SeSAQLite : Security Enhanced SQLite

Mandatory Access Control for Android databases

~ Simone Mutti
simone.mutti@unibg.it

_Enrico Bacis
enrico.bacis@unibg.it

Stefano Paraboschi
parabosc@unibg.it

Universita degli Studi di Bergamo, ltaly
Department of Management, Information and Production Engineering

ABSTRACT

SQLite is the most widely deployed in-process library that
implements a SQL database engine. It offers high storage ef-
ficiency, fast query operation and small memory needs. Due
to the fact that a complete SQLite database is stored in a
single cross-platform disk file and SQLite does not support
multiple users, anyone who has direct access to the file can
read the whole database content. SELinux was originally
developed as a Mandatory Access Control (MAC) mecha-
nism for Linux to demonstrate how to overcome DAC limi-
tations. However, SELinux provides per-file protection, thus
the database file is treated as an atomic unit, impeding the
definition of a fine-grained mandatory access control (MAC)
policy for database objects.

We introduce SeSQLite, an SQLite extension that inte-
grates SELinux access controls into SQLite with minimal
performance and storage overhead. SeSQLite implements
labeling and access control at both schema level (for tables
and columns) and row level. This permits the management
of a fine-grained access policy for database objects. A proto-
type has been implemented and it has been used to improve
the security of Android Content Providers.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls

Keywords
Android, Database security, Mandatory Access Control

1. INTRODUCTION

One of the clearest trends of the past few years has been
the adoption by users of mobile portable devices, replacing
personal computers as the reference platform for carrying
out their daily activity.

The wide deployment of mobile operating systems has
introduced a number of challenging security requirements,
making explicit the need for an improvement of security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ACSAC ’15, December 07-11, 2015, Los Angeles, CA, USA
© 2016 ACM. ISBN 978-1-4503-3682-6/15/12... $15.00
DOL http://dx.doi.org/10.1145/2818000.2818041

technology. In the bring your own device (BYOD) scenario,
for example, the need to separate the user data from the
organization data is the core issue.

To achieve this goal, it appears crucial to assign a role
to Database Management Systems (DBMS). Beside access
and processing functionalities for defining, maintaining, and
accessing the data stored in a database, each DBMS pro-
vides different features to ensure data security. Whenever
a subject tries to access a data object, the access control
mechanism checks the rights of the user against a set of au-
thorizations, stated usually by the security administrator.

Unfortunately, current information systems often make a
limited use of database access control facilities and embed
access control directly in the application program used to
access the database. This choice derives from the perceived
difficulty in keeping the database users aligned with the user
population in the application and from the flexibility ob-
tained in the construction of the application thanks to the
absence of access control restrictions to the database. (Our
expectation is that this is going to change, but it will take a
long time.) The management of access privileges outside of
the database is instead the only available option in Android.
In fact, access to the data managed by the SQLite database
is controlled only at a level of service invocation by appli-
cations, relying on the Android Permission Framework in
conjunction with Content Providers. Although widely used,
this approach has several disadvantages, e.g., all security
policies have to be implemented into each of the applica-
tions built on top of the data.

To overcome this limitation modern DBMSs provide their
own authorization mechanisms in SQL which permit access
control at the level of tables, columns or views. Only few
DBMSs such as Oracle [1] and PostgreSQL [2] provide access
control at the level of single tuples.

However, they use a permission model that is similar to,
but separate from, the underlying operating system permis-
sions. The database administrator creates the users and
grants access permission to various database capabilities,
with the option to pass some of them to other users.

Mandatory access control (MAC) policies regulate ac-
cesses to data on the basis of predefined classification of sub-
jects and objects in the system. A subject is granted access
to a given object if and only if some order relationship, de-
pending on the access mode, is satisfied by the access classes
of the object and the subject. The use of MAC models pro-
vides a characteristic feature called system-wide consistency,
because all the access control decisions are guaranteed to be
compliant with the MAC policy.

The paper presents SeSQLite: a Security-Enhanced SQLite
database. SeSQLite uses the features provided by MAC
models to provide fine-grained access control at both schema
level (for tables and columns) and row level. This permits
the definition of fine-grained access policy for database ob-
jects.

Outline The paper is organized as follows. Section 2
provides an overview of functionalities provided by SQLite,
and introduces SELinuz describing the role of a MAC model.
Section 3 describes the challenges to integrate SELinux in
SQLite. Section 4 presents SeSQLite both at schema level
and at tuple level. In Section 5 we discuss SeSQLite imple-
mentation, the performance results and all the optimizations
introduced in order to reduce the overhead to a negligible
level. Section 7 illustrates how the use of SeSQLite can im-
prove the security provided by Android Content Providers.
Section 8 provides a comparison with previous work in the
area. Finally, Section 9 draws a few concluding remarks.

2. BACKGROUND

SQLite is an in-process library that implements an SQL
database engine. Unlike most other SQL databases, SQLite
does not have a separate server process. It offers high storage
efficiency, fast query operation, ACID transactions, small
memory needs and no setup or administration. A complete
SQLite database is stored in a single cross-platform disk file.

The core of the SQLite infrastructure contains the user
interface, the SQL command processor, and the abstract ma-
chine [3]. The user interface consists of a library of C func-
tions and structures to handle operations such as initializing
databases, executing queries, and looking at results. The
command processor acts exactly like a compiler: it contains
a tokenizer, a parser, and a code generator. Essentially, the
command processor outputs a program in an intermediate
language. The program is generated for an abstract machine
implemented in the SQLite library.

2.1 SELinux

SELinux is one of the most widely adopted implementa-
tions of Mandatory Access Control. It is also integrated in
Android since version 4.2.

SELinux policies are expressed at the level of security con-
text (also known as security label or just label). SELinux
requires a security context to be associated with every pro-
cess (or subject) and resource (or object), which is used to
decide whether access is allowed or not as defined by the
policy. Every request that a process generates to access a
resource will be accepted only if it is authorized by both the
classical DAC access control service and by the SELinux
policy. The advantages of SELinux compared to the DAC
model are its flexibility (the design of Linux assumes a root
user that has full access to DAC-protected resources) and
the fact that process and resource labels can be assigned
and updated in a way that is specified at system level by
the SELinux policy (in the DAC model, owners are able to
fully control the resources). SELinux uses a closed world as-
sumption, so the policy has to explicitly define rules to allow
a source (the process) to perform a set of actions on a target
(the resource). The rule also specifies the class of target on
which the rule has to be applied (e.g., file, directory). An
SELinux rule has the following syntax:

allow source_t target_t:class {actions};

3. CHALLENGES

Prior to our work, the challenges for integrating SELinux
and SQLite were manifold. To the best of our knowledge,
SeSQLite is the first work that shows an integration of a
Mandatory Access Control in SQLite.

In this Section, we describe the differences between
SQLite and modern RDBMSs, focusing on why the ap-
proaches used in modern RDBMSs are not compatible with
the SQLite design and how Android tries to mitigate these
limitations by the introduction of the Content Provider.

3.1 SQLite vs. Modern RDBMSs

Most large-scale database systems, like PostgreSQL and
Oracle, have a large server package that provides the full
database engine. A database instance consists of a large
number of files organized into one or more directories on the
server filesystem. In order to access the database, all of the
files must be present and correct. All of these components
require resources and support from the host such as dedi-
cated service-user accounts, startup scripts, and dedicated
storage.

In contrast, SQLite has no separate server. The entire
database engine library is integrated into the application
that needs to access a database. The only shared resource
among applications is the single database file. By elimi-
nating the server, a significant amount of complexity is re-
moved. This simplifies the software components and nearly
eliminates the need for advanced operating system support.
Unlike a traditional RDBMS server that requires advanced
multitasking and high-performance inter-process communi-
cation, SQLite requires little more than the ability to read
and write to the file system.

Beside access and processing functionalities, currently,
each RDBMS provides different features to ensure data se-
curity. Modern database systems use a permissions model
that is similar to, but separate from, the underlying operat-
ing system permissions. The database administrator grants
access permissions to various database capabilities. For ex-
ample, PostgreSQL provides a complete set of authorization
and authentication mechanisms.

SQLite, instead, is not a multi-user database, which
means that anyone who has direct access to the file can read
the database content. SQLite does not provide any kind of
access control mechanism, it only provides a few proprietary
extensions (e.g., database encryption).

3.2 Android and SQLite

In the Android platform, SQLite is used to manage sys-
tem and user databases storing several types of information,
like contacts, SMS messages, and web browser bookmarks.
The access to SQLite databases is mediated by Content
Providers. The Content providers are daemons that provide
an interface to the SQLite library, for sharing information
with other applications.

Android provides distinct security mechanisms at different
layers to protect the data inside a SQLite database. At
the application layer, the Android Permission Framework in
conjunction with Content Providers provides access control
to the data managed by the database but only at the level of
service invocation by applications (see Figure 1). The access
control model assumes that apps specify in their manifest
the set of privileges that will be required for their execution.

R — .
|
|
ot |0 i
|
|
[:
|
|
wp2 |2 > | Content |
| Provider | |
|
! I
' [
wps | 2> | |
|
|
' [

[
S — I

App 4 SQLite DB [
[

4

Figure 1: Content provider and SQLite interoperability.

Content Providers can also enforce permissions program-
matically: the Content Provider code that handles a query
can explicitly call the system’s permission validation mech-
anism to require certain permissions.

EXAMPLE 1. An app must hold the READ_CONTACTS
permission in order to execute READ (i.e., SELECT)
queries on the Contacts Content Provider.

At the Linux kernel level, Android provides both DAC
and MAC access control [4]. The former enforces security
by means of user identifiers (uid) and group identifiers (gid);
only the owner of the data (i.e., the Content Provider) holds
the r/w permissions on the file. The latter provides support
for the use of SELinux [5] into the Android operating sys-
tem. Both DAC and MAC are designed to provide protec-
tion against an attempt to directly access the database by
a process that it is not the Content Provider.

Due to the fact that SQLite is not a multi-user database
(i.e., anyone who has direct access to the file can read the
database content), the use of Discretionary Access Control
(DAC) alone as security mechanism is not adequate, because
significant weaknesses remain. For example, the granular-
ity of the DAC permissions is too coarse, and there is the
inability to confine any system daemons or setuid programs
that run with the root or superuser identity.

Due to these limitations, the file-level granularity provided
by DAC and MAC is not enough if we want to provide a fine
grained access control over SQLite databases. The introduc-
tion of SeSQLite improves the definition and enforcement of
the security requirements associated with SQLite databases.

4. RATIONALE OF THE APPROACH

Our proposal is to extend SQLite and integrate it with
SELinux in order to provide fine-grained mandatory access
control. By placing access control at the database level,
one can ensure that access control policies are consistently
applied to every user and every application.

This section discusses how the challenges described in the
previous section were overcome in SeSQLite in order to en-
able the use of SELinux in SQLite. Overcoming these chal-

lenges requires changes and new additions to the library, and
the creation of a new policy configuration.

4.1 The SeSQLite extension

SeSQLite was implemented as a SQLite extension to sat-
isfy the following requirements:

R.1 - Backward Compatibility SeSQLite is designed
to maintain backward-compatibility with common SQLite
databases (i.e., no modification to the SQL syntax);

R.2 - Flexibility SeSQLite is designed to provide every-
thing needed to successfully implement a Mandatory Ac-
cess Control module, while imposing the fewest possible
changes to SQLite. Moreover, it is designed to be easily
adapted to different implementation of MAC (e.g., SELinuz
or SMACK);

R.3 - Performance SeSQLite must keep negligible the
overhead on computational time and database size.

4.2 Access Control Granularity

As described in Section 3, in a SQLite database there are
two different types of SQL object, at different granularity:
the Schema Level and the Tuple Level (or Row Level).

In the following, the SQL statement compilation/execu-
tion workflow will be used as guideline and the introduction
of security extensions will be presented when needed.

4.2.1 Schema Level

All SQL statements must be compiled before their execu-
tion. The compilation process usually involves four phases:
(i) Syntaz check, (ii) Semantic check, (iii) Ezpansion and
(iv) Code generation.

The Syntax and Semantic checks control if the query can
be “interpreted” (e.g., all keywords are present, all table
names are spelled correctly). After these preliminary checks,
an expansion phase is usually needed. For example, the “*”
symbol is replaced with all the attributes’ name of the table,
the database that contains the table is selected.

The Syntax, Semantic checks and Expansion phase belong
to the parse phase. At the end of this phase all the tables
and attributes that have to be accessed are known and thus
we can verify whether a user can execute or not the query.

EXAMPLE 2. Consider a user who wants to perform the
following query (see Figure 2):

SELECT Type, Country, City FROM
Address WHERE Contact_ID=2;

The statement accesses three columns within Address table.
The Type, Country and City attributes appear in the target
list directly as a part of the query. The Contact_ID is used
in the WHERE clause.

Using this information, SeSQLite introduces a schema
check to control if the query is allowed (i.e., the user can
access all the tables and columns specified in the query)
according to the SELinux policy. An error is immediately
raised if the user does not have all the privileges to perform
the query. According to the SELECT statement in Exam-
ple 2, the user needs to hold at least the select privilege on
the Address table and on the Type, Country, City and Con-
tact__ID attributes. The same approach can be applied to
INSERT, DELETE and UPDATE queries.

SELinux requires a security context to be associated with
every process (subject) and object in order to decide whether

Contact Address
D Name Contact_ID Type Country City Street
1 Alice WORK | US Mountain View Landings Drive
2 Bob HOME \NUS San.Francisco Lembard: Street Legend
3 Carol WORK | US Mountain View Landings Drive
: \ Protected-Tuple
| 1
Fm—mmm—————— = b e e e e - -
| Profected Column
| Phone Email
1 i
Contact_ID Type Number Contact_ID Type Email_address Protected Table
1 WORK 555-0101 1 HOME |\ alice@home.com
2 HOME 555-0102 1 WORK | alice@work.org
3 WORK 5565-0103 2 HOME |\ bob@example:com

Figure 2: Example of a contacts database.

access is allowed or not as defined by the policy. To be com-
pliant with this approach, SeSQLite introduces a new inter-
nal table, named selinux__context, used to store the security
context associated with tables, views and attributes. For
security reasons, the selinux_context table can not be di-
rectly modified by the user with SQL commands. Section 5
discusses how the schema level contexts can be modified.

If the schema check is successful, the code generator pro-
duces virtual machine code, aiming at the lowest cost ex-
ecution plan, which will perform the work that the SQL
statement requests (see Figure 3).

4.2.2 Tuple Level

The code generated by the previous phase is executed by
an internal abstract machine, called Virtual DataBase En-
gine (VDBE). The abstract machine implements a computa-
tional engine specifically designed to manipulate databases.

The actions performed by the abstract machine can be
summarized as (i) access to a database table, (ii) loop over
each row, then (iii) clean up and exit. The loop is composed
by the load of data from an attribute of the current row and
their placement in a ResultRow, which represents the result
set of the query.

At tuple level the query is always “satisfied”. In fact, tuple
level access control performs as a filter that automatically
excludes any unaccessible tuple from the table scan. This
allows SeSQLite to process only the tuples that can be ac-
cessed by the user, according to the action requested.

One way to enforce this approach is to use authorization
view [1], but this could increase the cost and complexity of
application development. An alternative approach is to al-
low queries to be written against database relations, but to
modify the query by replacing the database relations with
the view of the relation that is available to the user. For
example, the Virtual Private Database (VPD) feature of
Oracle’s database server [6] implements fine-grained access
control using query rewriting. Essentially this can be com-
pared to automatically append conditions to a SQL query’s
WHERE clause as it executes, and dynamically changing
the result returned by the query.

EXAMPLE 3. Consider a user that wants to perform the
following query:

SELECT Type, Email__address FROM Email
WHERE Contact_ID=1;

If we do not introduce tuple-level checks the result will be
the following:

Type Email__address
HOME | alice@example.com
WORK | alice@example.org

However, if we consider the same query and we want to
enforce that a user can select only non protected tuples, with
query rewriting the query becomes:

SELECT Type, Email__address FROM Email
WHERE Contact ID=1 AND check_tuple();

The check__tuple() function checks if the tuple is protected
or not. The output of the query is the following:

Type | Email__address
WORK | alice@example.org

Query rewriting is the most common mechanism used to
provide fine-grained access control at tuple level because the
modifications are internal to the database and do not require
any adaptation at application level.

SeSQLite uses a modified version of traditional query-
rewriting. Due to the fact that SQLite does not provide a
multi-user database, the decision to allow or not the access
to a tuple should be taken using another piece of informa-
tion, i.e., the security context. At schema level the problem
of labeling is solved by adding an additional table used to
store the label associated with a table or an attribute. At
tuple level, the label is stored through the use of an extra
attribute added to each table, named security context. The
security__context column gives users a method to access the
security context of every tuple and allows the use of SELinux
in the access control mechanism.

Core SQL Compiler
Interface 2 Tokenizer
I] I
SQL Command Parser
Processor " EQS
schema checks
1 BN I
Virtual Machine
£ Code Generator
tuple checks

B-Tree
l Utilities
Pager
l Test Code
OS Interface
Backend Accessories

Figure 3: SQLite Architecture with SELinux checks.

This design gives us a characteristic feature called system-
wide consistency in access control, because all the access
control decisions are made by the SELinux security server
based on a single declarative policy.

S. IMPLEMENTATION

In this section we discuss the key aspects involved in the
implementation of SeSQLite. SeSQLite stems from SQLite
version 3.8.6' and will be released under an open source li-
cense as described in Section 11. The modifications to the
SQLite library meet the security requirements specified in
Section 4. They can be structured into the following activi-
ties: (i) initialize the security context in a SQLite database,
(ii) support for schema level check, (iii) support for row level
check, (iv) optimizations.

5.1 Extension Hooks

As explained before, in order to comply with R.2 - Flexi-
bility, we kept the changes to the SQLite library to the min-
imum, so we didn’t integrate the SELinux checks directly
in the SQLite code. As shown in Figure 4, we used some
already available extension hook and implemented some oth-
ers, so that our work can be used also by other extension to
accomplish different tasks.

The following hooks were already available:

sqlite3__set__authorizer provides a skeleton to perform
schema level checks as described in Section 5.3;

sqlite3__commit__hook (sqlite3__rollback__hook) reg-
isters a C function to be executed every time that a commit
(rollback) is performed; This hooks are used to empty the
security decision cache as discussed in Section 5.5.2

We also implemented the following new hooks:
sqlite3__create_ pragma registers a new PRAGMA in
the current SQLite session. The name of the created

LThis version is the one used in Android 5.1.0

PRAGMA cannot conflict with the other ones already reg-
istered (both the system ones and the custom ones);

sqlite3__before_ create__table__hook executes a C func-
tion before the creation of a table. This hook is used to
prepare the table for schema level checks;

sqlite3__after_ create__table__hook executes a C func-
tion after the creation of a table. This function is used to
finalize the modification applied to a just created table;

sqlite3__query__insert__hook executes a C function
during an INSERT operation;

sqlite3__query_ rewrite__hook executes a C function
during the compilation of a query appending a new “node”
(see Section 5.5) in the WHERE clause;

sqlite3__schemachange_ hook registers a callback func-
tion that is invoked every time a schema change occurs (e.g.,
ALTER and RENAME table);

sqlite3__set__xattr ()sqlite3__set_ xattr) set (get) an
extended attribute (e.g., the source security context).

Furthermore, we adapted the initialization process in or-
der to assign a security context to every object in the
database.

5.2 SeSQLite Security Contexts

SQLite follows the lazy loading pattern, which means
that the initialization is deferred until the user performs
a SQL primitive (e.g., create). Opening a database does
not trigger the initialization process. The initialization pro-
cess consists in the in-memory materialization of two tables;
sqlite_master and sqlite__temp__master. The former defines
the schema for the database (e.g., tables, views), the lat-
ter works just like sqlite__master except that it is meant for
temporary tables, indices and triggers. Both tables are read-
only. No one can change these tables using UPDATE, IN-
SERT, or DELETE. The tables are automatically updated
by CREATE and DROP commands.

As explained in Section 4, the row level security context
is maintained using a persistent attribute in each table. To
maintain a label mapping for the schema level that is com-
pliant with R1 - Backward Compatibility and R2 - Flexibil-
ity, we must not change either the SQL syntax understood
by SQLite [7], or the file format [8]. A new “internal” ta-
ble named selinuz__contezt has been introduced. This table
works like the sqlite_master, maintaining the labels regard-
ing all the SQL “schema” objects in a database. Table 1
shows an example of the selinuz_context content.

The label mapping is initialized during the in-memory
materialization process using PRAGMA statements. The
PRAGMA statement is a SQL extension specific to SQLite
and used to modify the behavior of the SQLite library or to
query the SQLite library for internal (non-table) data. The
PRAGMA statement is issued using the same interface as
other SQLite commands (e.g., SELECT, INSERT). Specific
PRAGMA statements were implemented in SQLite on an as-
needed basis, through the use of the sqlite3 create_pragma
hook. Due to space constraints we do not describe the
PRAGMA statements added by the SeSQLite extension.

5.2.1 SQL objects labeling

A configuration file, named sesqlite__contexts, was intro-
duced, to assign an initial contexts to SQL objects.

The items in the sesqlite_contexts file declare the security
contexts applied to databases, tables, views, columns and
tuples when the database is initialized. The file uses regular

security__context

database _name | table_ name

column__ name

wr:db_data_table t:s0 main
wr:db_data_column_t:s0 | main
wr:db data column t:s0 | main
wr:db_data_ column_ t:s0 | main
wr:db_data_ column_ t:s0 | main
wr:db data column t:s0 | main

sqlite__master | -
sqlite__master | type
sqlite__master | name
sqlite__master | tbl_name
sqlite__master | rootpage
sqlite__master | sql

Table 1: Table used to store selinux contexts for schema objects.

Class regex security__context
db_database * w:r:sqlite__db__t:s0
db__table * Email | wr:db_data_ table_t:s0
db_view * ¥ wr:db data view t:s0
db_column * Email.* | wir:db_data column_ t:s0
db__tuple * ¥ wr:db__data_ tuple_ t:s0

Table 2: Snippet of sesqlite_ contexts file.

expression (regexp) to match for example a database, a table
or a set of tables with a specific SELinux label (Table 2
shows an example). The rule used to match an element is
the “most specific takes precedence”.

SeSQLite has a namespace hierarchy where a database is
the top level object, followed by tables and then columns.
This hierarchy is supported as follows (Table 2 shows an
example af an sesqlite__contexts file):

db__database is used to specify the security context for
database objects. Due to the fact that databases are
the top level object, the pattern to match is composed
by one element, the database name.

db__table is used to specify the security context for table
objects. The pattern to match is composed by two el-
ements. The former is used to identify the database
name and the latter is used to identify the name of the
table. In Table 2 the meaning of line 2 is the following:
“the security context associated with the Email table
contained in any database is u:r:db__data__table_ t:s0".
The same approach is used to assign the security con-
text to view objects;

db__column is used to specify the security context for col-
umn objects. Here, the pattern to match is defined by
three elements. First the database name, second the
table name and third the column name. In Table 2
row 4 means: “in any database, all the columns of the
Email table are labeled as u:r:db__data__column__t:s07;

db__tuple is used to specify the security context for tu-
ple objects. The syntax is similar to the one used by
db__table. The pattern to match is composed by two el-
ements. The database name and the table name. This
means that all the tuples inserted in a table will be
assigned the specified default security context.

5.3 Schema level

Every SQL statement must be compiled into a VDBE
program before its execution using either sqlite3 prepare or
sqlite3_prepare_v2.2

2In the remaining of the document we will focus our analysis
only on sqlite3__prepare_v2, however all the considerations
done for this function can be extended to the others.

Size Overhead

SQLite 5123 KiB -
SeSQLite (schema level) 5127 KiB +0.08%
SeSQLite (row level) 5254 KiB +2.56%
SeSQLite (full) 5256 KiB +2.6%

Table 3: Size comparison between SQLite and SeSQLite
based on 50000 INSERT.

To implement the approach showed in Section 4 an autho-
rizer callback was implemented via sqlite3 _set _authorizer.
At various points during the compilation process the au-
thorizer callback is invoked to see if those actions are al-
lowed. The authorizer callback should return SQLITE_ OK
to allow the action, SQLITE_IGNORE to ignore the spe-
cific action but allow the SQL statement to continue to be
compiled, or SQLITE__DENY to cause the entire SQL state-
ment to be rejected with an error. The workflow followed
by the authorizer is the following: (i) initialize the addi-
tional in-memory structure (ii) retrieve the security context
associated with the SQL object, (iii) decide if the user has
the privilege to access the SQL object and (iv) clean the
in-memory structure and exit.

The first step is used to initialize all the additional struc-
tures that will be used during the evaluation of the query.
For example, due to performance reasons we implemented a
user-space access vector, see Section 5.5.2.

The second step permits to retrieve the security context
associated with the tables or attributes used in the query.
As explained in Section 4, this information is stored in an
“internal” table. More specifically, we implemented the se-
curity__context table as a Virtual Table.

From the perspective of an SQL statement, the virtual
table object looks like any other table or view. But, queries
and updates to a virtual table invoke callback methods on
the virtual table object, instead of reading and writing to
the database file. The virtual table mechanism allows an ap-
plication to publish interfaces that are accessible from SQL
statements as if they were tables. SQL statements can in
general do anything to a virtual table that they can do to
a real table, with few exceptions (e.g., it is not possible to
create a trigger on a virtual table).

In this way we can provide both low latency access to the
security contexts and persistence. The former is achieved
using an in-memory data structure, i.e., a hash table, filled
during the initialization process. To comply with require-
ment R.1 - Backward Compatibility, we used a real table to
store the mapping between tables/attributes and security
contexts. Table 3 shows the memory overhead, in terms of
size, introduced by the security_context table.

In the third step the information retrieved by the previous
steps is sent to the SELinux security server to be checked.

When sqlite3 _prepare_v2 is used to prepare a state-
ment, this might be re-prepared during sqlite3 step due to
a schema change. sqlite3 step function is called multiple
times at execution time. SeSQLite ensures that the correct
authorizer callback remains in place during all these steps.

5.4 Tuple level

The approach used to implement tuple-level checks dif-
fers from the one used at schema-level for obvious reasons.
It is unfeasible to create an additional table to maintain
the mapping between each tuple and its own security con-
text. Hence, we decided to add a column to each table
in order to directly store the security context within the
tuple. The hooks sqlite3 before create_table hook and
sqlite3__after create_table _hook have been created to im-
plement this mechanism.

As explained in Section 4, query rewriting is a powerful
mechanism to enforce tuple-level access control, but not all
the SQL actions can be controlled using this strategy. For
example, we cannot rewrite an INSERT query for two rea-
sons: (i) to be compliant with requirement R.1 - Backward
Compatibility (i.e., do not modify the INSERT statement
with the addition of new “constructs”) and (ii) the INSERT
syntax does not allow the use of a WHERE clause, thus we
cannot append a constraint that enforces the access control.

The sqlite3 _insert_hook has been implemented to over-
come this limitation. It registers a callback function that is
invoked prior to each INSERT operation. This way we can
perform access control and add the right security context.

For the others actions, such as UPDATE, DELETE and
SELECT we used a query rewriting strategy. Due to perfor-
mance overhead two different query rewrite approaches was
proposed and evaluated (see Section 6.1).

selinux__check _access SQL function The first approach
used to implement the query rewrite is based on a cus-
tom SQL function, named selinux_check access. It
represents a wrapper of the namesake function exposed
by the SELinux library. This function is appended to
the where clause, checking for each row if the process
that is executing the query has the requested access
on each tuple (based on its security context);

SQL IN operator The second approach leverages the use
of the SQL “IN” operator. The idea is that given
a specific action (e.g., select, update) SeSQLite com-
putes the set of security context used in the database
for which the process has the requested access. The
allowed security contexts are enclosed in an “IN” op-
erator which is appended to the where clause. Under
specific circumstances this approach is faster than the
previous one (see Section 6.1 for more details).

5.5 Optimizations

In order to comply with the minimal overhead require-
ment expressed in R.3 - Performance we introduced some
optimizations in the code. Here we discuss the most inter-
esting ones.

5.5.1 Context Translator

The performance overhead imposed by our checks can be
further lowered using integers to identify security contexts
instead of strings. The benefit of this change is twofold:

(Process)

«SQL
« Context

Result Set

selinux_check
_access

SQLite

SQLite
Database

extension
hooks

SELinux
Security Server

L

SeSQLite Context SELinux AVC
Checks Translator
[T bt
M~ —1
SeSQLite AVC Policy Database
N ——
SeSQLite Extension SELinux
SeSQLite Linux Kernel

Figure 4: SESQLite architecture overview.

e Reduces the SeSQLite memory footprint which, as
shown in Table 3, is mostly attributable to the ad-
dition of the extra security context column to every
table used to perform row level access control;

e Minimizes the performance overhead reducing the key
size in the SeSQLite AVC that will be discussed in
Section 5.5.2.

The Context Translator stores the mapping between the
integer id and the security contexts that it represents. All
the internal operations are performed on the ids, but when
SeSQLite needs to talk to the outside world (e.g., initializa-
tion of the security contexts from the sesqglite_contezt file),
the context translator provides and stores the correct trans-
lation.

When a translation is not available, the context translator
is responsible to assign a new id to the security context and
make the mapping persistent. In order to comply with R.1
- Backward Compatibility, the table selinuz_id keeps the
mappings in the database file. Any modification to this
table is denied by the authorizer except the modifications
coming directly from the translator itself.

5.5.2 SeSQLite Access Vector Cache

The SELinux security server can be queried using the sys-
tem call selinuz_check _access, which checks whether the
source context has the access permission for the specified
class on the target context. The SELinux architecture em-
beds an access vector cache (AVC) component that caches
the access decisions already computed based on the policy
database. The AVC minimizes the performance overhead of
SELinux access control. [9]

Nevertheless, when SeSQLite invokes the in-kernel SELinux
security server, it needs to perform a context switch, which is
a heavy operation. So, it is crucial to minimize the number
of system call invocations in order to reduce the performance
overhead given by the additional security checks. This is es-
pecially true in row level access control. A single query can
fetch a substantial number of tuples so, without additional
measures, we may invoke a system call for each row.

source target class | permission

12 bits 12 bits 3 bits 5 bits
Figure 5: 32 bit integer used as dictionary key.

In a common SELinux policy, a sizable number of objects
tend to share a small number of security contexts. When the
combination of security contexts and action is the same, the
equal result shall be returned, so we can cache the decisions
in a user-space SeSQLite AVC, which, using the security ids
in place of the security contexts, will also reduce the perfor-
mance overhead. When the result is not already cached by
the SeSQLite AVC, SeSQLite uses the Context Translator to
map the security id to their counterparts before invoking the
system call selinuz__check__access. The experimental result
of introducing the SeSQLite user-space AVC is described in
the following table.

user space (ns)
1828 (0 = 2.42)
0.24 (0 = 0.18)

kernel space (ps)
1825 (o = 2.76)
28.96 (o = 1.87)

cache miss
cache hit

In order to further compress the key used in the hash ta-
ble, we decided to store the quadruplet composed by source,
target, class and permission in a single 32-bit integer com-
posed as shown in Figure 5.

Using this compression it is still possible to use 4096 dif-
ferent sources and targets, 8 classes and 32 permissions. At
the time of writing the SELinux reference policy [10] defines
6 classes and 21 permissions (of which only 4 classes and 10
permission and relevant for the case of a simple database
such as SQLite).

The SeSQLite AVC is cleared after each SQL primitive
execution. In this way we can guarantee the correctness of
transactions. In fact, without an internal caching mecha-
nism the access level of the process might be changed in the
policy while a query is being executed, producing a result
set with an inconsistent access level.

6. EXPERIMENTAL RESULTS

One of the most appreciated features of SQLite is its per-
formance. This is particularly crucial since SQLite plays
a central role in some modern operating system (e.g., An-
droid). So, a clear requisite of a SQLite extension is to have
minimal overhead in terms of performance.

A performance test suite named speedtest! [11] is already
included in the SQLite source tree to benchmark the library.
The speedtest! utility is composed by some common and
uncommon SQL operations. They span from simple a SE-
LECT to a four-ways JOIN.

For the evaluation of the performance impact of the tech-
niques presented in this paper, we executed a series of ex-
periments based on this utility comparing the base SQLite
library with both an optimized version of SeSQLite and a
non-optimized one. The most important optimizations are
described in Section 5.5. The experiments were run on a
PC with Intel i7 3.4GHz/L3-4MB processor, 16GB RAM,
240GB SSD and Fedora 21 3.

3See section 11 on how to obtain the performance evaluation
on Android devices.

El SeSQlite (100 contexts)
I SeSQLite (2 contexts)]
6|3 sqLite I
0.5 I
_o0.4f
o
£
= 03f
02}
) HHH HHH
AL bl L
OOOOONWOOHOOOOOOOOOOOOOOOO
O -H N MT T T 1N OO~V AHMST D OO O - N 0 O
o A A A A A A A A A A A NN NN NN NNMMNM MO
Figure 6: Comparison of the CPU time overhead be-

tween the base SQLite library and the optimized version
of SeSQLite (avg. result of 100 speedtest! run).

time overhead

SQLite 5.846s —
SeSQLite (2 contexts) 6.132s +4.8%
SeSQLite (100 contexts) 6.741s +15.3%
SeSQLite no-opt 13.052s +123.23%

Table 4: Total CPU time and overhead for the test suite
speedtest] executed using SQLite and SeSQLite.

Table 4 shows the comparison between SQLite and both
non-optimized and optimized version of SeSQLite. The non-
optimized version shows a significant overhead (4123.23%),
while the optimized version shows a minimized overhead
ranging from (+4.8%) using 2 security__contexts to (+15.3%)
using 100 security contexts.

The test presenting the biggest overhead is the 310, which
is a four-ways join. We have to check the access privileges
for four tables, but the overhead is still reasonable*.

Figure 7 shows the overhead introduced by the basic SQL
operations in SeSQLite. The overhead remains negligible
even when the number of tuples grows.

6.1 Query rewriting comparison

As discussed in Section 5.4, we implemented two differ-
ent types of query rewriting to deal with tuple level access
control: (i) the use of selinuz__check__access, (ii) the use of
SQL IN operator. We evaluated the overhead imposed by
the different approaches when used with speedtest! and the
findings are shown in Figure 8. On one hand, it is clear
that the overhead imposed by the selinuz_check access ap-
proach remains fixed even in the presence of a bigger number
of different security contexts loaded in the database. The
selinux__check__access function is computed for every tuple
at query run time, so the overhead depends on the number
of tuples but not on the number of security contexts.

On the other hand, the SQL IN operator has to creates a
list of accessible security contexts and check if the one as-
signed to each tuple is contained in it. While this approach
only has to perform SELinux checks when building the list

iThe pairing between the test ids can be found in the
speedtest! utility [11].

450ms INSERT

400ms|| [SeSQLite
350msH] sQlLite
300ms|
250ms|
200ms|
150mst-
100ms}
50ms -
Oms

40ms SELECT

35ms}| EEE SeSQLite
30ms|| [SQLite
25mst
20mst
15msp
10msp
5msf

Oms

70ms UPDATE

60ms| | EEE SeSQLite
s0ms|| — SQLite

40ms|
30mst
20ms|-
10msp

Oms

45ms DELETE

40ms| [SeSQLite
35msr| [SQlLite
30mst
25mst-
20mst
15ms|
10msp
5msf
Oms

\90000
tuples

Figure 7: Comparison of the CPU time overhead be-

tween the base SQLite library and the optimized ver-

sion of SeSQLite during INSERT, SELECT, UPDATE and

DELETE operations.

at compile time, the overhead depends on the number of se-
curity contexts in the “IN” operator (the bigger the list, the
more time spent on checking the tuple’s security context in-
clusion). A significant overhead gap emerges between 7 and
8 security contexts (due to the fact that the data structure
that contains the list needs to be resized).

In order to minimize the global SeSQLite overhead, at
compile time we build the list for the SQL IN approach, but
when the list grows over the 7th element, we switch to the
selinuz__check__access approach. This allows SeSQLite to
always benefit from the best approach, keeping the overhead
to a mere ~ 5% when the number of security contexts is low
(the usual case) and to limit it at ~ 13% when the number
of security contexts grows.

7. ANDROID INTEGRATION

We now provide a description of the challenges to enable
the concrete use of SeSQLite in Android. The system has
been implemented extending version 3.8.6 of SQLite and
version 5.1.0 of AOSP.

The current SQLite implementation for Android spans dif-
ferent levels of the Android stack. At the Application Frame-
work level, the SQLiteDatabase class provides access to the

SQLIN selinux_check_access
4

_e--o -0
15%| o-® |

o -g

0000 0o &

10%

overhead

5%

& < selinux_check_access
@ - SQLIN clause
— SeSQlite

o : i = 20
number of db_tuple contexts in the database

Figure 8: Comparison of the two query rewriting approaches

presented in Section 5.4. When the number of SELinux

contexts in the database is small, the SQL IN operator is

used, otherwise the selinuz__check__access function is used.

centralized Java Native Interface (JNI) bindings for SQLite
interaction. The android_database_SQLiteConnection.cpp
file is the JNT bridge. At the Libraries level, SQLite consists
of the libsesglite library, described in Section 5.

7.1 SQLiteDatabase

SQLiteDatabase is the base class for working with a
SQLite database in Android and provides methods to open,
query, update and close the database. If an app or a Content
Provider wants to access a SQLite database it has to instan-
tiate the SQLiteDatabase class and to use it to manage the
database. Although in the current scenario this is enough
to use SQLite, for the use of SeSQLite the security context
of the caller is also needed.

This information cannot be retrieved by the library itself
because, the library has the same context of the process
that loaded it. This means that if we use this approach in
the Content Provider scenario we will retrieve the security
context associated to the Content Provider itself instead of
the one associated to the app that issued the query. For
this reason, a modification of the SQLiteDatabase class was
needed. We introduce the SESQLiteDatabase class which
allows to retrieve the security context of the caller process,
both if the class is instantiated by a Content Provider or
directly by a an app.

The SESQLiteDatabase class retrieves the security con-
text of the caller by using (i) the Binder.getCallingPid() if
the binder IPC is direct, or passed by other intermediate
components in order to get the PID of the caller and then
(ii) using the SELinuz.getPidContext() to retrieve the secu-
rity__context assigned to the process with that PID.

7.2 SeSQLite and Policy modularity

According to the approach used to assign security con-
texts to third party apps, SeSQLite assigns, during creation,
to each tuple a default security context based on the infor-
mation contained in the sesqglite contexts file.

Although this approach brings several advantages, in
emerging scenarios it suffers of several limitations. For ex-
ample, we cannot distinguish tuples belonging to different

users and/or environment if we enable Android for Work. In
fact, in the current implementation of Android (5.1.1), the
management of different users and environment is done at
application level. Android maintains a copy of each database
(e.g., contacts list, download, bookmark) for each user/en-
vironment and the security mechanisms are provided by the
Content Providers in conjunction with the DAC model, due
to the fact that at SELinux level the different databases are
assigned to the default security context. This is a signifi-
cant limitation, since apps can get a concrete benefit from
the specification of their own policy [12, 13, 14].

A step ahead in the direction of policy customization is
represented by Android M. In the M release each user is
assigned to a specific category building a Multi Category Se-
curity (MCS) model. MCS works like the DAC extended
attributes. Users are assigned to categories and can apply
these categories to their discretion to content that they own.

The introduction of categories brings several advantages
in terms of flexibility. In Android M, through the categories,
each user run apps with a distinctive security context, so
SeSQLite labels the SQL objects differently per each user.
With a single database file, through the use of SeSQLite the
access can be customized per user in the policy. SeSQLite
represents a step forward in this long-term vision.

8. RELATED WORK

SE-PostgreSQL [2] is a built-in enhancement of Post-
greSQL, that provides additional access controls based on
Security-Enhanced Linux (SELinux) security policy. This
work inspired SeSQLite and guided its implementation. SE-
PostgreSQL permits access control on both schema level and
row level. Even if the objective is similar, the architecture
is different. PostgreSQL is a real DBMS, with a dedicated
process running in isolation, while SQLite is a server-less
in-process library. For this reason the security constraints
are different and this has a big impact on the implemen-
tation of the solution. For example, in PostgreSQL every
element (e.g., tables, columns, tuples) is stored in the cata-
log jointly with its characteristics and a unique object-id. In
order to label each object with its security context, a single
additional column to the catalog is needed. Another archi-
tectural difference is that SeSQLite has been implemented
as an extension that can be plugged into SQLite when re-
quested, with limited changes on the base source code.

9. CONCLUSIONS

Security is correctly perceived, both by technical experts
and customers, as a crucial property both of desktop and of
mobile operating systems. The integration of SELinux into
SQLite is a significant step toward the realization of more
robust and more flexible security services.

The attention that has been dedicated in the SELinux ini-
tiative toward the protection of system components is under-
standable and consistent with the high priority associated
with the protection of core privileged resources. Our ap-
proach is the natural extension of that work. It is to note
that this design does not require to adapt applications that
access the database. The approach can be considered an ap-
plication of the “defense in depth” security principle, with
a reduced criticality of the Content Provider, because the
database itself is able to enforce security mechanisms.

The extensive level of reuse of SELinux constructs that
characterizes the language demonstrates the flexibility of
SELinux and facilitates the deployment of the proposed solu-
tion. The paper shows that the potential for the application
of SELinux associated with SQL objects is quite extensive.

10. ACKNOWLEDGMENTS

This work was partially supported by a Google Research
Award (winter 2014), by the Italian Ministry of Research
within the PRIN project “GenData 2020” and by the EC
within H2020 under grant agreement 644579.

11. AVAILABILITY

In the spirit of open science and open source, additional
documentation and the SeSQLite source code are available
at http://unibg-seclab. github.io.

12. REFERENCES

[1] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and
Prasan Roy. Extending query rewriting techniques for
fine-grained access control. In Proceedings of the 2004
ACM SIGMOD, SIGMOD ’04. ACM, 2004.

[2] K Kohei. Security Enhanced PostgreSQL, 2013.

[3] SQLite - The Architecture of SQLite.
http://sqlite.org/arch.html .

[4] Stephen Smalley and Robert Craig. Security
Enhanced (SE) Android: Bringing Flexible MAC to
Android. In Network and Distributed System Security
Symposium (NDSS 13), 2013.

[5] Frank Mayer, Karl MacMillan, and David Caplan.
SELinux by Example: Using Security Enhanced Linux
(Prentice Hall Open Source Software Development
Series). Prentice Hall PTR, NJ, USA, 2006.

[6] Kristy Browder and Mary Ann Davidson. The virtual
private database in Oracle9iR2. Oracle Technical
White Paper, Oracle Corporation, 500, 2002.

[7] SQLite - SQL As Understood By SQLite.
https://sqlite.org/lang.html .

[8] SQLite - The SQLite Database File Format.
https://sqlite.org/fileformat.html .

[9] Stephen Smalley, Chris Vance, and Wayne Salamon.
Implementing SELinux as a Linux Security Module.
NAI Labs Report, 1(43):139, 2001.

[10] SELinux Object Classes and Permissions Reference.
http://selinuxproject.org/page/ObjectClassesPerms#
Database_ Object_ Classes .

[11] SQLite - speedtestl. http:
//www.sqlite.org/src/finfo?’name=test /speedtestl.c .

[12] Enrico Bacis, Simone Mutti, and Stefano Paraboschi.
AppPolicyModules: Mandatory Access Control for
Third-Party Apps. In Proceedings of the 10th ACM
Symposium on Information, Computer and
Communications Security, pages 309-320. ACM, 2015.

[13] Simone Mutti, Enrico Bacis, and Stefano Paraboschi.
Policy Specialization to Support Domain Isolation. In
Automated Decision Making for Active Cyber Defense
(SafeConfig15-ACD). ACM, 2015.

[14] Simone Mutti, Enrico Bacis, and Stefano Paraboschi.
An SELinux-based Intent manager for Android. In
IEEE Conference On Communications and Network
Security, Florence, Italy, September 2015.

