
An HW/SW Co-design Environment based on
UML and SystemC

Elvinia Riccobene

Università di Milano
Dip. Di Tec. dell’Inf.

 Bramante 65, Crema, Italy
riccobene@dti.unimi.it

Patrizia Scandurra

Università di Catania
Dip. Di Mat. e Inf.

A. Doria 6, 95024, Catania, Italy
scandurra@dmi.unict.it

Alberto Rosti and Sara Bocchio
STMicroelectronics Lab R&I

C.d.Colleoni 20041 Agrate, Italy
{alberto.rosti,sara.bocchio}@

st.com

ABSTRACT
This paper outlines some fundamental concepts for the development of a system design framework based
on standard notations and common CASE tools. We describe an environment for HW/SW co-design of
embedded systems based on the Unified Modeling Language (UML) and SystemC. Taking advantage
from the capabilities provided by widely used UML tools, this environment provides code generation for
co-design of hardware and software.

1. INTRODUCTION AND RELATED WORKS
System level design flow for System on Chip (SoC) starts by writing the system specifications and
developing a functional model from them. The system is refined through a set of abstraction levels,
towards a final implementation in hardware and software. Nowadays it is an emerging practice to develop
the functional model and refine it with the SystemC language [7]. The hardware part of the system goes
down to the RTL level for the synthesis flow, while the software part, can be either simulated at high level
(functional or transactional) or it can be compiled for an Instruction Set Simulator (ISS).
In our opinion a further improvement to this design flow can be achieved by extending lightweight
software modeling techniques as UML [9] to describe the system specification and to generate from it an
equivalent description in SystemC. In this paper we present an UML profile for SystemC that, integrated
in an UML tool, provides a schematic entry for SystemC by UML diagrams. Moreover, we included it in a
whole framework that allows to model hardware, which is implemented in SystemC, and software, which
can be simulated by an ISS within the GEZEL co-simulation environment.
A lot of research activity has been focused on analyzing the possibility to extend UML to embedded
system design: [10] and [6] define an UML profile and analyze the existing features from the UML
standard that can be useful in order to model embedded real time applications. In [2] a specialization of
UML is presented to express embedded real-time applications in an abstract way. [1] defines an UML
Profile for SystemC, but no code generation capabilities for behavioral information are considered.
Moreover all of these proposals are based on the old versions of UML (the so called UML 1.x).
In [5] the authors provide an analysis about the structural modeling concepts in UML 2.0, which has
added structural information such as class and structured class. In August 2004 IBM, Fujitsu and NEC
submitted to the Object Management Group a proposal of standardization for an UML profile for SoC
based on UML 2.0 and on SystemC as a target language. There are evident commonalities between this
proposal and our approach, but there are also significant differences because our profile is isomorphic to
SystemC while the IBM/Fujitsu/NEC proposal introduces new constructs for SoC modeling that are not
present in SystemC. Moreover, this profile leaves the SystemC methods empty, while our approach uses
UML state diagrams to describe those behavioral parts.
In section 2 we describe the main concepts of our design framework, section 3 and 4 gives respectively
more details about the UML profile for SystemC and the encapsulation of GEZEL environment and
section 5 draws some conclusions about the fundamental concepts that inspired this work.

2. THE DESIGN ENVIRONMENT
In order to develop our system design environment, we decided to rely on tools supporting UML 2.0, since
only these tools provide the features needed to model the system structure, such as classes with ports
communicating through interfaces and composite structure diagrams. Using such UML tools adds the
capability to model the system using a diagrammatic UML representation and to perform code generation.
Our current implementation is based on Enterprise Architect [3] but any other tool supporting UML 2.0
can also be easily used.
To allow using UML for HW/SW co-design, we start extending UML by a profile for SystemC [13] that
allows expressing a SystemC model in UML. A profile is a standard mechanism for extending UML by
adding a collection of domain specific notation made of stereotypes, tagged values and constraints, all
with the proper semantic. We added the capability to generate SystemC code from the UML model. This
feature can be obtained either by customizing the scripting generation capabilities of the UML tool or by
exporting the model in XMI format and generating the SystemC code from it. We choose the last approach
since it is more general. A SystemC code generator specific for Enterprise Architect has been developed
in a reasonable effort. An important note about our environment is that it allows the complete description
of the behavior by a proper action semantics that allows to express SystemC operation within the state and
arcs of the enhanced state machine of diagrams.
We need also to map hardware and software parts to different implementation paths. Starting from the
UML description, the hardware parts are described in SystemC profile, while the software parts can be
described either in SystemC profile at functional or transactional level, or in C that can be executed on an
ISS for cycle or instruction accurate simulation. We have chosen the GEZEL [4] tool as a cycle accurate
cosimulation framework in our design framework because it allows to encapsulate different ISSs and to
cosimulate in the SystemC environment. Since Gezel is a multiprocessor simulation environment, this
tools allows us to build an unique interface between Gezel (that maps the software part on different
processors) and the SystemC description of the hardware part rather than building a SystemC interface for
every ISS that is used in the design.
Extension of the profile to include the SystemC Verification Library is also under development. Another
ongoing activity is the development of the reverse engineering part from SystemC to UML.

3. UML PROFILE FOR SYSTEMC
This section introduces a model-driven SoC design flow based on the UML 2.0 [9] and SystemC [7] as
system-level design languages, exploiting the Model Driven Architecture (MDA) [8] framework.
Through metamodels, the MDA framework provides a mechanism to define modeling languages in an
unambiguous way and to make the languages and the models written in these languages understandable to
transformation tools. A metamodel is a precise definition of the constructs and rules needed for creating
semantic models in a given language. The transformation rules, conforming to a (not always trivial)
transformation definition, describe how a model in a source language can be transformed into a model in a
target language by the metamodels.
A UML profile is a set of stereotypes each of which defines how the syntax and the semantics of an
existing UML metaclass are extended for a specific target domain. A stereotype can define additional
constraints expressed as formula in the Object Constraint Language (OCL) over its base metaclass as well
as tags to state additional properties.

3.1 The UML Profile for SystemC
The UML profile for the SystemC language is based on the UML 2.0 specification [9] and on the SystemC
2.0 specification [7]. The profile definition is organized in four parts which reflect the SystemC language
architecture:
1. The SystemC CORE layer: structure and communication defines stereotypes for the primitive

building blocks of the core layer (or layer 0) of SystemC. They are used in various UML structural

diagrams (such as UML class diagrams and composite structure diagrams) to represent hierarchical
structures and communication blocks made of modules, interfaces, ports and channels.

2. The SystemC CORE layer: data types defines a UML class library for representing the set of SystemC
data types.

3. The SystemC CORE layer: behavior and synchronization part defines stereotypes which lead to a
variation of the UML method state machines, the SystemC Process State Machines [12], to allow high
level specification of the behavior of SystemC processes (methods and threads) within modules and
channels.

4. The SystemC layer of predefined channels, ports and interfaces provides concepts for the layer 1 of
SystemC. These concepts are implemented both as a class library, built with the basic group of
stereotypes of the SystemC core layer, and as a group of standalone stereotypes – the extended SystemC
profile – which specialize those defined for the SystemC core layer.

Figure 1 UML notation for SystemC concepts

Figure 2 A Thread Process pattern

The complete UML profile definition for SystemC can be found in [11]. In Fig. 1 we report the most

significant stereotypes elements of the SystemC core profile. The figure is split in two parts: the first part shows
the core layer stereotypes used in UML structural diagrams (like class diagrams and composite structure
diagrams) to represent the hierarchical structure of a SystemC specification. The second part shows the core layer
stereotypes used in UML behavioral diagrams (such as UML method state machines) to model the functionality
expressed by processes in a SystemC specification. The processes are the basic unit of execution in SystemC, and
they provide the mechanism to simulate concurrent behaviour. Methods, threads and clocked threads are the
processes available in SystemC and they have different behavior, but basically all processes: (i) run concurrently;
(ii) are sequential, and not hierarchical, i.e. no process can call another process; (iii) are activated on the base of
their own static sensitivity, which consists of a list of some designated events and can dynamically change at run
time realizing the so called dynamic sensitivity mechanism.

To model the behaviour of reactive processes of SystemC, we exploit the UML 2.0 method state machine, i.e.
a state machine that specifies the procedure or algorithm for a behavioural feature (such as a class’s operation)
and reacts to specific events occurrences. We defined a new graphical formalism [12], called SystemC Process
State Machine, which allows high level specification of the functionality of SystemC processes, and generation

of efficient and compact executable SystemC code from the UML model. Moreover, for a SystemC process we
distinguished different behavior cases on the base of the process sensitivity, the process initialization, and the
process termination. Every SystemC process matches a specific abstract behavior pattern, where “abstract”
denotes that the pattern, and therefore the state machine associated to the pattern, may be refined to add further
details depending on the specific functionality of the process. Fig. 2 depicts one of these behavior patterns. It
corresponds to a thread process which: (i) has both a static (the event list e1s, . . , eNs) and a dynamic sensitivity
(the state WAITING FOR e*), (ii) runs continuously (the infinite while loop), and (iii) is not initialized.

4. GEZEL ENCAPSULATION
GEZEL is a language and open environment developed in UCLA [4, 14] for exploration, simulation and
implementation of multiprocessor system on chip and embedded hardware.
A specialized language allows the representation of the micro architecture of domain-specific processors. GEZEL
uses cycle-true semantics with dedicated modeling of control structures (FSMD). The simulation back-end is an
open C++ library that enables easy integration of GEZEL into different host environments. GEZEL has two
different cases of use: as a standalone environment, it works as a hardware exploration environment, and, when
linked with an instruction-set simulator, it becomes a co-design environment.
Several co-simulation interfaces are available to different instruction-set simulators as well as to SystemC: this is
the main feature that makes GEZEL suitable as component in our flow. GEZEL can simulate a C-compiled code
on the ISS independently of the rest of the application which can be written in a pure SystemC code. This means
that the UML generation of C/SystemC will be independent from GEZEL environment. A SystemC interface has
been developed by Gezel’s authors on our specific request so that it can be used in our environment.

5. CONCLUSIONS
We think that the design of a CAD enviroment should be based on standard notations so to exploit existing tools
and frameworks. The Soc design approach that we present in this paper combines together a liteweigth method
(UML), a coding language (SystemC) and a HW/SW cosimulation environment (GEZEL) and allows building up
a seamless environment exploiting the capabilities of all these notations sinergically.

6. REFERENCES
[1] F. Bruschi and D. Sciuto. A SystemC based Design Flow starting from UML Model. In Proc. of ESCUG ’02.
[2] R. Chen, M. Sgroi, L. Lavagno, A. S. Vincentelli and J. Rabaey. UML And Platform Based Design. In UML

for Real design of Real-Time System. Kluwer Academic Publisher, 2003.
[3] The Enterprise Architect Tool. http://www.sparxsystems.com.au/
[4] The GEZEL Design Environment. http://www.ee.ucla.edu/~schaum/gezel/
[5] S. Gerard and F. Terrier. UML for Real-Time In UML for Real design of Real-Time System. Kluwer

Academic Publisher, 2003.
[6] O. Haugen, B. Moller-Pedersen and T. Weigert. Structural Modeling with UML 2.0. In UML for Real design

of Real-Time System. Kluwer Academic Publisher, 2003.
[7] G. Martin, S. Swan, T. Grötker and S. Liao. System Design with SystemC. Kluwer Academic Publisher, 2002.
[8] OMG. Model Driven Architecture. http://www.omg.org/mda/
[9] OMG. UML 2.0 Superstructure, ptc/04-10-02. http://www.omg.org/

[10] OMG. UML Profile for Schedulability, Performance and Time, ptc/02-03-02. http://www.omg.org/

[11] E. Riccobene, P. Scandurra, A. Rosti and S. Bocchio. A UML 2.0 Profile for SystemC. ST Microelectronics
Technical Report AST-AGR-2005-3.

[12] E. Riccobene, P. Scandurra. Modelling SystemC Process Behaviour by the UML Method State Machines. In
Proc. of RISE’04. Springer.

[13] E. Riccobene, P. Scandurra, A. Rosti, S. Bocchio. A SoC Design Methodology Based on a UML 2.0 Profile
for SystemC. In Proc. of DATE’05.

[14] P. Schaumont and I. Verbauwhede. Interactive Cosimulation with Partial Evaluation. In Proc. of DATE’04.

