
Multi-Provider Secure Processing of Sensors Data

Enrico Bacis1, Sabrina De Capitani di Vimercati2, Dario Facchinetti1, Sara Foresti2,
Giovanni Livraga2, Stefano Paraboschi1, Marco Rosa1, Pierangela Samarati2

1Università degli Studi di Bergamo (Italy), 2Università degli Studi di Milano (Italy)

IEEE International Conference on Pervasive Computing and Communications PERCOM 2019

Scenario

•Wide sensors networks collect huge amount of
data

•Unlike gathering phase, data processing is not
performed in close proximity to the sensor, so the data
are usually sent to the cloud

•Data generated by sensors may be sensitive or be
subject to law restrictions, for example the ones
imposed by the General Data Protection Regulation

•Many cloud platforms are available, each with
different cost and confidentiality profiles

Figure: Reference scenario

Problem
Is it possible to create collaborative multi-provider
query plans, leveraging the benefits of open cloud mar-
ket, while still protecting confidentiality requirements?

Objectives

Demonstrate the effectiveness of collaborative multi-
provider execution by the realization of a proof-of-concept
plan configuration optimizer

Further requirements:

• feasible and easy integration with existent plans
optimizers, for example Spark SQL optimizer [1]

• timely retrieval of near optimal plan configurations
(no more than some tenths of a second)

Reference model

Hybrid computation
Our approach supports the integration of User Defined
Functions with traditional SQL operators. UDFs are mod-
eled as black boxes that correspond to procedural computa-
tions constructed using a variety of programming languages
and paradigms

Authorization policy
We enforce confidentiality by using the authorization model
[2]:

• for each subject S , potentially involved in execution,
attributes of schema are split in two visibility levels,
plaintext and encrypted, [P ,E ]→ S

• for each operation,
a relation profile

[
Rvp,Rve,R ip,R ie,R'

]
, keeps track

of implicit (from previously applied operators) and
explicit (part of a join) equivalence between attributes
during computation

• general formulas are applied to evolve relation profiles
according to the specific operation being evaluated

• proper encryption wrapping is applied on-the-fly at
attribute granularity level to enforce confidentiality

Operational constraints
We use several cryptographic techniques to carry out com-
putation over ciphertexts without information leaks: Order
preserving encryption, Deterministic symmetric encryption,
Randomized encryption, Homomorphic encryption

Example of query input plan

As an example of query and authorizations, the data com-
ing from a portable ECG monitor and a fit tracker can be
considered:

Figure: An example of relations schema, query, authorizations and query
tree plan

These data stand as the starting point for our analysis, the
objective is to look for the near optimal assignment of the
query tree plan

Two-phase optimization

Given a query, we aim at generating a query plan that mini-
mizes the economic cost. Building on a generic optimization
chain of the existing SQL query optimizers, we propose a
solution based on a two phase approach

Performance
optimizer

Plan
generator

UDF
manager

Query optimization

Statistics
module

Security
enforcer

Recursive
allocator

Economic
cost optimization

Query Single-provider
optimized plan

Multi-provider
query plan

Figure: Two-phase optimization process: i) single-provider optimizer (light
blue), ii) economic cost optimizer (orange)

Cost optimization steps

Before starting executing the cost optimization we carry
out some semantic steps: statistics are generated, CPU
dominant-cost operations are identified and minimum visi-
bility levels are derived

Synthesize plan attributes

& metrics completion

Derive cost barriers

Synthesize execution cost

Derive minimum required view

Oracle clonation

Operation assignment

1

2

Semantic analysis

Secure cost optimization

When the semantic phase is over, the greedy recursive
assignment phase begins. A clone of the original plan is
used to facilitate assignment attempts

Figure: State machine description of the operations assignment algorithm

Implementation

We implemented the following prototype [3]

{Q
ue

ry
,

D
B

,
A

ut
h}

.x
m

l

In
pu

t
pa

rs
er

In
-m

em
or

y
da

ta

N
am

es
en

fo
rc

er

P
ro

te
ct

ed
na

m
es

pa
ce

C
om

pu
ti

ng
en

gi
ne

M
ul

ti
-p

ro
vi

de
r

qu
er

y

O
ut

pu
t

pa
rs

er

{S
ho

rt
,

E
xt

en
de

d}
R

es
.x

m
l

The prototype currently supports relational algebra enriched
by custom UDF operators, while data format is relational

The names enforcer performs pre-processing in order to
avoid name clashes

The input DOM parser maps physical query operators to
the internal algebraic representation, while the output one
acts as a translator, its redefinition permits easy integration
in real frameworks

Results and performances

We evaluate our prototype by modeling a hybrid workload
(SQL + UDF) using three types of UDF complexity (γ):
linear (L), pseudo-linear (PS) and quadratic (Q)

Table: Cost estimate for each UDF complexity, for each mode

γ Single-P Multi-P Multi-P no uvr

L 0.041$ 0.041$ (0.0%) 0.022$ (53.7%)
PS 0.047$ 0.019$ (40.4%) 0.019$ (40.4%)
Q 3.465$ 3.465$ (0.0%) 0.497$ (14.3%)

The average cost optimization time is 26.9ms on an Intel i5
server with 16 GB memory and SSD drive running Ubuntu
18.04 LTS

Average time required for each step

Attributes synthesizing 3.0%
Oracle cloning and binding 82.1%
Deriving cost barriers 1.8%
Cost & policy based allocation 11.8%
Deriving minimun required view 1.3%

Conclusion
• the implementation and experimental evaluation

confirms the efficiency and effectiveness of the
proposal, and confirms its compatibility with current
query optimization requirements

• the described approach results particularly suited for
computations of high complexity

References

Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali
Ghodsi, et al.
Spark sql: Relational data processing in spark.
In Proc. of ACM SIGMOD, Melbourne, VIC, Australia, 2015.

Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Giovanni
Livraga, Stefano Paraboschi, and Pierangela Samarati.
An authorization model for multi provider queries.
PVLDB, 11(3):256–268, 2017.

Query cost optimizer repository.
https://github.com/mosaicrown/query-opt.

Acknowledgments

This work was supported by the EC within the H2020 under grant
agreement 825333 (MOSAICrOWN).


