An SELinux-based Intent manager for Android

Simone Mutti, Enrico Bacis, Stefano Paraboschi
DIGIP — Universita degli Studi di Bergamo, Italy
{simone.mutti, enrico.bacis, parabosc} @ unibg.it

Abstract—The support for Mandatory Access Control offered
by SELinux has become a significant component of the security
design of the Android operating system, offering robust protection
and the ability to support system-level policies enforced by all the
elements of the system. A well-known security-sensitive aspect of
Android that currently SELinux does not cover is the abuse of
intents, which represent the Android approach to inter-process
communication. We propose SEIntentFirewall, an SELinux intent
manager that provides fine-grained access control over Intent
objects, permitting to cover within MAC policies the use of
intents.

I. INTRODUCTION

The rapid success and wide deployment of mobile operat-
ing systems has introduced a number of novel and challenging
security requirements, with a clear need for an improvement of
security technology. Mobile operating systems have to provide
a line of defense internal to the device against apps that,
due to malicious intent or the presence of flaws in system
components or other apps, may let an adversary abuse the
system. Nowadays, one significant attack vector is represented
by the (ab)use of Intent objects [1], [2], [3]. Intents are
the communication mechanism that can be used to exchange
information between Android components of the same appli-
cation or among distinct ones. The integration of SELinux
into Android (briefly, SEAndroid [4]) is a significant step
toward the realization of more robust and more flexible security
services. However, SEAndroid does not take into consideration
the use of Intent objects in the communication among apps.
The paper introduces SEIntentFirewall a Security Enhanced
version of the IntentFirewall component. SEIntentFirewall uses
the features provided by MAC models to provide fine-grained
access control over Intent objects. The proposal adapts in the
design the concept of appPolicymodule [5], an extension of
SEAndroid that gives to each app the possibility to define its
own SELinux policy under a set of well specified constraints.

II. PROBLEM

In order to cross the process boundaries (i.e., inter-process
communication) an app can use a messaging object to request
an action from another app component. These messaging
objects are called Intents. Formally, Intents are asynchronous
messages that allow application components to request func-
tionalities from other Android components (see Figure 1). This
mechanism has been denoted as Inter-Component Communi-
cation (ICC). Intents represent the higher-level Android Inter-
process Communication (IPC) technique, and the underlying
transport mechanism used is called Binder. Android provides
two types of Intent:

o Implicit intent: it specifies the action that should be
performed and optionally data that is provided for the

action. If an implicit intent is used, Android searches
for all components that are registered for the specific
action and are compatible with the data type;

e Explicit intent: it explicitly defines the component
that should be called by the Android system (i.e., using
the Java class as identifier).

Intents can be used to: start Activities; start, stop, and bind
Services; and, broadcast information to Broadcast Receivers.
All of these forms of communication can be used with either
explicit or implicit Intents. Unfortunately, the exchange of in-
tents represents an application attack surface, as shown in sev-
eral papers. The main issue is that, when an application sends
an implicit Intent, there is no guarantee that the Intent will
be received by the intended recipient. A malicious application
can then intercept an Intent and launch a malicious Activity
in place of the intended Activity. Interception can also lead to
control-flow attacks, like denial of service [1], [2], [3]. Several
solutions have been proposed, using different approaches (e.g.,
static/dynamic analysis, control-flow mechanisms). However,
none of them has been included in the Android Open Source
Project (AOSP). To address this problem, Google has intro-
duced the Intent Firewall component, since Android 4.3.

—_—_ = = — — —~

{ Process_1 \ { Process_2 \
I | I I
| App_1 | | App_2 I
| 0]
{]) ! |
~ O 7| - — = ~ - e -
User - space . I
f
Kernel - space |
[Binder driver]

Fig. 1. Abstract representation of Intent mechanism.

III. INTENT FIREWALL

As explicit in its name, the Intent Firewall is a security
mechanism that regulates the exchange of Infents among apps,
by analyzing the type of data exchanged. A specific syntax
was developed in order to build an Intent Firewall policy,
represented by an XML file. Listing 1 shows a snippet of an
Intent Firewall policy.
<rules>

<activity block="true” log="false”>
<component—filter name="com.android. dialer/
.DialtactsActivity” />
<lactivity>
</rules>

Listing 1. Snippet of an Intent Firewall policy.

User - space ' Kernel - space

Process_1:

SELinux
security

—

Security
Policy

'
'
'
'
'
'
'
'
'
'
'
'
'

=

-2 0 =D -
——ugm-g.-.-rj

T
'
'
'
'
'
'
'
'
'
'
1
'

Policy

Enforcement Point Policy Decision Point

Fig. 2. Overview of the SelntentFirewall architecture.

The example in Listing 1 defines a rule that blocks all in-
tents to the Android phone dialer component (i.e., an Activity).
Following the common architecture of access control services,
the Intent Firewall realizes a classical Reference Monitor and
it cover both the roles of a Policy Enforcement Point (PEP)
and a Policy Decision Point (PDP). Although, this approach
provides several advantages in the protection against intent
based attacks, it introduces two major drawbacks. Firstly, the
modification of the Intent Firewall policy can be done only
by the root user (i.e., uid 0). This means that a common app
developer cannot use this mechanism to protect its own app
from malicious requests by other apps. Secondly, it introduces
policy fragmentation, as the system will have to manage an
additional policy language. From a policy management point
of view, a system with several policy languages and PDPs is
difficult to maintain, with no clear solution to the maintenance
of the consistency among all the distinct policies.

IV. PROPOSAL

Our contribution is a built-in enhancement of IntentFire-
wall, providing fine-grained Mandatory Access Control (MAC)
for Intent objects. SEIntentFirewall takes access control deci-
sions based on a SELinux security policy (see Figure 2), in
the same way as user access to file system objects is enriched
by SELinux in the kernel. This approach leads to a more
powerful control on the communication among apps. This
aims at strengthening the barriers among apps, introducing an
additional mechanism to guarantee that apps are isolated and
cannot manipulate the behavior of other apps. The SELinux
decision engine will then operate as the Policy Decision
Point. This choice offers a well-defined policy language and
engine, leads to a simpler and better structured code base,
and minimizes the implementation effort. It is to note that
this design does not require to adapt apps source code. The
SEIntentFirewall will be obtained with an adaptation of the
services provided by AppPolicyModules [5].

V. IMPLEMENTATION

The work in [5] represents the basis for our work. The use
of appPolicyModules [5] allows each app developer to specify
an ad-hoc SELinux policy for its app, offering guarantess about
the integrity of the system policy and the ability of each app
to benefit from the stronger protection offered by the MAC
model. The implementation of appPolicyModules has been
extended in order to manage Infent objects. The modifications

can be structured into the following activities: (i) retrieve the
security context associated with an app, (ii) allow the SELinux
access control engine to handle permissions defined for Intent
objects.

The first set of challenges concerns the modification of
the JNI bridge in order to retrieve the security context as-
sociated with an app. At the Application Framework level,
the SELinux class provides access to the centralized Java
Native Interface (JNI) bindings for SELinux interaction. The
android_os_SELinux.cpp file represents the JNI bridge. In the
current AOSP version, the JNI bridge is able to retrieve the
security context only of running apps, but an Intent could also
be used to start an app. To address this limitation and retrieve
the security context that will be associated with the app, we
modified the android_os_SELinux.cpp file introducing a set of
functions able to retrieve the needed information.

The second set of challenges concerns the introduction of
a new security class, and the respective permissions, to let
the SELinux engine handle Intent objects. Listing 2 shows an
example of an SELinux rule using the new security class.

allow appdomain appdomain:intent { send };

Listing 2. ”SELinux rule using intent security class.”

VI. CONCLUSIONS

Security is correctly perceived as a crucial property of
mobile operating systems. The integration of SELinux into
Android is a significant step toward the realization of more
robust and more flexible security services. Our approach is a
natural application of this design. The potential of an SELinux-
based solution like SEIntentFirewall is extensive and leads to
a significant improvement in access control enforcement and
app isolation.

VII. ACKNOWLEDGEMENTS

This work was partially supported by a Google Research
Award (winter 2014), by the Italian Ministry of Research
within the PRIN project “GenData 2020 and by the EC within
the 7FP and H2020 program, respectively, under projects
PoSecCo (257129) and EscudoCloud (644579).

REFERENCES

[1] D. Sbirlea, M. G. Burke, S. Guarnieri, M. Pistoia, and V. Sarkar,
“Automatic detection of inter-application permission leaks in Android
applications,” IBM Journal of Research and Development, vol. 57, no. 6,
pp. 10-1, 2013.

[2] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in Android,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services.
ACM, 2011, pp. 239-252.

[3] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
rich application-centric security in Android,” Security and Communica-
tion Networks, vol. 5, no. 6, pp. 658-673, 2012.

[4] S. Smalley and R. Craig, “Security Enhanced (SE) Android: Bringing
Flexible MAC to Android,” in Network and Distributed System Security
Symposium (NDSS 13), 2013.

[5] E. Bacis, S. Mutti, and S. Paraboschi, “AppPolicyModules: Mandatory
Access Control for Third-Party Apps,” in Proceedings of the 10th ACM

Symposium on Information, Computer and Communications Security.
ACM, 2015, pp. 309-320.

