
DockerPolicyModules:
Mandatory Access Control for Docker Containers

Enrico Bacis, Simone Mutti, Steven Capelli, Stefano Paraboschi
DIGIP — Università degli Studi di Bergamo, Italy

{enrico.bacis, simone.mutti, steven.capelli, parabosc} @ unibg.it

Objectives

We propose an extension to the Dockerfile format to let Docker image
maintainers ship a specific SELinux policy for the processes that run
inside the image, enhancing the security of containers.

SELinux Docker Security

Docker leverages Linux kernel security facilities such as Mandatory Access
Control (e.g. SELinux). SELinux separates processes in two ways:

Type Enforcement: a type is associated with every process and file.
The policy defines the permitted actions among them.

Multi-Category Security: Different containers are assigned different
categories to specialize SELinux types.

host OS

bening container malicious container

process process
svirt_lxc_net_t:s0:c1,c2 svirt_lxc_net_t:s0:c3,c4

MCS
check

TE check

c1,c2 ≠ c3,c4

svirt_lxc_net_t
does not have

access to
system types

Figure: SELinux separates containers using categories and protect the host through types.

Limitations of the current solution

Currently all the containers run with the same SELinux type,
svirt lxc net t. So we have to grant that type the upper bound of the
privileges that a container could ever need.

Proposal

Our proposal leverages SELinux modules to allow Docker image maintain-
ers to ship an SELinux policy in conjunction with their images. These
modules are named DockerPolicyModules (DPM) and are used to:

define the SELinux types and rules for the image;

define the SELinux type used when starting a containerized process;

let Docker embed the SELinux policy in the metadata at build-time.

DPM

policy_module(docker_apache, 1.0)
virt_sandbox_domain_template(httpd_t)
typebounds httpd_t svirt_lxc_net_t;
type http_exec_t;
type_transition svirt_lxc_net_t
 http_exec_t:process httpd_t;
...

FROM ...
LABEL dpm=” ”
...

Dockerfile

…

Other Resources

docker build

docker create Docker
Container

httpd
httpd_t

Docker
Image

• Metadata
 - Policy
 - ...
• Files

Figure: Process in a Docker container with a custom SELinux type defined in the DPM.

…
docker-baseimage:latest

mysql:latest python:latestapache:latest

D
PMhttpd

httpd_t

mysqld
mysqld_t

python
svirt_lxc_net_t

initd
initd_t

syslog
syslog_t

crond
crond_t

sshd
sshd_t

D
PM

D
PM

Figure: Processes running in three Docker containers (apache, mysql and python), using
SELinux types defined in the DockerPolicyModules embedded in the images.

DockerPolicyModule Validation

Each SELinux rule has a source (σ) and a target (τ) type. They can be
defined either in the system policy or in the DPM. We have to check all
the cases to avoid possible threats arising from malicious DPMs:

τ ∈ BASE τ ∈ DPM

σ ∈ BASE
INVALID. The DPM must not
change the types defined in the

system policy.

OK / INVALID. The
typebounds rule confines the
DPM under svirt lxc net t.

σ ∈ DPM
OK / INVALID. The

typebounds rule confines the
DPM under svirt lxc net t.

OK. Multiple types can be
defined with different privileges

(least privilege principle).

Docker Hub

Docker Hub is an online repository for Docker images. This must en-
sure that the DPM satisfies the requirements in the table above. The
requirements are also verified when Docker downloads the image.

Conclusion

The use of DockerPolicyModules permits the specification of specific
SELinux types and rules for the processes running in containers, increasing
the overall Docker security.

References

Enrico Bacis, Simone Mutti, and Stefano Paraboschi.
AppPolicyModules: Mandatory Access Control for Third-Party Apps.
In AsiaCCS’15. ACM, 2015.

Simone Mutti, Enrico Bacis, and Stefano Paraboschi.
Policy Specialization to Support Domain Isolation.
In SafeConfig’15. ACM, 2015.

Daniel J Walsh.
Tuning Docker with the newest security enhancements.
In opensource.com, 2015.

This work was partially supported by a Google Research Award (winter 2014), by the Italian Ministry of Research within the PRIN project “GenData 2020” and by the EC within the 7FP and H2020 program, respectively, under projects PoSecCo (257129) and EscudoCloud (644579).

