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ABSTRACT
Modeling languages that aim to capture PIM level behavior
are still a challenge. We propose a high level behavioral for-
malism based on the Abstract State Machines (ASMs) for
the specification and validation of software systems at PIM
level. An ASM-based extension of the UML and its Ac-
tion Semantics is here presented for the construction of exe-
cutable class models at PIM level and also a model weaving
process which makes the execution of such models possible.
Our approach is illustrated using an Invoice Order System
taken from the literature.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—concepts, nota-
tions, representation; D.2.1 [Software Engineering]: Method-
ologies—model-driven approach

Keywords
Model-driven Engineering, Behavioral Modeling, Platform-
Independent Modeling, UML action language, Abstract State
Machines, Model weaving

1. INTRODUCTION
Model-driven Engineering (MDE)[3] promotes models as

first class artifacts of the software development process and
automatic model transformations to drive the overall de-
sign flow from requirements elicitation till final implemen-
tations toward specific platforms. Model Driven Architec-
ture (MDA) [25], which supports various standards includ-
ing the UML (Unified Modeling Language) [37], from the
OMG (Object Management Group) is the best known MDE
initiative.

In the MDA context, notations usually based on the UML
are used as system modeling languages for producing plat-
form-independent models (PIMs) and platform-specific mod-
els (PSMs). Automatic model transformations allow trans-
forming PIMs into PSMs.
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Although MDE frameworks (OMG/MOF, Eclipse/Ecore,
GME/MetaGME, AMMA/ KM3, XMF-Mosaic/Xcore, etc.)
are currently able to cope with most syntactic and transfor-
mation definition issues, model executability is still remarked
as a challenge [27], especially at PIM level. One of the main
obstacles is the lack of adequate models for the behavior
of the software and of mechanisms to integrate behavioral
models with structural models and with other behavioral
models. Although there are many different approaches for
modeling behavior (see related work in Sect. 2), none of
them enjoys the same universality as the UML class dia-
grams do for the structural parts of the software. Further
evidence of confusion about PIM level behavioral modeling
is the lack of agreement on what basic behavioral abstrac-
tions are required, and how these behavioral abstractions
should be used. However, PIM executability is considered
a remarkable feature for the system development process,
since it allows verifying high-level models against the re-
quirements goals (possibly using automated analysis tools),
and it can be exploited to provide conformance for imple-
mentations at PSM and code level by generating test-cases.

A current crucial issue in the MDA context is, there-
fore, that of providing effective specification and validation
frameworks able to express the meaning or semantics of each
modeling element and interaction occurring among objects,
rather than dealing with behavioral issues depending on the
target implementation platform. We believe this goal can
be achieved by integrating MDE/MDA structural modeling
notations with a behavioral formalism having the follow-
ing features: (i) it should be abstract and formal to rigor-
ously define model behavior at different levels of abstrac-
tion, but without formal overkill; (ii) it should be able to
capture heterogenius models of computation (MoC) in or-
der to smoothly integrate different behavioral models; (iii)
it should be executable to support model validation; (iv)
it should be endowed with a model refinement mechanism
leading to correct-by-construction system artifacts; (v) it
should be supported by a set of tools for model simulation,
testing, and verification; (vi) it should be endowed with a
metamodel-based definition in order to exploit MDE tech-
niques of automatic model transformations.

In this paper, we address the issue of providing executabil-
ity to PIMs by using the ASM (Abstract State Machine)
[6] formal notation that owns all the characteristics of pre-
ciseness, abstraction, refinement, executability, metamodel-
based definition, that we identified above as the desirable
properties for this goal.

We propose an ASM-based extension of the UML and its



Action Semantics to define a high level behavioral formalism
for the construction of executable PIMs. This is achieved
by weaving behavioral aspects expressed in terms of ASM
elements into the UML metamodel. The ASM formal no-
tation becomes, therefore, an abstract action language for
UML at PIM level, and, by automatic models mapping, we
are able to associate an ASM executable model to a UML
model. In particular, we apply our technique to the UML
class diagrams since they are considered to be the standard
for modeling the structural parts of software. The approach
is anyway applicable to any other part of the UML meta-
model and to any modeling language whose abstract syntax
is given in terms of a metamodel.

This paper is organized as follows. Sect. 2 provides a de-
scription of related work along the lines of our motivation.
Some background concerning the ASMs is given in Sect. 3.
Sect. 4 presents the proposed weaving approach between the
UML and the ASM metamodels in order to provide a high
level formalism to specify behavior at PIM level. In Sect. 5
we define how to automatically map UML class models into
executable ASM models and the action semantics provided
to the UML class diagrams by the ASM elements. Imple-
mentation details about the automatic model transforma-
tion are given in Sect. 6. Sect. 7 presents the application of
our UML/ASM-based modeling notation to the Invoice Or-
der System case study. Finally, Sect. 8 concludes the paper
and outlines some future directions of our work.

2. RELATED WORK AND MOTIVATION
There are different approaches for modeling and executing

behavior in the UML at PIM level. They may mainly fall
into the following categories.

(I) Not include behavior in the PIM at all, but instead
add it as code to structural code skeletons later in the MDA
process. This, however, prevent us from making significant
early validation of the system.

(II) Provide preliminary executability at meta-language level.
Some recent works (like Kermeta [29], xOCL (eXecutable
OCL) [38], or also the approach in [35], to name a few),
have addressed the problem of providing executability into
current metamodelling frameworks like Eclipse/Ecore [13],
GME/MetaGME [19], XMF-Mosaic/Xcore [38], etc. This
approach is merely aimed at specifying the semantics of
a modeling language (another key current issue for model-
based engineering) and thereby at providing techniques for
semantics specification natively with metamodels.

(III) Use the OCL [31] (and its various extensions, see [9]
for example) to add behavioral information (such as pre- and
post-conditions) to other, more structural, UML modeling
elements; however, being side-effect free, the OCL does not
allow the change of a model state, though it allows describing
it.

(IV) Joint use of an action language, based on the UML
action semantics (AS) [37, 14], and of UML behavioral dia-
grams such as state machines, activity diagrams, sequence
diagrams, etc., possibly strengthening their semantics. Be-
havioral diagrams can be used to capture complete behav-
ioral information as part of the PIM. The UML AS use a
minimal set of executable primitives (create/delete object,
slot update, conditional operators, loops, local variables dec-
larations, call expressions, etc.) to define the behavior of
metamodels by attaching behavior to classes operations (the
specification of the body counterpart is usually described in

text using a surface action language). Probably the most
well-known example is the approach known as “Executable
UML (xUML)” [32]). Recently, a beta version [14] has been
released of an executable subset of the standard UML (the
Foundational UML Subset) to be used to define the seman-
tics of modeling languages such as the standard UML or its
subsets and extensions, and therefore providing a founda-
tion for the definition of a UML virtual machine capable of
executing UML models.

(V) Transform UML diagrams into formal models; e.g.
transform class and sequence diagrams into graphs [11] by
using graph-transformation rules in order to create a set of
graphs that represent the state-space of the behavior, and
then apply model checking techniques on this state-space
to verify certain properties of the UML models. Similar
approaches based on this translational technique are UML-
B [36] using the Event-B formal method, those adopting
Object-Z like [26, 28], etc.

The approach proposed in this paper is slightly different
from the above ones. The objective is to provide a behav-
ioral formalism at PIM level that does not depend on a par-
ticular UML behavioral diagram, since it should be general
enough for other metamodel-based languages not necessary
related to the UML. Moreover, in terms of expressiveness,
non-determinism and executability (as ASMs support) are
two important features to be taken into account for the spec-
ification and validation of the behavior of distributed appli-
cations and application components.

The ASMs formalism itself can be also intended as an
action language but with a concise, abstract and powerful set
of action schemes. That allows to overcome some limits of
conventional action languages based on the UML AS. These
last, – though they aim to be pragmatic, extensible and
modifiable – may suffer from the same shortcomings and
complexity of traditional programming languages being too
much platform-specific.

Moreover, not all action semantics proposals are pow-
erful enough to reflect a particular model of computation
(MoC) underlying the nature of the application being mod-
eled. This, instead, is not true for the ASMs.

Through several case studies, ASMs have shown to be a
formal method suitable for system modeling and, in particu-
lar, for describing the semantics of modeling/programming
languages. Among successful applications of the ASMs in
the field of language semantics, we can cite the UML and
SDL-2000, programming languages such as Java, C/C++,
and hardware description languages (HDLs) such as Sys-
temC, SpecC, and VHDL – complete references can be found
in [6]. Concerning the ASM application to provide an ex-
ecutable and rigorous UML semantics, we can mention the
works in [30, 5, 7, 23, 10]. More or less, all these approaches
define an ASM model able to capture the semantics of a par-
ticular kind of UML graphical sub-language (statecharts, ac-
tivity diagrams, etc.). Other attempts in this direction but
generalized to any metamodel-based language – and there-
fore belonging to category (II) – are the works in [8, 12], to
name a few. However, the use of the ASMs we suggest here
is different. Here we focus on the use of the ASMs as“model-
ing language” (at the same level of the UML) rather than as
“meta-language” (or semantics specification language). The
goal is to provide a general virtual machine at PIM level by
“weaving” executable behavior directly into structural mod-
els.



3. ABSTRACT STATE MACHINES
Abstract State Machines (ASMs) are an extension of FSMs

[4], where unstructured control states are replaced by states
comprising arbitrary complex data.

Although the ASM method comes with a rigorous mathe-
matical foundation [6], ASMs provides accurate yet practical
industrially viable behavioral semantics for pseudocode on
arbitrary data structures. This specification method is tun-
able to any desired level of abstraction, and provides rigor
without formal overkill.

The states of an ASM are multi-sorted first-order struc-
tures, i.e. domains of objects with functions and predicates
(boolean functions) defined on them, while the transition re-
lation is specified by“rules”describing how functions change
from one state to the next.

Basically, a transition rule has the form of guarded update
“if Condition then Updates” where Updates are a set of
function updates of the form f(t1, . . . , tn) := t which are
simultaneously executed1 when Condition is true.

These is a limited but powerful set of rule constructors
that allow to express simultaneous parallel actions (par) of
a single agent, either in an atomic way, Basic ASMs, or in
a structured and recursive way, Structured or Turbo ASMs,
by sequential actions (seq), iterations (iterate, while, rec-
while), and submachine invocations returning values. Ap-
propriate rule constructors also allow non-determinism (ex-
istential quantification choose) and unrestricted synchronous
parallelism (universal quantification forall). Furthermore,
it supports a generalization where multiple agents interact in
parallel in a synchronous/asynchronous way, Synchronous-
/Asynchronous Multi-agent ASMs.

Based on [6], an ASM can be defined as the tuple:
(header, body, main rule, initialization)

The header contains the name of the ASM and its sig-
nature2, namely all domain, function and predicate decla-
rations. Function are classified as derived functions, i.e.
those coming with a specification or computation mecha-
nism given in terms of other functions, and basic functions
which can be static (never change during any run of the ma-
chine) or dynamic (may change as a consequence of agent
actions or updates). Dynamic functions are further classified
into: monitored (only read, as events provided by the envi-
ronment), controlled (read and write), shared and output
(only write) functions.

The body of an ASM consists of (static) domain and (sta-
tic/derived) function definitions according to domain and
function declarations in the signature of the ASM. It also
contains declarations (definitions) of transition rules. The
body of ASM may also contains definitions of axioms for
invariants one wants to assume for domains and functions
of the ASM.

The (unique) main rule is a transition rule and represents
the starting point of the machine program (i.e. it calls all the
other ASM transition rules defined in the body). The main
rule is closed (i.e. it does not have parameters) and since

1f is an arbitrary n-ary function and t1, . . . , tn, t are first-
order terms. To fire this rule to a state Si, i ≥ 0, evaluate
all terms t1, . . . , tn, t at Si and update the function f to t
on parameters t1, . . . , tn. This produces another state Si+1

which differs from Si only in the new interpretation of the
function f .
2Import and export clauses can be also specified for modu-
larization.

there are no free global variables in the rule declarations of
an ASM, the notion of a move does not depend on a variable
assignment, but only on the state of the machine.

The initialization of an ASM is a characterization of the
initial states. An initial state defines an initial value for
domains and functions declared in the signature of the ASM.
Executing an ASM means executing its main rule starting
from a specified initial state. A computation of M is a finite
or infinite sequence S0, S1, . . . , Sn, . . . of states of M , where
S0 is an initial state and each Sn+1 is obtained from Sn

by firing simultaneously all of the transition rules which are
enabled in Sn.

3.1 The ASM Metamodel and ASMETA
In addition to its mathematical-based foundation, a me-

tamodel-based definition for ASMs is also available. The
ASM metamodel, called AsmM (Abstract State Machines
Metamodel) [33, 15, 17, 2], provides an abstract syntax for
an ASM language in terms of MOF concepts, and has been
defined with the goals of developing a unified abstract no-
tation for the ASMs, independent from any specific imple-
mentation syntax and allowing a more direct encoding of the
ASM mathematical concepts and constructs.

Figure 1: Backbone

Fig. 1 shows a very small fragment of the AsmM meta-
model representing the structure of an ASM model.

AsmM is publicly available (see [2]) in the meta-language
EMF/Ecore [13].

The AsmM semantics was given by choosing a seman-
tic domain SAsmM and defining a semantic mapping MS :
AsmM → SAsmM to relate syntactic concepts to those of
the semantic domain. SAsmM is the first-order logic ex-
tended with the logic for function updates and for transition
rule constructors formally defined in [6].

A general framework, called ASMETA tool set [16, 2],
has been developed based on the AsmM and exploiting the
advantages of the metamodelling techniques. It essentially



includes: a textual notation, AsmetaL, to write ASM mod-
els (conforming to the AsmM) in a textual and human-
comprehensible form; a text-to-model compiler, AsmetaLc,
to parse ASM models written in AsmetaL and check for
their consistency with respect to the OCL constraints of the
metamodel; a simulator, AsmetaS, to execute ASM models
(stored in a model repository as instances of AsmM); the
Avalla language for scenario-based validation of ASM mod-
els, with its supporting tool, the AsmetaV validator; the
ATGT tool that is an ASM-based test case generator based
upon the SPIN model checker; a graphical front-end, called
ASMEE (ASM Eclipse Environment), which acts as IDE
and it is an Eclipse plug-in.

4. WEAVING EXECUTABLE BEHAVIOR
INTO UML CLASS MODEL

The aim of this technique is to weave behavioral aspects
into the whole UML metamodel or parts of it, depending on
those elements one is interested to express behavior about.

Applying this technique demands the definition of a weav-
ing function specifying how the UML metamodel and the
AsmM are weaved together into a new metamodel which
adds to the UML the capability of specifying behavior by
ASM transition rules. More precisely, it requires identifying
precise join points3 between data and behavior [29], to ex-
press how behavior can be attached to structural constructs.

Once a weaving function has been established between
the UML and the AsmM, the resulting metamodel, in the
sequel referred as UML+, enriches the UML with behavior
specification capability in terms of ASM transition rules.
Therefore, UML+ can be considered an abstract structural
and executable language at PIM level.

As example of weaving executable behaviors into struc-
tural models by using ASMs, we here consider the portion of
the UML metamodel concerning with class diagrams. How-
ever, the weaving process described here is directly applica-
ble to any object-oriented metamodel and meta-metamodel
like the OMG MOF, EMF/ECore, AMMA/KM3, etc.

4.1 Join Points Identification
In case of the UML metamodel, as for any other MOF

metamodel, it might be convenient to use transition rules
within meta-classes as class operations to hold their behav-
ioral specification. Therefore, a join point must be specified
between the class Operation4 of the UML (see Fig. 7.11 in
[37]) and the class RuleDeclaration of the AsmM.

Fig. 2 shows how simply the composition may be carried
out. The MOF Operation class resembles the AsmM Rule-

Declaration class. The name Operation has been kept in-
stead of RuleDeclaration to ensure UML conformance; sim-
ilarly, the name Parameter has been kept instead of Variable-
Term. Finally, the new property isMain has been added in
order to designate, when set to true, a closed (i.e. without
formal parameters) operation as (unique) main rule of an
active class (the main class) to start model execution.

3Inspired from the Aspect-oriented Programming (AOP)
paradigm, join points are intended here and in [29] as places
of the meta-metamodel where further (executability) aspects
can be injected.
4An operation is a behavioral feature of a classifier that
specifies the name, type, parameters, and constraints for
invoking an associated behavior.

Figure 2: Using operation bodies as join points be-
tween data and behaviour

A further join point is necessary to adorn UML class’s
properties (either attributes or association member ends –
see Fig. 7.12 in [37]) to reflect the ASM function classifi-
cation. Fig. 3 shows how this may be carried out. The
UML Property class resembles the AsmM Function class.
Box UML+ presents the result of the composition process.
The UML class Property has been merged with the class
Function. A further adornment kind:PropertyKind have
been added to capture the complete ASM function classi-
fication. PropertyKind is an enumeration of the following
literal values: static, monitored, controlled, out, and shared.
Two OCL constraints have been also added stating, respec-
tively, that a read-only (attribute isReadOnly is set to true)
property can be of kind static or monitored, and that if a
property is derived (attribute isDerived is set to true) then
the attribute kind is empty.

Figure 3: Using properties as join point for ASM
adornments

Moreover, in order to merge the two statically-typed sys-
tems of the UML and the AsmM, a UML Type (a Class or
a DataType) is merged with an ASM Domain. Finally, val-
ues specification in UML class models (e.g. for specifying
default values of attributes) are provided in terms of opaque
expressions (instances of the OpaqueExpression class in the
UML metamodel)5 that are merged with ASM terms (the
Term class of the AsmM metamodel).

5. SEMANTIC MODEL
5In UML, an opaque expression is an uninterpreted textual
statement that denotes a (possibly empty) set of values when
evaluated in a context



At this point of the weaving process, we are able to de-
sign by the UML+ terminal models [24] whose syntactic el-
ements conform to UML and whose operation semantics is
expressed in terms of ASM rules. (Sect. 7 reports an ex-
ample of application). So doing, the ASM formal notation
can be considered as an abstract action language for UML
at PIM level. However, following our approach, we are able
to provide more, namely to define in a precise and clear way
the executable semantics of a terminal model conforming to
UML+, by associating it with its ASM semantic (executable)
model. This is clarified by the following argumentation that
refers to a generic metamodel (more details can be found in
[18]), but which is then tailored for the UML+ in Sect. 5.1.

A language metamodel A has a well-defined semantics if
a semantic domain S is identified and a semantic mapping
MS : A → S is provided [21] to give meaning to syntactic
concepts of A in terms of the semantic domain elements. By
exploiting the ASM formal method endowed with a meta-
model representation of their concepts and with a precise
mathematical semantics, we can express the semantics of a
terminal model [24] conforming to A in terms of an ASM
model.
Let us assume the semantic domain SAsmM of the ASM
metamodel (see Sect. 3.1) as the semantic domain S. The
semantic mapping MS : A → SAsmM, which associates a
well-formed terminal model m conforming to A with its se-
mantic model MS(m), can be defined as

MS = MSAsmM
◦ M

where MSAsmM
: AsmM → SAsmM is the semantic map-

ping of the ASM metamodel and associates a theory con-
forming to the SAsmM logic with a model conforming to
AsmM, and the function M : A → AsmM associates an
ASM to a terminal model m conforming to A. Therefore,
the problem of giving the metamodel semantics is reduced to
define the function M between metamodels. The complex-
ity of this approach depends on the complexity of building
the function M . In the following section, we show how to
build the function M for the UML+ metamodel.

5.1 Semantic Model of UML+

The building function M : UML+
−→ AsmM is defined

as

M(m) = ι(W (m),m)

for all terminal model m conforming to UML+, where:
– W : UML+

→ AsmM maps a weaved terminal m con-
forming to UML+ into a model conforming to the AsmM
and provides the abstract data structure (signature, domain
and function definitions, axioms) and the transition system
of the final machine M(m);
– ι : AsmM ×UML+

→ AsmM) computes the initial state
of the final machine M(m) by extracting initial values for
data structures of the machine from the source modeling
elements in m.

The function W is defined as a mapping in Table 1 and
provides semantics both to the basic modeling elements char-
acterizing UML class models (although we apply some re-
strictions as remarked below) and to the enriched UML+

modeling elements as result of the weaving process. The se-
mantics is given by associating each modeling concept into
a corresponding AsmM modeling element. Below, we com-
ment those parts of W concerning UML elements involved

into the join points definition, while we leave to the reader
intuition the understanding of the remaining parts.

The Operation element of the weaved language UML+ is
associated to the corresponding RuleDeclaration element
of the AsmMas involved in the join point definition. We
assume, similarly to the use of this in the Java program-
ming language, that in the definition of the rule body of an
operation op, a special variable named $this is used to refer
to the object that contains the operation. The W function
application automatically adds the variable $this as formal
parameter of the corresponding rule declaration6. More-
over, for simplicity (although these concepts can be han-
dled in ASMs) we assume that an operation cannot raise
exceptions (i.e. the set of types provided by the associa-
tion end raisedException is empty) and does not specify
constraints.

The W function provides semantics to the Property el-
ement (an attribute or an association end) of the UML+

language by associating it to the corresponding Function

element of the AsmM involved in the join point definition.
Due to UML and AsmM types identification, as explained

in Table 1, the domain of the ASM function denoting a prop-
erty has to be intended as the ASM domain (usually an Ab-

stractTD type-domain) induced from the exposing class of
the property, and the codomain as induced from the prop-
erty’s type.

Opaque expressions are straightforwardly matched (see
Table 1) into ASM terms.

Remark. Currently, we apply some restrictions to the
UML metamodel7. We assume exceptions cannot arise from
operations, no default values can be specified for the oper-
ations parameters, no pre/post conditions and body condi-
tions for operations, no qualifiers (like derived unions and
subsetting) as optional part of association ends can be spec-
ified, no visibility kinds, only simple classes are treated (i.e.
no composite classes with parts and ports), association classes
are not yet supported, and only binary associations with
none aggregation type are currently permitted. Moreover,
as we concerned to PIM level, we assume that class fea-
tures (both properties and operations) are not static, since
for static features two alternative semantics are recognized
in UML8 leading therefore to alternative implementations
that should instead be taken at PSM level.

5.2 UML+ Action Semantics
According to the ASM semantic domain, operations can

be invoked on an object (an element of an ASM domain) of
a terminal model, given a particular set of substitutions for
the parameters of the operation. An operation invocation
may cause changes to the values of the properties of that ob-
ject, or of other objects that can be navigated to, directly or
indirectly, from the object’s context on which the operation

6Since operations are intended as ASM transition rules,
within the body of an operation op, if f is a property (an
attribute or an association end) in the same object, then
f($this) must be used as a full name for that property. If
anotherOp is another operation in the same object, then
anotherOp($this,. . .) must be used to invoke that opera-
tion.
7They do not limit our approach and can be considered in
the future.
8A static feature may have different values for different fea-
turing classifiers, or the same value for all featuring classi-
fiers.



is invoked, to its output parameters, to objects navigable
from its parameters, or to other objects in the scope of the
operation’s execution. An operation invocation may return
a value as a result, and in this case the semantics is that of
a Turbo ASM rule with return value. Operation invocations
may also cause the creation and deletion of objects by exe-
cuting extend ASM rules and update rules of set-functions.
Expression evaluations are supported as well.

In addition to these basic actions (property getting/set-
ting, expression evaluations, operation invocation, object
creation/deletion), the weaving between the UML and the
AsmM metamodels allows us to use more sophisticated ASM
rule constructors to express behavior: if-then-else, parallel
execution (par rules), sequential execution (seq rules), finite
iteration submachines (iterate and while rules), non-deter-
minism (choose rule), etc., as formally defined in [6].

It is possible to make use of the parallel ASM execution
model that (a) easens specification of macro steps (refine-
ment and modularization), (b) avoids unnecessary sequen-
tialization of independent actions, (c) easens parallel/dis-
tributed implementations [6]. Furthermore, one can exploit
the ASMs feature of incorporating non-atomic structuring
concepts (by the constructor seq for sequentialization) and
finite iteration submachines with return values, exception
handling, local values, etc., as standard refinements into syn-
chronous parallel ASMs.

The idea here is to extend the UML class model to allow
the definition of ASM transition rules working as “pseudo-
code over classes” as scheme of a generic control machine,
and allow therefore different granularities of computation
step for validating objects behavior, even for parallel/dis-
tributed behavioral facets, at PIM level.

6. IMPLEMENTATION
We have been implementing an Eclipse-based integrated

environment made of: a UML modeler; the ASMETA/As-
metaS tool, as execution environment; and the AMW (AT-
LAS Model Weaver) [1] and ATL (ATLAS Transformation
Language) [22] to handle the merging process between the
UML and the AsmM. The tool implemented at the moment
is still a prototype; e.g., we have been carrying our experi-
ments with the EMF-based implementation of the UML 2.x
metamodel for Eclipse rather then using directly an external
UML visual modeling tool.

Once the ASM semantic model is obtained from a UML+

terminal model (see the building function M in Sect. 5.1),
several reasoning activities can be carried out, early at PIM
level, by exploiting the ASMETA toolset. Model validation
is possible by random, interactive, and scenario-based sim-
ulation, or by automatic test case generation. Model ver-
ification can be done through model checking techniques.
Furthermore, this high level ASM model can be exploited
for conformance analysis of refined PSMs and code models.

7. CASE STUDY: INVOICE ORDER SYSTEM
The Invoice Order System (IOS), taken from [20], is used

as an example to illustrate our approach. The subject is
to invoice orders (R0.1). To invoice is to change the state
of an order from pending to invoiced (R0.2). On an order,
we have one and only one reference to an ordered product
of a certain quantity; the quantity can be different from
other orders (R0.3). The same reference can be ordered on

several different orders (R0.4). The state of the order will
be changed to invoiced if the ordered quantity is either less
than or equal to the quantity which is in stock according to
the reference of the ordered product (R0.5). From the set of
requirements presented in [20], we focus here on the Case 1,
which is specified as follows:

R1.1 All the ordered references are in stock.
R1.2 The stock or the set of the orders may vary due

to the entry of new orders or canceled orders, or due to
having a new entry of quantities of products in stock at the
warehouse. But we do not have to take these entries into
account.

R1.3 This means that you will not receive two entry ows
(orders, entries in stock). The stock and the set of orders
are always given to you in an up-to-date state9.

Figure 4: IOS class model

The UML class diagram in Fig. 4 shows the implementa-
tion classes for the Invoice Order System at the PIM level.
It shows the internal structure of the system for order man-
agement with the essential details at this stage. From a
structural point of view, there is: a set of orders (the Order

class), a set of products (the Product class), and a container
class InvoiceOrderSystem used as active10 class to start the
application and thus to invoice orders depending on various
strategies. Every order has a state, which can be invoiced
or pending. All the orders are initially pending. Every order
refers to a product for a certain quantity (greater than zero)
and these data cannot be changed (quantity is a monitored

property). The same product can be referenced by several
different orders. Every product is in the stock in different
quantity. The quantity of a product in the stock is only
updated by the system (hence it is a controlled property)
when it invoices some orders.

The behavior of each class is specified by means of ASM
transition rules, as shown in the operation compartment of
the UML classes. Their definition is reported in Listing 1
using the ASMETA/AsmetaL textual notation. The sys-
tem is intended as a single-agent machine. To invoice or-
ders, the system may follow different strategies. We choose
here that of invoicing an order at a time. By invoking the
r_invoiceSingleOrder operation, the system selects (non-
deterministically) on order11 within a set of orders that are
pending and refer to a product in the stock in enough quan-
tity, and simultaneously changes the state of the selected
order from pending to invoiced and updates the stock by

9You do not have to take into account the entry of new
orders, cancellation of orders, and entries of quantities in
the stock. These are subjects for Case 2.

10Each instance of an active class has its own thread of con-
trol and possibly may coordinate other behaviors.

11Note that a variable v is expressed in AsmetaL as $v.



UML+ AsmM

An active class C An ASM containing in its signature a domain C as subset of the
predefined domain Agent

A non-abstract class C A dynamic AbstractTD domain C

An abstract class C A static AbstractTD domain C

An Enumeration An EnumTD domain

A primitive type A basic type domain

Boolean BooleanDomain

String StringDomain

Integer IntegerDomain

UnlimitedNatural NaturalDomain

A generalization between a child class C1 and a parent class C2 A ConcreteDomain C1 subset of the corresponding domain C2

An attribute a of a class C, type T, kind k, and multiplicity 1 A function a : C → T of kind k

An attribute a of a class C, type T, multiplicity > 1, and ordered A function a : C → T ∗ of kind k, where T ∗ is the domain of all
finite sequences over T (SequenceDomain)

An attribute a of a class C, type T, kind k, and multiplicity > 1,
unordered and unique

A function a : C → P(T ) of kind k, where P(T ) is the mathe-
matical powerset of T (PowersetDomain)

An attribute a of a class C, type T, kind k, and multiplicity > 1,
unordered and not unique

A function a : C → B(T ) of kind k, where B(T ) is the domain
of all finite bags over T (BagDomain)

A navigable association end See attribute

An operation op of a class C, rule body R, arity n, and owned
parameters xi : Di

A rule declaration op($this in C, x1 in D1, . . . , xn in Dn)
= R of rule body R, arity n+1, and formal parameters
$this in C and xi in Di

A closed operation op of a class C, rule body R, and with
isMain set to true

The (unique) main rule declaration of form main rule op

= for all $this in C do R

An opaque expression A term

OCL constraints Axioms (optional)

OCL operations/queries Static functions (optional)

Table 1: W mapping: from UML+ to AsmM

subtracting the total product quantity in the order to in-
voice (by the r_deleteStock operation). The system keeps
to invoice orders as long as there are orders which can be
invoiced. The system guarantees that the state of an order
is always defined and the stock quantity is always greater
than or equal to zero. Note that, non-determinism (choose
rule) is a convenient way to abstract from details of schedul-
ing. Indeed, in the modeled strategy, per step at most one
order is invoiced, with an unspecified schedule (not taking
into account any arrival time of orders) and with a dele-
tion function under the assumption that stockQuantity is
updated only by invoicing.

Listing 1: IOS behaviour: single-order strategy
rule r invoiceSingleOrder =

choose $order in self.orders with orderState($order) = PENDING
and quantity($order) <=

stockQuantity(referencedProduct($order))
do par

state($order) := INVOICED
r deleteStock[referencedProduct($order),orderQuantity($order)]

endpar

rule r deleteStock($p in Product, $q in Natural) =
stockQuantity($p):= stockQuantity($p) − $q

main rule r Main = r invoiceSingleOrder[]

Many other strategies and particular scheduling algorithms
can be defined and refined as well, in order to get a suffi-
ciently precise, complete and minimal, executable PIM model
which can serve as a basis for the implementation of various
PSMs. Appendix A reports the complete AsmetaL specifi-

cation associated to the IOS class model in Fig. 4.

8. CONCLUSION AND FUTURE WORK
In this paper, we proposed a PIM level behavioral lan-

guage for structural models based on the ASMs formalism.
We focused on an intra-object perspective by addressing the
behavior occurring within structural entities (like UML class
models). In the future, we propose to extend the behav-
ioral formalism for the inter-object behavior, which deals
with how structural entities communicate with each other.
The objective of this further effort is to show the applicabil-
ity of the proposed approach in the area of communication
protocols and of inter-process interaction models. This will
require identifying suitable join points between structural
diagrams describing the collaborative structure of the inter-
active entities and the AsmM subpart concerning transition
rules.

We will also continue working on the implementation of
the model execution environment (a virtual machine) and
a user interface providing support for a user-friendly model
simulation. We could also experiment with a much more
lightweight extension of the UML metamodel based on the
UML profile mechanism, but we preferred a more general
matching approach in order to make it reusable for different
metamodels rather than only for UML-based metamodels.

Moreover, we want to connect PIM executable models
with PSM executable models written with the SystemC UML
profile in the context of a model-based development process
for embedded systems and System-on-Chip (SoC) [34].
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P. Valduriez. ATL: a QVT-like transformation
language. In OOPSLA ’06, pages 719–720. ACM,
2006.

[23] J. Jürjens. A UML statecharts semantics with
message-passing. In Proc. of the 2002 ACM
symposium on Applied computing, pages 1009–1013.
ACM Press, 2002.
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APPENDIX

A. ASM MODEL FOR THE IOS SYSTEM

Listing 2: ASM model for the IOS (single-order strategy)
asm InvoiceOrderSystem //Case 1
import STDL/StandardLibrary
signature:

//Domain declarations
domain InvoiceOrderSystem subsetof Agent
abstract domain Order
abstract domain Product
enum domain OrderState = { INVOICED | PENDING }

//Function declarations
dynamic controlled state: Order −> OrderState //the product referenced in an order
dynamic monitored quantity: Order −> Natural //the quantity in the order
dynamic controlled stockQuantity: Product −> Natural //the quantity in the stock
dynamic monitored referencedProduct: Order −> Product //the product referenced in an order
dynamic monitored orders: InvoiceOrderSystem −> Powerset(Order) //the referenced orders
dynamic monitored products: InvoiceOrderSystem −> Powerset(Product) //the referenced products

definitions: /∗−−−−− Rules for case 1 (single−order strategy) −−−−−−∗/

macro rule r deleteStock($p in Product ,$q in Natural)= stockQuantity($p):= stockQuantity($p) − $q

rule r invoiceSingleOrder =
choose $order in self.orders with orderState($order) = PENDING and quantity($order) <= stockQuantity(referencedProduct($order))
do par

state($order) := INVOICED
r deleteStock[referencedProduct($order),orderQuantity($order)]

endpar

/∗−−−−−−− main rule −−−−−−−−∗/
main rule r main =

r invoiceSingleOrder[]

//A possible initial state
default init s 1:

function state($o in Order) = PENDING //defaul value from the class diagram
function stockQuantity($p in Product) = 100n


