate
a partition with less than b tuples. At each step, the attribute
chosen for the cut is the one that, in the considered space,
has the maximum span. For continuous attributes, the span is
the distance between the minimum and maximum value that
the tuples in the (sub-)space assume. For nominal attributes,

r
Name State Age

t1 Ada Ak 38
t2 Bob Mi 27
t3 Coy Wy 35
t4 Dan Ca 42
t5 Eve Ca 45
t6 Fay Wy 50
t7 Gil Ny 38
t8 Hal Tx 30
t9 Ian Tx 27 3827 35 42 45 50383027

Ak

Mi

Wy

Ca

Ny

Tx State Age
t1 AkMiWy [27,38]
t2 AkMiWy [27,38]
t3 AkMiWy [27,38]
t4 CaWy [42,50]
t5 CaWy [42,50]
t6 CaWy [42,50]
t7 NyTx [27,38]
t8 NyTx [27,38]
t9 NyTx [27,38]

re

et iState iAge

te1 but6yv ω α
te2 lmoe!. ω α
te3 p4?llq ω α
te4 gbS1.X γ β
te5 c493pw γ β
te6 WD.23b γ β
te7 Q.co43 τ α′

te8 de31As τ α′

te9 xMe1!K τ α′

MapAge
Bucket Count
[27,38] 2
[42,50] 1

MapState
Value Bucketsσ

Ak AkMiWy
Ca CaWy
Mi AkMiWy
Ny NyTx
Tx NyTx
Wy AkMiWy, CaWy

(a) (b) (c) (d) (e) (f)

Fig. 1: Plaintext relation (a), its spatial representation (b), partitioning (c), encrypted and indexed relation (d), and maps for
attribute Age (e) and State (f)

it is the number of distinct values that the tuples in the
(sub-)space assume. For instance, with reference to the relation
in Figure 1(a), the span for attribute Age is 50 − 27 = 23,
while the span for attribute State is 6. The value chosen as
threshold for the cut is the median for continuous attributes,
and the value that splits the (sub-)space in two sub-spaces
with nearly 50% of the tuples each for nominal attributes.
Note that cuts change the relative frequency of values in the
generated sub-spaces, and hence also the order in which values
for nominal attributes are considered on their axis.

IV. INDEX CONSTRUCTION

At the end of the partitioning process, the tuples in r are
grouped in non-overlapping boxes (i.e., disjoint groups of
tuples whose union corresponds to r) such that each box
contains at least b tuples. The dotted lines in Figure 1(b)
denote the cuts performed and hence the resulting boxes for
our example. Two cuts have been performed, resulting in three
boxes, each containing three tuples.

Intuitively, boxes determine the tuples that will be mapped
to the same combination of index values. In other words, for
each indexed attribute, all the values that fall in the same box
will be mapped to the same index values. Since this applies to
all indexed attributes, this implies that all tuples in the same
box will be mapped to the same combination of index values.
In the following, we use notation B to denote the set of all
boxes, and Bj∈B to denote the j-th box. Also, for each box
B∈B and attribute a∈I, we denote with B[a] the set of values
of a, called bucket, covered by B. A bucket is expressed as
an interval for continuous attributes and as a set of values for
nominal attributes. Formally, for each box B and attribute a:
• B[a] = [v,v′] such that v = min {t[a] | t ∈ B} and v′ =

max {t[a] | t ∈ B}, if a is a continuous attribute;
• B[a] = {t[a] | t ∈ B}, if a is a nominal attribute.
Figure 1(c) reports the buckets of the three boxes corre-

sponding to the partitioning in Figure 1(b). For readability,
we represent each set as a string composed of all its elements,
that is, AkMiWy stands for set {Ak,Mi,Wy}.

Note that, different boxes might be associated with the same
bucket for one or more of their attributes. Formally, we may
have Bx[a] = By[a], with x 6= y. For instance, in our example,

box B1 containing the first three tuples and box B3 containing
the last three tuples have B1[Age] = B3[Age] = [27,38].

Since, for each attribute, we want index values in different
boxes to be different, the generation of indexes cannot depend
only on the bucket. To map the same bucket of different
boxes to different index values, we combine buckets for their
indexing with a salt. This is formalized by the following
definition.

Definition 4.1 (Index function): Let r be a relation, a∈I
be an indexed attribute, B be the set of boxes of relation r,
and hk be a cryptographic hash function with key k. An index
function for attribute a is a function ιa :B→Ia such that:

• ∀B ∈ B, ιa (B)=hk(B[a]||σ), with σ a randomly gener-
ated salt;

• ∀a, a′ ∈ I, ∀B,B′ ∈ B, with ιa (B)=hk(B[a]||σ),
ιa′ (B′)=hk(B′[a′]||σ′), if B[a] = B′[a′] and (a 6= a′

or B 6= B′), then σ 6= σ′.

Indexes are then computed as the result of a cryptographic
hash function on the concatenation of the bucket to be indexed
and a salt. The second bullet in the definition dictates the use of
a different salt for buckets that are equal but refer to different
attributes (i.e., dimensions) or for a same bucket that appears
in different boxes for the same attribute. Satisfaction of such
a condition is guaranteed by generating salts using a pseudo-
random generation function with a different seed for each
attribute and using a different salt in the sequence for different
occurrences of a same bucket. Hence, different attributes will
be associated with a different sequence of randomly generated
salts. For each attribute a∈I, we denote with σa (j) the j-
th salt generated by function σ with the seed of attribute
a. Each bucket Bx[a] is then associated with the j-th salt
σa (j), with j − 1 the number of boxes By ∈ B such that
Bx[a]=By[a] and y < x. For instance, with reference to
the example in Figure 1, bucket B3[Age] is combined with
salt σAge(2) since B1[Age]=B3[Age] and 1 < 3. Figure 1(d)
shows the encrypted and indexed version of the plaintext
relation in Figure 1(a). Here, combinations of index values
〈ω, α〉, 〈γ, β〉, and 〈τ, α′〉 are those computed for the three
boxes in Figure 1(c). Indexes α and α′ represent different
salted versions of the same bucket (i.e., [27,38]).

V. CLIENT-SIDE MAPS

The process illustrated in the previous sections enables the
creation of indexes to be associated with the tuples in the
plaintext relation to be outsourced. The encrypted and indexed
relation (Def. 2.1) outsourced to the storage provider will
then have, for each tuple in the original plaintext relation, its
encrypted version and the values of the indexes computed as
illustrated (Def. 4.1). For simplicity, in our examples we main-
tain tuples in the same order in the original and outsourced
relations, but clearly tuples should be shuffled before upload
them to the storage provider.

The next problem is the definition of the information to be
stored at the client side to enable the translation of queries on
the plaintext relation into queries on the encrypted and indexed
relation that can then be executed at the storage provider.
According to Def. 4.1, such information comprises:

• the cryptographic hash function h along with the corre-
sponding key k;

• the function σa used for salt generation;
• a map, denoted Mapa , enabling the translation of plain-

text attribute values into index values.

While the first two bullets only require a client to memorize
one function, the third one, requiring attributes’ maps, needs
more consideration. Being maps stored client side, it is im-
portant to maintain them compact, to limit the storage needed
at the client. As we will show in Section VII, our maps enjoy
such compactness. We maintain attributes’ maps in a compact
form as follows.

Continuous attributes. For each continuous attribute a, Mapa
is a set of pairs (Bucket,Count), reporting the buckets in
which the attribute has been divided and, for each bucket,
the number of boxes in which it appears. Formally, Mapa =
{〈B[a], c〉 | B ∈ B, c = |{B′ ∈ B | B′[a] = B[a]}|}.

The counter associated with each bucket gives the number
of distinct index values corresponding to the bucket and
hence the number of salts to be used for reconstructing
such indexes for query translation. Figure 1(e) illustrates the
map for attribute Age that contains the information about
the two buckets resulting from partitioning (i.e., [27,38] and
[42,50]). Bucket [27,38] has 2 occurrences and the sequence
of salts used in the generation of the corresponding index
values is σAge(1) and σAge(2). Hence, the index values cor-
responding to bucket [27,38] are hk([27,38]||σAge(1))=α and
hk([27,38]||σAge(2))=α′ (see Figure 1(d)).

Nominal attributes. For each nominal attribute a, Mapa is
a set of pairs (Value,Bucketsσ) for each value v in a,
the buckets B[a] that include v, concatenated with the corre-
sponding salt value. Formally, Mapa = {〈v, {(B[a] || σ)}〉 |
v ∈ val(a), B ∈ B : v ∈ B[a], ιa(B) = hk(B[a] || σ)}.

Figure 1(f) illustrates the map for attribute State. For
simplicity, in the figure, noting that in our example all buckets
have only one occurrence, and therefore only one salt is to be
used, we report the unsalted bucket values.

A) maps

7) plaintext
 result of q

Query
Translator

6) qc

STORAGE PROVIDER

B) encrypted & indexed
relation re

1) q

USER

Query
Executor

re

3) qs

5) encrypted
 result of qs

DATA
OWNER

CLIENT

Query
Executor

2)

4)

Fig. 2: Query execution process

VI. QUERY TRANSLATION AND EXECUTION

Once the (encrypted and indexed) relation has been out-
sourced, it will reside at the external storage provider and only
the information needed for query translation (i.e., the maps)
will be stored at the client. Each query q on R, formulated
at the client side, will then need to be translated into a query
qs operating on indexes at the provider side. The retrieved
result (encrypted tuples whose indexes satisfy qs) will be
decrypted and query qc will be executed to eliminate possible
spurious tuples, where qc is the same as q but executed on the
decryption of the result of qs instead of R. Figure 2 illustrates
the overall architecture and query execution process.

Translating q into qs requires mapping each of the con-
ditions appearing in its WHERE clause into a condition on
indexes. We illustrate such a mapping depending on whether
the condition is on a continuous or nominal attribute.

Continuous attribute. Continuous attributes support both
point (i.e., equality) as well as range conditions. Conditions
can then be of the form “a op v” or “a BETWEEN vx AND
vy”, with a∈I, v,vx,vy∈d(a), and op ∈ {>,≥, <,≤}.

To illustrate the mapping, we consider a general form
capturing all the cases above and illustrate the mapping of
condition “a∈Range”, where Range is an (open or closed)
interval specified by two values vl and vr, with vl ≤ vr. Such
a general form captures all the conditions above, by simply
considering vl = vr = v for point conditions; vl the lowest
value in val(a) for < or ≤ conditions; vr the highest value
in val(a) for > or ≥ conditions; and the interval open on the
left (right, resp.) side if values equal to vl (vr, resp.) should be
excluded. For instance, Age<30, is equivalent to Age∈[27,30).

A condition of the form “a∈Range” is translated into a
condition on a’s index ia , requesting it to be in the set of index
values to which the a’s buckets intersecting Range have been
mapped, that is, in condition:
• ia IN (hk(b||σa (j)) s.t. 〈b, c〉 ∈ Mapa , b ∩ Range 6= ∅,
j = 1, . . . , c)

Here 〈b, c〉 ∈ Mapa denotes the different buckets in Mapa ,
b ∩ Range 6= ∅ restricts the consideration to the ones
intersecting Range, and c expresses the number of salts to
be used for each bucket b (i.e., the number of distinct index
values to which the bucket has been mapped).

For instance, consider attribute Age and its map
in Figure 1(e). Condition “Age=30” is translated to
“iAge IN (α, α′)”, with α=hk([27,38]||σAge(1)) and
α′=hk([27,38]||σAge(2)). Condition “Age>39” is translated
to “iAge IN (β)”, with β=hk([42,50]||σAge(1)).

Nominal attribute. Nominal attributes support the evaluation
of point conditions only. A condition“a=v” is translated into
a condition on a’s index ia , requesting it to be in the set of
index values to which v has been mapped, that is, in condition:
• ia IN({hk(setj) s.t. m∈Mapa , with m[Value]=v and

setj ∈ m[Bucketsσ], j = 1, . . . , |m[Bucketsσ]|})

For instance, consider attribute State and its map in
Figure 1(f). Condition “State=‘Wy’” is translated to “iState
IN (ω, γ)”, with ω=hk(AkMiWy) and γ=hk(CaWy). Condition
“State=‘Ca’” is translated to “iState IN (γ)”.

VII. IMPLEMENTATION AND EXPERIMENTS

We built a prototype in Python that implements both the
generation of the encrypted and indexed relation and the
query evaluation process. We then tested our approach on
the PUMS USA ACS 2019 dataset, containing 3.2M tu-
ples [9]. The dataset schema includes two nominal (State
and Occupation) and two continuous (Age and Income)
attributes. Our experiments analyze the overhead in query
execution and the size of the client-side maps.

Indexing and encryption. We realized a distributed version
of the partitioning process illustrated in Section III. Our tool
uses the scalable Apache Spark platform and parallelizes the
indexing process relying on an arbitrary number of workers.
Partitions of the dataset are assigned to the workers, which in-
dependently apply the indexing process on the tuples assigned
to them. Each worker computes index values (Def. 4.1) using
the Blake2b hash function and a different 16-byte salt for each
attribute. The encrypted tuple (attribute et) is computed using
XSalsa20 with Poly1305 MAC (to guarantee both confiden-
tiality and integrity) with a 32-byte high-entropy key. The tool
also generates a fresh nonce for each encryption invocation
to provide indistinguishability of tuples with the same values
for all encrypted attributes. The encryption functions are
implemented by PyNacl. The encrypted and indexed relations
generated by each worker are uploaded, in randomized order,
to a containerized PostgreSQL DBMS.

Query translation. Each client side query q is parsed using
sqlparse, a SQL parser for Python, and translated as described
in Section VI. Query qs is submitted to the PostgreSQL DBMS
hosted at the storage provider, and its result is decrypted and
checked for integrity by the client. The client executes query
qc on an in-memory SQLite DB to filter spurious tuples and
project the attributes of interest.

Query overhead. We compared our solution with a naive
approach that builds boxes of b tuples, each by ordering tuples
according to the values of a sequence of attributes and then
splitting the ordered dataset in boxes of b contiguous tuples.
We run two kinds of query: 1) point queries for each attribute

a in the dataset schema (i.e., State, Occupation, Age,
Income), and each value v in val(a); 2) range queries
for attribute Age and for each range [vi,vj] of values in
val(Age). Figure 3 compares the overhead in query execution
for the naive approach and for our, called b-indexed, approach.
Figures 3(a,c,e) refer to point queries and Figures 3(b,d,f) refer
to range queries. The overhead is measured in terms of the
average ratio between the number of tuples returned by the
query on index ia and the original query on a, considering
b with values 10, 25, and 50. For point queries, such an
overhead is measured depending on the selectivity (%age
of tuples returned) of the original query on the plaintext
data (plotted on the x axis). We assumed each query to be
issued as many times as the frequency of the requested value.
For range queries, Figures 3(b,d,f), the overhead is measured
depending on the percentage of domain values covered by the
range condition (plotted on the x axis). As visible from the
figures, our approach largely outperforms the naive one, whose
overhead compared to ours is between 1.5x and 3x for point
queries and between 5x and 10x for range queries.

It is interesting to note the limited overhead provided by
our b-indexed approach, which is much smaller than the value
of b. Such limited overhead is to be particularly appreciated in
comparison with alternatives for privacy-aware query execu-
tion that suffers at least 30x overhead in size of each access (in
some cases a more than 1000x overhead) [10], which grows
significantly when indexes are introduced.

Local data structure. Figure 4(a) illustrates the size of the
maps stored at the client side, varying the number of tuples
in the dataset between 0.5 and 3 millions and b equal to 10,
25, and 50. As visible from Figure 4(b), our maps require
in almost all the analyzed configurations less than 1 byte per
tuple. Note that the storage space per tuple required by the
map decreases as the number of tuples increases.

VIII. RELATED WORK

Several research efforts have addressed the problem of
supporting queries on outsourced encrypted data through the
definition of indexing techniques or specific cryptographic
schemes (e.g., [3], [5], [6], [11], [12]). Such solutions must
be applied with care due to the possible information leakage
(e.g., [13], [14]). The definition of efficient solutions robust
against inferences also depends on the specific queries to be
supported. In particular, the support of range queries requires
to define techniques that consider the order relationship char-
acterizing the domain of the attributes on which queries have to
be executed, which can complicate the definition of such tech-
niques (e.g., [5], [15], [16]). While sharing with our approach
the goal of supporting queries over encrypted data, these
solutions operate on a single attribute. Our approach instead
is based on a multi-dimensional interpretation of the dataset
that allows the definition of indexes over multiple attributes.
The problem of indexing multi-dimensional datasets has been
already considered and resulted in the definition of multi-
dimensional indexes for supporting queries with conditions on

[0,2) [2,4) [6,8) [8,10)
% of plaintext dataset retrieved

0
5

10
15
20
25
30
35
40

Ov
er

he
ad

Naive
b-indexed

(a) b=10

[2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9)[9,10)
% of domain covered

0
5

10
15
20
25
30
35
40

Ov
er

he
ad

Naive
b-indexed

(b) b=10

[0,2) [2,4) [6,8) [8,10)
% of plaintext dataset retrieved

0
5

10
15
20
25
30
35
40

Ov
er

he
ad

Naive
b-indexed

(c) b=25

[2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9)[9,10)
% of domain covered

0
5

10
15
20
25
30
35
40

Ov
er

he
ad

Naive
b-indexed

(d) b=25

[0,2) [2,4) [6,8) [8,10)
% of plaintext dataset retrieved

0
5

10
15
20
25
30
35
40

Ov
er

he
ad

Naive
b-indexed

(e) b=50

[2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9)[9,10)
% of domain covered

0
5

10
15
20
25
30
35
40

Ov
er

he
ad

Naive
b-indexed

(f) b=50

Fig. 3: Point (a,c,e) and range (b,d,f) queries overhead

0.5 1.0 1.5 2.0 2.5 3.0
Millions of tuples in the dataset

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

In
de

x
siz

e
(M

iB
)

b=50
b=25
b=10

(a)

0.5 1.0 1.5 2.0 2.5 3.0
Millions of tuples in the dataset

0.00

0.20

0.40

0.60

0.80

1.00

1.20

By
te

s p
er

 tu
pl

e

b=50
b=25
b=10

(b)

Fig. 4: Absolute (a) and relative (b) size of the maps

multiple attributes (e.g., [17]). These solutions, however, differ
from our since they define one index only for the whole set
of attributes/dimensions considered. Our approach defines a
multi-dimensional index with a component for each attribute,
considering the intrinsic multi-dimensional nature of relations.

A line of work close to our is represented by approaches
aimed at supporting query evaluation over data organized
in multiple relations and/or fragments that cannot be joined
by non-authorized subjects (e.g., [18]–[20]). These solutions
reduce the precision of join operations introducing a degree k
of uncertainty (i.e., it is never possible to reconstruct a tuple
in the join result with uncertainty lower than 1/k). Protection
is obtained by grouping tuples in the relations/fragments and
performing joins at the group (in contrast to tuple) level.

IX. CONCLUSIONS

We have addressed the problem of outsourcing encrypted
data to external providers and defining indexes over them for
enabling query execution. Our approach to index construction,
working on multiple attributes, guarantees protection against
inferences, while providing effective and efficient query ex-
ecution, with support for both point and range conditions.
Our experimental evaluation on a large publicly available
dataset confirms the validity of our approach and therefore
its applicability in practical scenarios.

REFERENCES

[1] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
M. Rosa, and P. Samarati, “Dynamic allocation for resource protection
in decentralized cloud storage,” in Proc. of GLOBECOM, Waikoloa, HI,
USA, Dec. 2019.

[2] P. Samarati and S. De Capitani di Vimercati, “Cloud security: Issues
and concerns,” in Encyclopedia on Cloud Computing, S. Murugesan
and I. Bojanova, Eds. Wiley, 2016.

[3] G. Poh, J. Chin, W. Yau, K. Choo, and M. Mohamad, “Searchable
symmetric encryption: Designs and challenges,” ACM CSUR, vol. 50,
no. 3, May 2017.

[4] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “SGX-BigMatrix: A
practical encrypted data analytic framework with trusted processors,” in
Proc. of ACM CCS, Dallas, TX, USA, Oct./Nov. 2017.

[5] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi,
and P. Samarati, “Balancing confidentiality and efficiency in untrusted
relational DBMSs,” in Proc. of ACM CCS, Washington, DC, USA, Oct.
2003.

[6] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL over
encrypted data in the database-service-provider model,” in Proc. of ACM
SIGMOD, Madison, WI, USA, June 2002.

[7] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani,
S. Paraboschi, M. Rossi, and P. Samarati, “Scalable distributed data
anonymization,” in Proc. of IEEE PerCom, Mar. 2021.

[8] K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Mondrian multidimen-
sional k-anonymity,” in Proc. of ICDE, Atlanta, GA, USA, Apr. 2006.

[9] S. Ruggles, S. Flood, R. Goeken, J. Grover, E. Meyer, J. Pacas, and
M. Sobek, “IPUMS USA: Version 10.0 [dataset],” Minneapolis, MN:
IPUMS, 2020, https://doi.org/10.18128/D010.V10.0.

[10] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang, “Practic-
ing oblivious access on cloud storage: the gap, the fallacy, and the new
way forward,” in Proc. of ACM CCS, Denver, CO, USA, Oct. 2015.

[11] R. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB:
Protecting confidentiality with encrypted query processing,” in Proc. of
SOSP, Cascais, Portugal, Oct. 2011.

[12] H. Wang and L. Lakshmanan, “Efficient secure query evaluation over
encrypted XML databases,” in Proc. of VLDB, Seoul, Korea, Sept. 2006.

[13] A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Para-
boschi, and P. Samarati, “Modeling and assessing inference exposure in
encrypted databases,” ACM TISSEC, vol. 8, no. 1, Feb. 2005.

[14] M. Naveed, S. Kamara, and C. Wright, “Inference attacks on property-
preserving encrypted database,” in Proc. of ACM CCS, Denver, CO,
USA, Oct. 2015.

[15] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and
M. Garofalakis, “Practical private range search revisited,” in Proc. of
ACM SIGMOD, San Francisco, CA, USA, June–July 2016.

[16] H. Van Tran, T. Allard, L. d’Orazio, and A. El Abbadi, “FRESQUE:
A scalable ingestion framework for secure range query processing on
clouds,” in Proc. of EDBT, Nicosia, Cyprus, Mar. 2021.

[17] B. Wang, Y. Hou, M. Li, H. Wang, and H. Li, “Maple: Scalable multi-
dimensional range search over encrypted cloud data with tree-based
index,” in Proc. of ACM ASIACCS, Kyoto, Japan, June 2014.

[18] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang, “Anonymizing bipartite
graph data using safe groupings,” PVLDB, vol. 1, no. 1, Aug. 2008.

[19] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Fragments and loose associations: Respecting privacy in
data publishing,” PVLDB, vol. 3, no. 1, Sept. 2010.

[20] X. Xiao and Y. Tao, “Anatomy: Simple and effective privacy preserva-
tion,” in Proc. of VLDB, Seoul, Korea, Sept. 2006.

