
I Told You Tomorrow: Practical Time-Locked Secrets using
Smart Contracts

Enrico Bacis
∗

enrico.bacis@unibg.it

Università degli Studi di Bergamo

Italy

Dario Facchinetti

dario.facchinetti@unibg.it

Università degli Studi di Bergamo

Italy

Marco Guarnieri

marco.guarnieri@imdea.org

IMDEA Software Institute

Spain

Marco Rosa

marco.rosa@sap.com

SAP Security Research

France

Matthew Rossi

matthew.rossi@unibg.it

Università degli Studi di Bergamo

Italy

Stefano Paraboschi

parabosc@unibg.it

Università degli Studi di Bergamo

Italy

ABSTRACT
A Time-Lock enables the release of a secret at a future point in

time. Many approaches implement Time-Locks as cryptographic

puzzles, binding the recovery of the secret to the solution of the

puzzle. Since the time required to find the puzzle’s solution may

vary due to a multitude of factors, including the computational

effort spent, these solutions may not suit all scenarios.

To overcome this limitation, we propose I Told You Tomorrow

(ITYT), a novel way of implementing time-locked secrets based on

smart contracts. ITYT relies on the blockchain tomeasure the elapse

of time, and it combines threshold cryptography with economic

incentives and penalties to replace cryptographic puzzles.

We implement a prototype of ITYT on top of the Ethereum

blockchain. The prototype leverages secure Multi-Party Computa-

tion to avoid any single point of trust. We also analyze resiliency

to attacks with the help of economic game theory, in the context

of rational adversaries. The experiments demonstrate the low cost

and limited resource consumption associated with our approach.

CCS CONCEPTS
• Security and privacy→ Security services.

KEYWORDS
time-locks, smart contracts, securemulti-party computation, thresh-

old cryptography, rational adversaries

ACM Reference Format:
Enrico Bacis, Dario Facchinetti, Marco Guarnieri, Marco Rosa, Matthew

Rossi, and Stefano Paraboschi. 2021. I Told You Tomorrow: Practical Time-

Locked Secrets using Smart Contracts. In The 16th International Conference
on Availability, Reliability and Security (ARES 2021), August 17–20, 2021,
Vienna, Austria. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3465481.3465765

∗
now at Google

This work is licensed under a Creative Commons Attribution International

4.0 License.

ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9051-4/21/08.

https://doi.org/10.1145/3465481.3465765

1 INTRODUCTION
Many real-world scenarios require disclosing a secret at a specific

future point in time. For instance, this happens when we vote for

elections or when we dispose our inheritance by will. In these

circumstances we typically entrust a notary to keep a secret private

until a future time, and then to publish it so that we are no longer

needed for disclosure to happen. This however requires that the

owner of the secret completely entrusts a single third-party (i.e.,

the notary).

Early proposals bound the recovery of the secret to the recovery

of a key [43], which was split among a number of peers, distributing

trust among many parties instead of entrusting a single one.

To completely remove the dependence on one or more trusted

third-parties, cryptographers have been working on timed-release
cryptography [38] proposing schemes that effectively replace no-

taries with Time-Locks (TL). Time-Lock puzzles [7, 34, 45] bind the

recovery of the secret to the solution of a cryptographic puzzle. In

this setting, a sending party (i.e., the secret’s owner) can encrypt

the secret so that the receiving party is required to performmultiple

decryptions to recover it. Given the assumption that each decryp-

tion round takes the same amount of time, and that the number of

rounds can be tuned by the sender during the encryption process,

it is possible to protect a secret for arbitrarily long periods of time.

The first puzzle proposed by Rivest et al. [45] uses a trapdoor

function so that anyone willing to recover the secret had to undergo

a computing effort that was orders of magnitude larger compared

to the one of the sending party. Also, since the authors imposed

the decryption process to be executed in an inherently sequential

order, their approach is the first example of a Proof of Sequential
Work (PoSW) [14, 35].

An alternative to trapdoor functions is usingweak hash-chains [8],
by requiring anyone willing to obtain the secret to brute-force a

chain of weak hashes. The use of a chain, rather than a single

stronger hash, permits to reduce the variance of the decryption

runtime. However, the decryption process remains parallelizable

and, thus, the estimated disclosure time far less reliable. These ap-

proaches are often classified as Proof of Work (PoW) [20] algorithms.

Cryptographic puzzles avoid the need for a trusted party, yet

two aspects make them impractical. First, the sending party has

to make assumptions on future computing power. This is far from

trivial. As an example, Rivest’s LCS35 time capsule [44], released

in 1999 with an estimated decryption time of 35 years, was opened

https://doi.org/10.1145/3465481.3465765
https://doi.org/10.1145/3465481.3465765
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3465481.3465765

ARES 2021, August 17–20, 2021, Vienna, Austria Bacis, et al.

in 2019 after a decryption process of only 2 months on dedicated

hardware [15]. Second, TL puzzles require the receiving party to run

the decryption procedure for a long time, which poses a question

about economic incentives.

The development of blockchains gives us new opportunities to

implement time-locks. Indeed, a blockchain intrinsically defines

the concept of time, which was one of the main reasons that led

to the creation of cryptographic puzzles. It can also be used to

persistently disclose secrets, as it is designed to resist modification

of its data. However, the blockchain alone is not enough to deploy

a TL because it does not offer any mechanism to keep information

confidential. Recent proposals address the problem of dealing with

secret data on public blockchains [1, 27] by splitting information

among multiple users who have to cooperate to recover the secret

information using a pre-defined protocol. The protocol is often

programmed as a smart contract [47], which permits to verify the

correctness of its outcome and to detect any undefined behavior.

Although this approach could resemble the early implementations

of timed-release cryptography, the security no longer follows from

a single strong trust assumption (i.e., the trust to the notary or to a

certification authority) but from the behavior of the users that take

part to the protocol. If the users cooperate as intended, the outcome

of the protocol will be successful, the secret will be recovered, and

the TL function achieved as a consequence. To ensure that users

cooperate as intended, several proposals (e.g., [30, 33]) reward them

with economic incentives. This permits to analyze the protocols as

extended form games whose outcome can be determined based on

participants’ expected utility.

In this paper we propose I Told You Tomorrow (ITYT), a practi-

cal and generic framework to implement time-locks using smart

contracts that is based neither on trust assumptions nor on cryp-

tographic puzzles. The basic idea of our approach is to first split

a secret into shares using threshold cryptography (using Shamir’s

Secret Sharing [46]), and assign them to users so that no one can

recover the secret unless k-of-n shares are available. To ensure the

TL behavior, we rely on economic incentives and penalties enforced

by a smart contract. The contract rewards users for revealing their

share only after the disclosure time and penalizes any other mis-

behavior. As rewards and penalties are associated with the correct

management of the shares, ITYT leverages secure Multi-Party Com-
putation (sMPC) [50], which ensures confidentiality and avoids the

need for trusted users (including the owner of the secret).

Here we summarize our main contributions.We define a protocol

that deploys Time-Locked secrets on the blockchain by leveraging

an economic model in which every user (or coalition of them) has

an expected negative payoff associated with possible misbehavior.

We address the problems that arise when combining secure Multi-

Party Computation and protocols based on economic incentives

and penalties (e.g., use secure Multi-Party Computation protocols

to break the protocol bypassing the smart contract’s hashlocks). We

implemented the protocol based on the Ethereum blockchain [49]

and the FRESCO secure Multi-Party Computation framework [16],

characterized by low overhead and limited cost of execution. Finally,

we compare ITYT with other existing solutions, discussing the key

advantages associated with our approach.

2 BACKGROUND
We describe here a few concepts that are used in the design of the

protocol.

Threshold cryptography. Threshold cryptography [46] enables

the owner of a secret to share it among a group of users. In a k-of-n
threshold scheme, n shares of the secret are created and distributed

among the parties. To reconstruct the secret, at least k different

shares have to be combined. Hence, the advantages of threshold

cryptography are (i) distribution of trust, and (ii) fault tolerance.

Secure Multi-Party Computation. A secure Multi-Party Compu-
tation (sMPC) protocol [48, 50] is a cryptographic protocol that

allows multiple parties to jointly compute a function over their

inputs while keeping them private. Current sMPC frameworks can

execute binary or modular arithmetic algorithms computed among

several parties (even with dishonest majority) by leveraging semi-
homomorphic encryption [17, 26] and oblivious transfer [25, 42].

Smart contracts. A blockchain is an append-only list of blocks

linked together via cryptographic properties. The blocks are non-

mutable and keep a permanent history of transactions. Smart con-

tracts [47] are programming frameworks built on top of blockchains.

A smart contract permits to program tamper-proof protocols whose

outcome is verifiable by the whole network. We rely on smart con-

tracts to pay incentives, trigger penalties, and enforce the correct

execution of our scheme without relying on a trusted party. Specif-

ically, our approach makes use of the time and hash primitives, to

conditionally execute actions based on time and submitted data

(e.g., reward users participating in a successful execution of the

protocol at protocol termination time).

Rational adversaries. Amalicious adversary [24] is someone who

is willing to perform any action to attack a protocol. A rational ad-

versary [22], instead, subverts the protocol only if it is economically

convenient. Modeling the participants as rational enables the use of

game theory concepts to analyze cryptographic protocols [5, 6, 9].

ITYT models each participant as rational.

3 THE ITYT PROTOCOL
In this section, we overview the ITYT protocol, introducing the

preliminary definitions, the roles of the participants, and the main

functions.

ITYT is an instance of the TL abstraction: a mechanism that

keeps a secret S private until its disclosure time td and publishes it

afterward. ITYT implements TL by splitting the secret, provided by

the owner, among several users named shareholders (each obtaining

a share h), so that none of them can recover S before the disclosure

time. To ensure that (i) each user keeps its share secret until td , and
(ii) each user publicly discloses its share immediately after td , ITYT
introduces a set of economic incentives and penalties. Thus, the

TL function is achieved as a consequence of the rational economic

behavior of the involved parties (see Section 4).

3.1 Definitions
Principals. We denote by U the set of users that take part in an

instance of ITYT. Additionally, we denote by SC the set of the

I Told You Tomorrow ARES 2021, August 17–20, 2021, Vienna, Austria

smart contract identifiers. We then denote by P the set of principals

consisting ofU ∪ SC.

Wallets. Each principal p ∈ P is associated with a wallet wlt(p),
accessible only by p, that can be used to receive or issue payments.

Protocol parameters. In the following table we report the definition

of all the parameters that characterize an instance of ITYT.

S secret

V economic value assigned to the secret

n number of shareholders

k number of shares needed to reconstruct S

hi share of the secret issued to the i-th shareholder

td disclosure time

tterm termination time

FO fee deposited by the owner to use the service

BH bid deposited by the shareholder to get a share

RH reward paid to the shareholder in case of success

Wh reward paid when whistleblowing a share

WS reward paid when whistleblowing the secret

Smart contract state. The ITYT smart contract keeps track of the

protocol status through the following data structures.

[shares] array of shares submitted to the contract

CS commitment of the secret (i.e., its hash)

[Ch] array of share commitments

state global state of the protocol

[states] array of states for each share

num_pendinд count of the pending shares

num_disclosed count of the disclosed shares

Primitives. We now define the primitives used by the smart contract.

• time(): returns the current time aswitnessed by the blockchain

(generally defined in terms of block height).

• hash(d): returns the result of the application of a chosen

cryptographic hash function over the data d .
• pay(p1,p2,v): transfers the amountv fromwlt(p1) towlt(p2).
• initialize_sc([params]): instantiates an ITYT smart con-

tract, and deploys it to the blockchain. The primitive is exe-

cuted by the owner and returns the smart contract identifier

sc ∈ SC.
• generate_shares(S, [users]): generates shares h1, . . . ,hn
and securely distributes them to the parties. The primitive

guarantees that (i) the i-th shareholder is the only principal

who learns the share hi , and (ii) the owner learns only the

commitmenthash(hi), for each share.We discuss in Section 5

how our prototype implements this primitive by leveraging

sMPC and secret sharing.

3.2 Roles
In ITYT, each user u ∈ U plays one of the following roles: owner,
shareholder, and whistleblower.

Owner. An owner O delegates the disclosure of a secret S to a time-

lock at disclosure time td . The owner O configures and deploys

the TL providing all the required parameters. In particular, O sets

(i) the total number n of shares h of S, (ii) the number k of shares

needed to recover S, (iii) the disclosure time td , and (iv) all the bids
and the rewards that define the instance.

Algorithm 1 Protocol initialization (executed by the owner).

[params] protocol parameters of the ITYT instance

S secret

O user identifier of the owner

[H1, . . . ,Hn] list of shareholder identifiers

1: procedure Init([params],S,O, [H1, . . . ,Hn])

2: sc ← initialize_sc([params]) ▷ Create sc
3: pay(O, sc, sc .FO) ▷ Transfer owner’s fee to sc
4: Ch ← generate_shares(S, [O,H1, . . . ,Hn])
5: sc .CS ← hash(S) ▷ Set secret commitment

6: sc .state ← PENDING
7: for i ← 1,n do ▷ Set share commitments

8: sc .Ch [i] ← Ch [i]
9: sc .states[i] ← PENDING
10: end for
11: sc .num_pendinд← n
12: sc .num_disclosed ← 0

13: return sc ▷ The smart contract identifier

14: end procedure

Algorithm 2 Shareholder commitment to participate in ITYT

sc smart contract identifier

Hi user identifier of the i-th shareholder

precondition:Hi checks that hash(hi) = sc .Ch [i]
1: procedure Participate(sc,Hi)

2: if sc .state = PENDING and sc .states[i] = PENDING then
3: pay(Hi , sc, sc .BH)
4: sc .states[i] ← BID
5: sc .num_pendinд − = 1

6: if sc .num_pendinд = 0 then
7: sc .state ← LOCKED
8: end if
9: end if
10: end procedure

Shareholder. A shareholderH is entrusted by the ownerO to keep a

share h of the secret S confidential until td , and to publicly disclose
it afterward. In exchange for her service,H receives a reward RH
paid by the smart contract whenever the following two conditions

hold: (i) her share h is disclosed only after td , and (ii) the secret S

is not revealed before td .

Whistleblower. A whistleblowerW reports user misbehavior in

return for payment. WheneverW captures a share h or the secret

S before td ,W can submit it to the contract and receive a reward.

3.3 Setup
In the early stage of ITYT, the owner initializes and deploys a

smart contract sc on the blockchain using the initialize_sc()
primitive. Along with the protocol parameters, she writes to the sc
the identifiers of all the shareholders, which the owner has selected

beforehand
1
, that will take part in the TL instance. She also deposits

1
How to randomly choose competing players in adversarial settings such as

blockchains has been addressed in many literature works (e.g., [19, 39])

ARES 2021, August 17–20, 2021, Vienna, Austria Bacis, et al.

Algorithm 3 SC function to whistleblow a share before td

sc smart contract identifier

hi the i-th share to be whistleblown

1: procedure WhistleblowShare(sc,hi)
2: if sc .state = LOCKED and time() < sc .td then
3: if sc .states[i] = BID and hash(hi) = sc .Ch [i] then
4: sc .shares [i] ← hi
5: sc .states[i] ← WHISTLEBLOWN
6: sc .num_disclosed + = 1

7: if sc .num_disclosed = sc .k then
8: sc .state ← FAILED
9: end if
10: pay(sc, caller , sc .Wh)
11: end if
12: end if
13: end procedure

to the contract the amount FO , a fee that will be used to pay the

rewards at protocol termination time tterm .

After the contract is deployed, the owner and the shareholders

jointly execute the generate_shares() primitive. As a result, the

owner gets the hash of the secret and the hash of each share (i.e.,

the commitments), while each shareholderH gets her share along

with the hash of the secret. The owner submits to the sc contract
the commitments (Algorithm 1). Then, each shareholder reads the

contract and checks whether her commitment matches what re-

ceived from generate_shares(). If so, she agrees and deposits her
bid BH (Algorithm 2).

As soon as each shareholder has committed, the TL is activated

(i.e., the global state is set to LOCKED). If any party refuses to commit,

the funds already deposited are returned to their proprietaries and

the instance setup aborts (as discussed in Section 5).

The reader may have noticed that in this setup, the secret shares

are exposed to the shareholders prior to the activation of the TL

(i.e., the shares are distributed before the state is set to LOCKED).
In Section 5 we show how to overcome this issue using a key

instead of the actual secret. We also point out that the verification

of protocol parameters (especially the economic ones) can be done

by the shareholders at commit time, as their values are publicly

available in the contract.

3.4 Actions
When the TL is active, the actions performed by users determine the

status of the protocol. Each action is perfomed executing a smart

contract functionwhose effects are public. Four actions are available

to users: WhistleblowShare, WhistleblowSecret, Disclose, and
Withdraw, with the last two reserved to shareholders.

WhistleblowShare: This action (Algorithm 3) enables thewhistle-

blowerW to report the misbehavior of a single shareholder. When-

everW obtains a share hi , she submits it to collect a reward. If the

commitment sc .Ch [i] matches, the share whistleblow rewardWh is

paid to the whistleblower and the shareholderHi loses her reward

RH . Additionally, if the number of whistleblown shares equals k ,
then the TL is marked as FAILED (i.e., no further actions allowed).

Algorithm 4 SC function to whistleblow the secret before td

sc smart contract identifier

S the secret to be whistleblown

1: procedureWhistleblowSecret(sc,S)
2: if sc .state = LOCKED and time() < sc .td then
3: if hash(S) = sc .CS then
4: sc .state ← FAILED
5: pay(sc, caller , sc .WS)
6: end if
7: end if
8: end procedure

Algorithm 5 SC function to disclose the share after td

sc smart contract identifier

hi the i-th share

1: procedure Disclose(sc,hi)
2: if time() ≥ sc .td and time() < sc .tterm then
3: if sc .state = LOCKED and sc .states[i] = BID then
4: if hash(hi) = sc .Ch [i] then
5: sc .shares [i] ← hi
6: sc .num_disclosed + = 1

7: sc .states[i] ← DISCLOSED
8: end if
9: end if
10: end if
11: end procedure

Algorithm 6 SC function to withdraw the reward

sc smart contract identifier

hi the i-th share

1: procedureWithdraw(sc,hi)
2: if time() ≥ sc .tterm and sc .num_disclosed ≥ sc .k then
3: if sc .states[i] = DISCLOSED then
4: sc .states[i] ← WITHDRAWN
5: pay(sc, caller ,RH)
6: end if
7: end if
8: end procedure

WhistleblowSecret: This action (Algorithm 4) enables thewhistle-

blowerW to prove the possession of the secret ahead of the dis-

closure time td , thereby reporting the misbehavior of a group of

at least k shareholders. In detail,W submits the secret S′ to the

contract. If the commitment sc .CS matches, then the TL is marked

as FAILED and the secret whistleblow rewardWS is paid to the

whistleblower. Moreover, all the shareholders lose their bid, and

the remaining smart contract funds are destroyed.

Disclose. After the disclosure time td , each shareholderHi is

required to publicly reveal its share hi to enable the retrieval of the
secret. The submission is successful if (i) the TL was not previously

marked as FAILED, and (ii) hash(hi) matches the commitment

sc .Ch [i], otherwise submission fails (as shown in Algorithm 5).

Withdraw. Conditionally to the outcome of the TL instance, and

immediately after the termination time tterm , the shareholders are

I Told You Tomorrow ARES 2021, August 17–20, 2021, Vienna, Austria

authorized to claim their rewards. Rewards are paid to all sharehold-

ers that correctly completed the disclosure procedure. Algorithm 6

illustrates how shareholders can request to withdraw their reward.

4 ECONOMIC MODEL
ITYT models each participant as rational. The interest of the in-

volved parties in the secret is represented by an economic value V
associated with it. The use of an economic value permits to analyze

the behavior of the parties involved in the protocol, under the as-

sumption that each wants to maximize her reward. In this section

we illustrate how to constrain the economic parameters to push

rational actors to strictly adhere to the protocol, hence achieving

the desired TL function. Since the participants could form alliances,

we focus on the behavior of groups of users, considering a generic

coalitionM of users that team up to recover the secret ahead of

disclosure time.

We provide a description of the structure, the strategy and the

collective payoff users can gain as members ofM. To ensure that

breaking the TL is not profitable, we develop a set of constraints

guaranteeing that the attack cost is greater than the maximimun

achievable payoff. To this end, we focus on the best attack scenario,

that is, the one in which a coalition ideally completes its entire

strategy, maximizing the payoff, with no interference by other

groups of users.

Single-user constraints. Before going into details, we set some

constraints to discourage misbehavior of single users. As the share-

holder takes part to the protocol to get a payoff, her expected reward

RH has to be greater than the bid BH paid to get the share. More-

over, the rewardWh paid to a share whistleblower has to be lower

than BH , as each shareholder is expected to keep her share confi-

dential before td . Then, to incentivize each shareholder to report

misbehavior,WS has to be greater than RH . Furthermore, since the

owner is a priori able to perform the WhistleblowSecret action,
the owner’s fee to get the service FO must be greater than the se-

cret whistleblow bonusWS (since the owner is considered rational).

Inequality 1 captures, in a single expression, all the considerations

made so far.

Wh < BH < RH <WS < FO (1)

In the following, we address how a coalition of shareholders

could try to break the TL behavior based on when the recostruction

of the secret is performed. For the sake of clarity, Section 4.1 does not

take into account the WhistleblowShare action, which is discussed
separately in Section 4.2. Finally, Section 4.3 addresses how to

constrain the fee paid by the owner.

4.1 Prevent the reconstruction of the secret
Rational shareholders will consider if it is worth breaking the TL

ahead of td or not. To perform a successful attack, a shareholder

has to team up with other k − 1 shareholders to recover S. In such

an event, the coalitionM would earn the most by monetizing S

and then by performing the WhistleblowSecret action, getting

an expected payoff of V +WS .
2
The alternative, i.e.,M does not

break the TL and submits the k shares after td , would lead to an

2
The coalitionM could setup an additional external contract with the buyer to be

sure to gain both V andWS .

expected payoff equal to the sum of the rewards. Tomake the second

alternative more advantageous, we could require: k ·RH > V +WS .
Yet, in order to earn the rewards, the coalitionM should wait until

termination time, whereas V +WS could be collected earlier. For

this reason, we use a stricter formulation of the constraint based

on the cost already paid byM to participate in the protocol:

k · BH > V +WS (2)

Constraint (2) addresses secrecy (time t < td), however, when
the disclosure time expires, the constraints are used to promote the

release of the secret. However, a coalition of n − k + 1 shareholders
could wait for k−1 others to submit the shares and then lead the TL

instance to a stall by refusing to submit their own shares. To prevent

them from waiting for a buyer of S and distribute the collective

payoff, we introduce the constraint:

(n − k + 1) · RH > V (3)

Here the contribution of the termWS disappears, as the role of

whistleblower is no longer admissible after td . Inequality 3 pro-

motes the disclosure of the shares, as shareholders are rewarded

only in case the TL terminates successfully (i.e., at least k shares

have been submitted succesfully before termination time tterm).

4.2 Impact of share whistleblowing action
The WhistleblowShare action increases the number of available

strategies. Indeed, a coalition could maximize the payoff by submit-

ting to the contract some of the share it holds before performing the

WhistleblowSecret action. However, as share whistleblowing im-

plies writing to the blockchain, the public event may trigger strate-

gies of other participants. Thus, the extra revenueWer = jo ·Wh
can be gained, where jo stands for the optimal number of shares

to be submitted that do not enable other coalitions’ strategies. To

address this case, we formulate a stricter version of Inequality (2):

k · BH > V +WS +Wer (4)

The optimal number of shares a coalitionM could submit before

incurring into penalties or favor other participants, is function of

the economic amounts BH , V andWS , and parameters n and k .
There are two cases: (a) multiple coalitions are able to recover the

secret, and (b) independently from the ratio between the economic

amounts there is only one coalition holding at least k shares.

In the first case (a), when i shares have been whistleblown by

coalitionM, a quiescent coalitionM ′ formed by k − i shareholders
would gain the ability to recover the secret having paid only (k −
i) · BH to get its shares. Therefore, the coalitionM performing the

submissions needs to determine the optimal number of shares jo

to be whistleblown so thatM ′ does not end up having a positive

payoff. To compute itM can solve:

joa = max

i
{i |(k − i) · BH > V +WS , i ∈ 1, . . . ,k − 1}

In the second case (b), the k-shareholders coalitionM is the

only one able to recover the secret, since k > ⌊n/2⌋. This condition
holds until 2k − n − 1 shares are submitted to the contract. Note

this number of submissions could be smaller compared to the one

identified in case (a). So,M can compute jo by:

job = max {2k − n − 1; joa }

ARES 2021, August 17–20, 2021, Vienna, Austria Bacis, et al.

In both cases, under the assumption of rational agents, the coali-

tionM can submit jo shares while still being sure that no other

smaller coalition will break the TL. Inequality (4) ensures this strat-

egy is associated with a negative payoff.

4.3 Rewards and bonuses
Now that we have introduced how to constrain the amounts to

prevent misbehavior, we discuss some additional requirements to

consider an instance of the ITYT protocol well-formed.

In the typical scenario, rational users will strictly adhere to the

protocol. To accommodate for this case, the fee paid by the owner

has to be enough to remunerate the shareholders:

FO ≥ n · (RH − BH) (5)

In case of failure (i.e., the secret has been recovered before td),
at least k − 1 shares and the secret have been submitted to the

contract. To ensure the smart contract has enough currency to pay

the whistleblower bonuses, we impose the following constraint:

FO + n · BH ≥ (k − 1) ·Wh +WS (6)

In case less than k − 1 shares are submitted to the contract before

disclosure time, inequalities (5-6) still hold, since BH >Wh .

The constraints (1-6) must all hold for any well-formed ITYT

instance. They determine the acceptance area for the economic

amounts. The owner may desire to minimize the fee FO , while
the shareholders may desire to maximize the profit RH − BH . In
Table 1 we show three sample configurations obtained by constraint

programming. We highlight that the fee paid by the owner is less

than the value of the secret, which is a desirable property.

V k n Wh BH RH WS FO

1 10 20 0.0031 0.1122 0.1153 0.1184 0.1216

1 15 30 0.0013 0.0717 0.0730 0.0743 0.0756

1 20 50 0.0006 0.0527 0.0533 0.0538 0.0544

Table 1: Sample configurations (economic amounts are ex-
pressed as ratio of V)

5 IMPLEMENTATION
In this section, we illustrate how to implement ITYT leveraging

existing frameworks. Specifically, Section 5.1 details the ITYT smart

contract, while Section 5.2 explains how to use sMPC to implement

the share generation primitive.

5.1 Smart contract implementation
Wedesigned ITYT as a finite statemachine (FSM)within an Ethereum

smart contract whose functions match the actions available to

users. If successful, each action entails a write to the blockchain

and possibly a change of the global state. The FSM state regulates

the actions available to users. Additionally, some actions are re-

served to the owner. Figure 1 depicts a simplified version of the

state machine that shows only valid transitions. It can be divided

into five macro phases: (i) setup, in which the owner has to de-

ploy the contract and the shareholders subscribe to it; (ii) share
generation, that involves off-chain operations (i.e., not directly

performed by smart contract functions) to confidentially split the

secret; (iii) activation, in which the shareholders attest they have

received their shares and give their go-ahead; (iv) lock, in which

the shareholders keep the shares confidential; and (v) termination,
where the secret is finally disclosed.

Setup. Initially, the owner deploys a smart contract instance of

ITYT to the Ethereum blockchain [49]. Then, she calls the contract

initialization primitive, transfers FO to the contract, and speci-

fies all the parameters as detailed in Section 3. This advances the

global state to PRE_INITIALIZED. Afterwards, each shareholder

subscribes to the contract by depositing the proper amount of Ether

that corresponds to the bid BH and invoking the contract function

participate, as part of Algorithm 2. After all the shareholders

have deposited the bid, the owner executes the startMPC function,

which advances the state to INITIALIZED.

Share generation. At this point, owner and shareholders cooper-

ate to generate the shares. Since the economic penalties have not

been activated yet, a random key K is used in place of the secret.

From the shareholder’s perspective there is no difference, as re-

wards and penalties are now associated with the management ofK ,

but from the owner perspective, the use of K avoids the exposure

of S until TL activation (see Figure 2). Only after that, the owner

will write to the contract an encrypted version (i.e., the ciphertext)

of the secret, CT = EncK (S). The share generation primitive re-

turns to the owner the commitment of the key CK , along with the

commitments of all the shares {C1, ...,Cn }; while each shareholder

gets her share hi and the commitment of the key. Further details

on the sMPC primitive are reported in Section 5.2.

Activation. The owner calls the function finalizeMPC and up-

dates the contract with the output received from the shares gener-

ation primitive, turning the global state to PRE_COMMITTED. Each
shareholder verifies the share commitment value written to the

contract, if it matches the one obtained from the sMPC (i.e., the

owner did not tamper it), then she invokes the commit function.

After all the participants have given their go-ahead, the owner exe-

cutes enforce, activating the TL (i.e., LOCKED state). The economic

incentives and penalties are activated as a consequence.

Lock. Before disclosure time td , it is only possible to: (i) whistle-

blow a share, and (ii) whistleblow the key K . To whistleblow a

single share, a user can call WhistleblowShare submitting h′ (Al-
gorithm 3). If the commitmentmatches, thenWh is immediately paid

to the whistleblower. The whistleblow of a share is permitted only

k times, as the k-th submission leads to the global state FAILED. To
whistleblow the key, a user can call the WhistleblowSecret func-

tion submitting K ′ (Algorithm 4). If its commitment matches CK ,
thenWS is paid to the whistleblower, and the protocol is marked

as FAILED. When the protocol fails, the remaining amount is no

longer withdrawable.

Termination. If protocol is not marked as FAILED at time td , the
shareholders can invoke the disclosure function to submit their

share (Algorithm 5). The disclosure is successful if the sharematches

the corresponding commitment and it was not published before.

The reward can be withdrawn by each shareholder that correctly

disclosed her share after the protocol has terminated successfully.

I Told You Tomorrow ARES 2021, August 17–20, 2021, Vienna, Austria

[now > Tterm]INPI
pre

initialized

I
init

initialize_sc *
initialized

E

participate

startMPC *
[bidders==n] PCfinalizeMPC *

pre
committed

enforce *
[commits==n]

expired

expire
[now > T1]

expire
[now > T2] expire

[now > T3]

LOCKED

locksetup

FAILED

withdraw

WhistleblowSecret

commit loadSecret *

withdraw

* → [msg.sender==owner]

WhistleblowShare

activation

(Alg3) (Alg4)

(Alg6)

[] →condition

() →reference to algorithm

[now < Td] [now < Td]

Legend

(Alg1 + Alg2)

share generation

terminate
[now > Td]

disclose

(Alg5)
[now < Tterm]

 END

termination

Figure 1: State machine representing the valid state transitions of the ITYT protocol. Each transition name maps to an action
(an Ethereum smart contract function) that can be invoked by participants to update the state. Square brackets state additional
conditions that must be met to consider the transition valid

To claim the reward, the user can call the function withdraw (Al-
gorithm 6). We remark that there is no need to materialize K in

the contract, as all the valid shares will be permanently accessible.

Anyone can recover K just by assembling the shares (e.g., using

Lagrange’s interpolation in the case of secret sharing).

5.2 Share generation and distribution
In this section, we describe how to implement the generate_shares
function by using secure Multi-Party Computation frameworks.

In the sMPC setting, each party joins the protocol as a network

host. Each ITYT user is then provided with a virtual machine con-

taining an application able to communicate via network follow-

ing a pre-defined protocol. The application is implemented using

FRESCO [4][16], a FRamework for Efficient and Secure COmpu-

tation that aims to ease the development of prototypes based on

secure computation. FRESCO offers several secure computation

techniques, referred to as suites. Depending on the model of com-

putation, each of them is classified into binary or arithmetic. The

arithmetic suites permit to efficiently perform additions and mul-

tiplications on values that are defined over a finite field, a desir-

able feature for protocols like ITYT that rely on Secret Sharing.

SPDZ [18] is the arithmetic suite we selected. In addition to high

performance, SPDZ also ensures protection against active adver-
saries that can deviate in arbitrary ways. This grants ITYT the

ability to securely open (i.e., release) partial results of the compu-

tation only to some of the parties executing the sMPC protocol,

enabling us to send each share only to the legitimate shareholder.

To further increase performance, MASCOT [25] was used as SPDZ

pre-processing strategy.

To execute the share generation primitive, owner and sharehold-

ers start the sMPC application. The owner inputs the random 128

bits key K , together with the total number of shareholders n, and
the reconstruction threshold k . Each shareholder, instead, submits

only a random 128 bits seed. The sMPC selects k of the n seeds

received, using it as the a1, . . . ,ak coefficients of the Shamir Secret

Sharing polynomial [46], while K is interpreted as a0. Then, the
sMPC generates n random x values of 128 bits and computes the

associated y coordinates using the Horner’s method, which permits

to evaluate a polynomial of degree k with only k multiplications

and k additions. Each i-th share is built as the concatenation of

the xy coordinates hi = xi | |yi . To compute the commitments of

the key and the shares, we used MiMC [3], a cryptographic primi-

tive characterized by low multiplicative complexity implemented

by FRESCO and compatible with SPDZ. Finally, dedicated output

is opened to the parties: the owner gets the commitment Ci of
any share generated, while each shareholder gets her share hi , the
commitment of the key CK , n and k .

6 DISCUSSION
In this section, we discuss how ITYT ensures the methods to report

misbehavior are not bypassable, and how ITYT mitigates denial of

service (DOS) and prevents deadlocks.

6.1 Misbehavior detection
The economic penalties ITYT relies on are triggered when there is a

user that is able to prove someone else’s misbehavior, and this hap-

pens for example when a share is released improperly. Up to now,

we have considered secure Multi-Party Computation as a mean to

securely deliver dedicated output to users that take part in the ITYT

protocol (i.e., to generate and distribute the shares confidentially).

However, sMPC can also be used to subvert the protocol, as it en-

ables a group of parties to jointly compute a function while keeping

their input confidential. Indeed, a coalition of shareholders could

use it to recover the secret ahead of disclosure time without leaking

any share nor the key, thus bypassing smart contract commitments.

This is an interesting scenario as it applies to most protocols played

by rational users that involve rewards and penalties (e.g., [41]).

In our setting this happens when there is a coalition that is able to

recover S without releasingK , thus preventing anyone to perform

the WhistleblowSecret action. To do that, the coalition inputs to

ARES 2021, August 17–20, 2021, Vienna, Austria Bacis, et al.

collusion would leak .

sMPC execution window smart contract configuration smart contract activated

Figure 2: Avoid the exposition of S before sc activation

the sMPC protocol k shares along with the ciphertext CT (which is

publicly available as it is written to the contract by the owner). Then,

the protocol performs the reconstruction of the Shamir polynomial,

recovers K , and extracts the secret by S = DecK (CT), opening it

to the parties as the only result.

There are two alternatives to prevent this attack: (i) use an en-

cryption scheme vulnerable to the Known Plaintext Attack, and
(ii) use an encryption scheme that is practically incompatible with

the sMPC setting. As an example of (i), with the One-Time Pad,
given two among {CT ,S,K} the third is implied; then, a coalition

of shareholders cannot avoid to release K by recovering S. The

drawback of using OneTimePad is that |S| = |K | by construction.

This limitation can be overcome by selecting an encryption scheme

that satisfies (ii).

6.2 DOS and deadlock prevention
A denial of service attack is performed by users that participate in

multiple ITYT instances and refuse to deposit their bids, to com-

mit, or to correctly execute the sMPC protocol. To mitigate these

kinds of disruptions it is possible to introduce a reputation system.

However, this requires to discriminate with high accuracy between

misbehaving users and users that follow the protocol as intended.

Therefore, we decided to include an additional step in the FSM setup
phase, in which all participants (including the owner) are required

to pay an additional small service pawn that will be returned only at

activation time. It has been proven that the introduction of a small

fee to access a service can mitigate many DOS attacks [32, 36].

Any other misbehavior, malfunction, or network error could

result in a failure to meet the setup time threshold set by the owner.

The deadlock, to which the protocol leads to, can be managed

introducing the final state EXPIRED (see Figure 1). In this state, all

the participants are allowed to withdraw their funds locked by the

contract, except for the small service pawn (as the TL was never

activated).

7 EXPERIMENTAL RESULTS
Our experimental analysis is organized into: (i) smart contract

deployment and testing, and (ii) simulation of sMPC network pro-

tocols. The tests have been executed on a dual Intel Xeon E5 server

Function

Gas

n = 2 n = 5 n = 10

participate 89545 90308 100207

startMPC 50399 50399 50399

finalizeMPC 122096 191666 307617

commit 56834 59597 69496

enforce 50425 50425 50425

loadSecret 51367 51367 51367

WhistleblowShare 125492 125676 125715

WhistleblowSecret 121587 121587 121587

terminate 29657 29657 29657

disclose 125492 125676 125715

withdraw 42634 48709 62451

Table 2: Gas cost for each smart contract function with k = 2

with 256 GB memory and 512 GB SSD drive running Ubuntu 20.04

LTS. The size of the shares was set to 256 bits.

Smart contract. A preliminary version of the smart contract

was built with FSolidM [37], a tool that automatically generates

Ethereum smart contracts code from high-level Finite StateMachine

representations. To deploy, test, and debug the contract generated,

we relied on Brownie [23], a Python framework that allows us to

create wallets, inspect transactions and automatize tests. To pro-

vide such functionalities, Brownie interacts with Ganache [2]: a

personal Ethereum blockchain used to facilitate development.

The experiments mainly focused on estimating the execution

cost of each ITYT instance. The cost is measured in gas, the unit

that measures the amount of computational effort required to exe-

cute specific operations on the Ethereum network. Table 2 shows,

depending on the number of participants, the gas required to run

each ITYT function.

sMPC. First, we implemented a sMPC protocol compliant with

the description in Section 5.2. We refer to this version as single-

phase. Each party was provided with a different application acting

either as client or server, and the network communication round

trip time (RTT) was set to 10 ms. As it is illustrated in Figure 3a,

strictly adhering to this protocol leads to a sudden performance

degradation when the number of shareholders increases. This is

because computing the MiMC primitive among several participants

is highly affected by network latency (the parties have to exchange

several messages to carry out even simple operations in the sMPC

setting). To improve performance, we implemented a two-phase

algorithm composed by two sMPC protocols: Step 1 and Step 2.

Step 1. An n-to-n sMPC is jointly executed by all participants.

The owner inputs the random 128 bits key K , together with n and

k . Each shareholder submits only a 128 bits seed. As detailed in

Section 5.2, the sMPC selects the coefficients to generate the Shamir

polynomial and computes the shares. Finally, the output is opened

to the parties: the owner gets the polynomial coefficients of f (x),
while each shareholder gets her share hi , n and k .

Step 2. A 1-to-1 sMPC is computed between the owner and each

i-th shareholder. The owner inputs f (x), while the shareholder

I Told You Tomorrow ARES 2021, August 17–20, 2021, Vienna, Austria

2 3 4 5 6 7 8

n

10 1

10 2

T
im

e
[s

]

k=2 single-phase
k=3 single-phase
k=4 single-phase
k=2 two-phase
k=3 two-phase
k=4 two-phase

(a) Single-phase vs two-phase sMPC execution time

2 3 4 5 6 7 8

n

30

35

40

45

50

55

60

65

70

75

80

T
im

e
[s

]

k=2
k=3
k=4
k=5
k=6
k=7
k=8

(b) Two-phase time consumption

2 3 4 5 6 7 8

n

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
A

M
 [G

B
]

k=2
k=3
k=4
k=5
k=6
k=7
k=8

(c) Two-phase memory consumption

Figure 3: sMPC protocol time and memory consumption

inputs her (xi ;yi) coordinate. If (xi ;yi) belongs to f (x), commit-

ments are produced. The owner gets the commitment of the share

Ci , while the shareholder gets the commitment of the key CK .
The difference between the single-phase and the two-phase

sMPC lies in the evaluation of the MiMC primitive. Unlike the

single-phase version, the two-phase solution separates the genera-

tion of the shares from the production of commitments. It follows

that the first step can be carried out even in scenarios with several

participants, as it is not computationally intensive, whereas the

second step, which instead is computationally intensive, is always

performed among two users. The comparison between the two

sMPC protocol variants is shown in Figure 3a. More details about

the two-phase execution time and memory consumption for each

participant, in case of polynomial of higher degree, are illustrated

in Figures 3b and 3c, respectively.

8 RELATEDWORK
The use of cryptography to solve the problem of unveiling private

data at a specific time in the future was first envisioned in 1993 by

Timothy May [38]. Since then, many researchers have proposed so-

lutions to this problem. Based on the assumptions and technologies

used, we can classify the proposals into four main categories.

Trust and Honesty — Chan et al. [11] and Cheon et al. [13] pro-

posed single point of trust schemes, in which the owner encrypts

the secret using public-key cryptograpyhy, and relies on a trusted

time-server to release the private decryption key in the future. Rabin

et al. described Time-Lapse Cryptography [40, 43] that overcomes

the single point of trust assumption by splitting the single authority

into a group of users that have to cooperate to release the keys.

Li et al. [29] proposed a solution that relies on Distributed Hash

Tables to route the secret among peers. However, these proposals

entail the peers to be honest as they do not consider the possible

economic benefits that the parties would obtain by colluding.

Time-Lock Puzzles — They require the recipient to solve an inher-

ently sequential mathematical puzzle to prove the elapse of time.

Starting from Rivest et al. seminal work [45], many other puzzles

have been proposed [7, 14, 34]. All these techniques require to run

the decryption procedure for a long time, and to make assumptions

on future computing power.

Smart Contracts — Similarly to our proposal, the third category

leverages smart contracts [47] to replace the trusted party. Ki-

mono [10] and Keep Network [33] rely on threshold cryptography

to split the secret among participants that can earn a remuneration

by keeping their shares private until disclosure time. However, they

do not introduce security deposits, thus failing at preventing misbe-

havior. Li et al. proposal [30] overcomes some of these limitations

by modeling the protocol as an extensive-form game with imperfect

information [28]. Yet, as each peer is a single point of failure, and

as the owner has perfect information about the shares, they require

every participant to pay a security deposit that exceeds the value of

the secret, limiting the applicability of the protocol. Compared to

our solution, all the proposals in this category do not consider that

coalitions of users can reconstruct the secret ahead of disclosure

time inside an sMPC protocol without exposing the shares, thus

effectively avoiding penalties and safeguarding remunerations.

Witness Encryption — This category of solutions leverages wit-

ness encryption [21], in which the sender can encrypt a message so

that it can only be opened by a recipient who knows a witness to an

NP relation. Liu et al. [31] showed how to construct a computational

reference clock from large public computations, such as those made

by the Bitcoin network, and couple it with witness encryption to

achieve a TL encryption mechanism. Yet, this proposal relies on

the availability of a practical witness encryption scheme.

Other Contributions — Several recent proposals address the prob-

lem of dealing with secret data on public blockchains. Enigma [51]

and Hawk [27] leverage sMPC to allow multiple actors to execute

an algorithm on private inputs and store the proof of correct ex-

ecution on the blockchain. However, these proposals require the

data holder to actively participate in the computation, thus they

cannot be used to solve the problem of data disclosure at a future

point in time. Proof of Elapsed Time (PoET) is a network consensus

algorithm often used in permissioned blockchains, like Hyperledger

Sawtooth [1, 12], that avoids wasting computational resources by

using a fair lottery system run inside a Trusted Execution Environ-

ment (TEE), such as Intel SGX. Each participant runs an algorithm

in the TEE that waits for a random amount of time, thus proving

the elapse of time without the need of PoW. Even if this approach

resembles ITYT, as it prevents cheating on the chosen time, it is not

ARES 2021, August 17–20, 2021, Vienna, Austria Bacis, et al.

able to store secret data. Another recent contribution, Bitcoin Light-
ning Network [41], shows how economic constraints enforced by TL

primitives can be successfully integrated with blockchains. Light-

ning Network can be used to instantly exchange bitcoins among

peers by using off-chain transactions while effectively preventing

misbehavior.

9 CONCLUSIONS
In this paper we presented I Told You Tomorrow (ITYT), a practi-

cal framework that leverages the rationality assumption to deploy

Timed-Locked secrets on the blockchain. In contrast to other Time-

Lock mechanisms, ITYT does not rely on a trusted third-party,

neither it requires a receiving party to run a decryption algorithm

until disclosure time, nor it demands guessing about future com-

puting power. The implementation and experimental evaluation

show the low cost and limited resource consumption associaced

with our approach.

As future work, we are considering the use of homomorphic

encryption for the share generation primitive. By doing so, we

expect that the time and resources needed to setup the protocol

will be further reduced.

Acknowledgments. This work was supported by the EC within

the H2020 Program under project MOSAICrOWN. Marco Guarnieri

was also supported by an Atracción de Talento Investigador grant

2018-T2/TIC-11732A, a Juan de la Cierva-Formación grant FJC2018-

036513-I, Spanish project RTI2018-102043-B-I00 SCUM, and Madrid

regional project S2018/TCS-4339 BLOQUES.

Availability. The open source implementation of ITYT is freely

available at: https://github.com/unibg-seclab/ityt

REFERENCES
[1] 2018. Hyperledger Sawtooth. https://sawtooth.hyperledger.org.

[2] 2019. Ganache – Personal blockchain for Ethereum development. https://github.

com/trufflesuite/ganache.

[3] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. 2016. MiMC:

Efficient encryption and cryptographic hashing with minimal multiplicative

complexity. In ASIACRYPT.
[4] Alexandra Institute. 2019. FRESCO - A Framework for Efficient Secure Computa-

tion. https://github.com/aicis/fresco.

[5] J. Alwen, C. Cachin, O. Pereira, A.R. Sadeghi, B. Schoenmakers, A. Shelat, and I.

Visconti. 2007. Summary Report on Rational Cryptographic Protocols.

[6] G. Asharov, R. Canetti, and C. Hazay. 2011. Toward a Game Theoretic View of

Secure Computation. IACR (2011).

[7] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and B. Waters.

2016. Time-Lock Puzzles from Randomized Encodings. In ITCS.
[8] G. Branwen. 2018. Time-Lock Encryption. https://www.gwern.net/Self-

decrypting-files.

[9] P. Caballero-Gil, C. Hernández-Goya, and C. Bruno-Castañeda. 2010. A Rational

Approach to Cryptographic Protocols. CoRR (2010).

[10] F. Mert Celebi, P. Fletcher-Hill, G. Kaemmer, and D. Que. 2018. Kimono Time

Capsule. https://kimono.network.

[11] A.C.F. Chan and I.F. Blake. 2005. Scalable, Server-Passive, User-Anonymous

Timed Release Cryptography. In ICDCS.
[12] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi. 2017. On Security Analysis of

Proof-of-Elapsed-Time (PoET). In SSS.
[13] J.H. Cheon, N. Hopper, Y. Kim, and I. Osipkov. 2006. Timed-Release and Key-

Insulated Public Key Encryption. In FC.
[14] B. Cohen and K. Pietrzak. 2018. Simple Proofs of Sequential Work. In EURO-

CRYPT.
[15] A. Conner-Simons. 2019. Programmers solve MIT’s 20-year-old cryptographic

puzzle. https://www.csail.mit.edu/news/programmers-solve-mits-20-year-old-

cryptographic-puzzle.

[16] I. Damgård, K. Damgård, K. Nielsen, P.S. Nordholt, and T. Toft. 2017. Confidential

Benchmarking Based on Multiparty Computation. In FC.

[17] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N.P. Smart. 2013. Practi-

cal Covertly Secure MPC for Dishonest Majority – Or: Breaking the SPDZ Limits.

In ESORICS.
[18] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N.P. Smart. 2013. Prac-

tical covertly secure MPC for dishonest majority–or: breaking the SPDZ limits.

In ESORICS.
[19] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel. 2017. Betrayal,

distrust, and rationality: Smart counter-collusion contracts for verifiable cloud

computing. In SIGSAC.
[20] C. Dwork and M. Naor. 1993. Pricing via Processing or Combatting Junk Mail. In

CRYPTO.
[21] S. Garg, C. Gentry, A. Sahai, and B. Waters. 2013. Witness Encryption and Its

Applications. In STOC.
[22] A. Groce, J. Katz, A. Thiruvengadam, and V. Zikas. 2012. Byzantine Agreement

with a Rational Adversary. In ICALP.
[23] B. Hauser. 2019. Introducing Brownie: A Python framework for testing, deploying

and interacting with Ethereum smart contracts. https://medium.com/hyperlink-

technology/introducing-brownie-a763859409ca.

[24] C. Hazay and Y. Lindell. 2010. A Note on the Relation between the Definitions of

Security for Semi-Honest and Malicious Adversaries.

[25] M. Keller, E. Orsini, and P. Scholl. 2016. MASCOT: Faster Malicious Arithmetic

Secure Computation with Oblivious Transfer. In SIGSAC.
[26] M. Keller, V. Pastro, and D. Rotaru. 2018. Overdrive: making SPDZ great again.

In EUROCRYPT.
[27] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. 2016. Hawk: The

blockchain model of cryptography and privacy-preserving smart contracts. In

IEEE S&P.
[28] K. Leyton-Brown and Y. Shoham. 2008. Essentials of game theory: A concise

multidisciplinary introduction. Synthesis lectures on artificial intelligence and
machine learning (2008).

[29] C. Li and B. Palanisamy. 2017. Timed-Release of Self-Emerging Data Using

Distributed Hash Tables. In ICDCS.
[30] C. Li and B. Palanisamy. 2018. Decentralized Release of Self-Emerging Data using

Smart Contracts. In SRDS.
[31] J. Liu, T. Jager, S.A. Kakvi, and B. Warinschi. 2018. How to build time-lock

encryption. Designs, Codes and Cryptography (2018).

[32] G. Loukas and G. Öke. 2010. Protection against denial of service attacks: A survey.

Comput. J. (2010).
[33] M. Luongo and C. Pon. 2019. The Keep Network: A Privacy Layer for Public

Blockchains. https://keep.network/whitepaper.

[34] M. Mahmoody, T. Moran, and S. Vadhan. 2011. Time-Lock Puzzles in the Random

Oracle Model. In CRYPTO.
[35] M. Mahmoody, T. Moran, and S. Vadhan. 2013. Publicly verifiable proofs of

sequential work. In ITCS.
[36] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M. Frentz. 2001. Mitigating dis-

tributed denial of service attacks with dynamic resource pricing. In ACSAC.
[37] A. Mavridou and A. Laszka. 2017. Designing Secure Ethereum Smart Contracts:

A Finite State Machine Based Approach. ArXiv (2017).

[38] Timothy May. 1993. Timed-release crypto. http://cypherpunks.venona.com/date/

1993/02/msg00129.html.

[39] M. Nojoumian, A. Golchubian, L. Njilla, K. Kwiat, and C. Kamhoua. 2019. Incen-

tivizing Blockchain Miners to Avoid Dishonest Mining Strategies by a Reputation-

Based Paradigm. In ICIC.
[40] D.C. Parkes, M.O. Rabin, S.M. Shieber, and C. Thorpe. 2008. Practical secrecy-

preserving, verifiably correct and trustworthy auctions. ECRA (2008).

[41] J. Poon and T. Dryja. 2016. The Bitcoin lightning network: Scalable off-chain

instant payments. https://www.bitcoinlightning.com/wp-content/uploads/2018/

03/lightning-network-paper.pdf.

[42] M.O. Rabin. 2005. How To Exchange Secrets with Oblivious Transfer. IACR
(2005).

[43] M.O. Rabin and C. Thorpe. 2006. Time-lapse cryptography. Technical Report.
[44] R.L. Rivest. 1999. Description of the LCS35 Time Capsule Crypto-Puzzle. https:

//people.csail.mit.edu/rivest/lcs35-puzzle-description.

[45] R.L. Rivest, A. Shamir, and D.A.Wagner. 1996. Time-lock Puzzles and Timed-release
Crypto. Technical Report.

[46] A. Shamir. 1979. How to share a secret. Commun. ACM (1979).

[47] N. Szabo. 1997. Formalizing and securing relationships on public networks. First
Monday (1997).

[48] M. von Maltitz and G. Carle. 2018. A Performance and Resource Consumption

Assessment of Secret Sharing Based Secure Multiparty Computation. In Data
Privacy Management, Cryptocurrencies and Blockchain Technology.

[49] G. Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper (2014).
[50] A.C. Yao. 1982. Protocols for Secure Computations. In SFCS.
[51] G. Zyskind, O. Nathan, andA. Pentland. 2015. Enigma: Decentralized computation

platform with guaranteed privacy. arXiv (2015).

https://github.com/unibg-seclab/ityt
https://sawtooth.hyperledger.org
https://github.com/trufflesuite/ganache
https://github.com/trufflesuite/ganache
https://github.com/aicis/fresco
https://www.gwern.net/Self-decrypting-files
https://www.gwern.net/Self-decrypting-files
https://kimono.network
https://www.csail.mit.edu/news/programmers-solve-mits-20-year-old-cryptographic-puzzle
https://www.csail.mit.edu/news/programmers-solve-mits-20-year-old-cryptographic-puzzle
https://medium.com/hyperlink-technology/introducing-brownie-a763859409ca
https://medium.com/hyperlink-technology/introducing-brownie-a763859409ca
https://keep.network/whitepaper
http://cypherpunks.venona.com/date/1993/02/msg00129.html
http://cypherpunks.venona.com/date/1993/02/msg00129.html
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://people.csail.mit.edu/rivest/lcs35-puzzle-description
https://people.csail.mit.edu/rivest/lcs35-puzzle-description

	Abstract
	1 Introduction
	2 Background
	3 The ITYT protocol
	3.1 Definitions
	3.2 Roles
	3.3 Setup
	3.4 Actions

	4 Economic model
	4.1 Prevent the reconstruction of the secret
	4.2 Impact of share whistleblowing action
	4.3 Rewards and bonuses

	5 Implementation
	5.1 Smart contract implementation
	5.2 Share generation and distribution

	6 Discussion
	6.1 Misbehavior detection
	6.2 DOS and deadlock prevention

	7 Experimental results
	8 Related Work
	9 Conclusions
	References

