
A modeling and executable language for designing
and prototyping service-oriented applications

Elvinia Riccobene
DTI - Università degli Studi di Milano, IT

Email: elvinia.riccobene@unimi.it

Patrizia Scandurra Fabio Albani
DIIMM - Università degli Studi di Bergamo, Italy

Email: patrizia.scandurra@unibg.it

Abstract—This paper presents an intuitive, precise
and executable language, SCA-ASM, for model-based
design and prototyping of service-oriented applications.
The language combines the SCA (Service Component
Architecture) capability of modeling and assembling
heterogeneous service-oriented components in a tech-
nology agnostic way, with the rigor of the Abstract
State Machines formal method able to model notions
of service behavior, interactions, orchestration, com-
pensation in an abstract but executable way. For an
early and quick design evaluation of a composite soft-
ware application, an SCA-ASM model of a service-
oriented component, possibly not yet implemented in
code or available as off-the-shelf, can be: (i) simulated
and evaluated offline, i.e. in isolation from the other
components; (ii) configured in place within an SCA-
compliant runtime platform as abstract implementa-
tion (or prototype) of a component and then executed
together with the other components implementations
according to the chosen SCA assembly.

I. Introduction

Service-Oriented Computing (SOC) is a paradigm for
distributed computing based on the principle that “Ev-
erything is a service”. Services are intended as loosely
coupled autonomous and heterogeneous1 components that
are available in a distributed environment and that can be
published, discovered, and composed (or orchestrated) via
standard interface languages, publish/discovery protocols
and composition (orchestration) languages. Web Services
is the most notable example of service oriented technology.

In order to support the engineering of software systems
in the SOC domain, foundational theories, modeling nota-
tions, evaluation techniques fully integrated in a pragmatic
software engineering approach are required.

This paper addresses the problem of designing, pro-
totyping and evaluating service oriented systems in an
assembly-oriented manner (i.e. by assembling already
available service-oriented components) by means of high
level modeling languages. We complement the Service
Component Architecture (SCA)[1] – the open standard
model for heterogeneous service assembly – with an ex-
ecutable formalism based on the Abstract State Machines

The second author has been supported in part by the European
project FP7-ICT-231940-BRICS (Best Practice in Robotics).

1Services are in general, heterogeneous, i.e. they differ in their
implementation/middleware technology.

(ASM) [2] formal method able to model notions of ser-
vice interactions, orchestrations, compensations, and the
services internal behavior. The result, and this is the
novelty of our approach, is a formal and executable lan-
guage, called SCA-ASM, intended for the specification and
functional analysis (validation and verification) of service-
oriented applications at a high level of abstraction and in a
technology agnostic way (i.e. independently of the hosting
middleware and runtime platforms and of the program-
ming languages in which services are programmed).

In the SCA-ASM language, SCA design primitives pro-
vide graphical representation of components structure and
of components assemblies, while the ASM formalism al-
lows formal specification of intra- and inter- behavioral
aspects of services. SCA-ASM models of services are
also machine-processable: their XML-based representation
makes models processable by an SCA-compliant run-time
platform, as well as by the ASM toolset ASMETA [3]
for functional analysis. An SCA-ASM model of a service-
oriented component (or even of the entire system) can be
simulated and analyzed off line, i.e. in isolation by means
of the ASMETA toolset. In addition, for an early and
quick design evaluation of the entire application, SCA-
ASM models of service-oriented components (possibly not
yet implemented in code or available as off-the-shelf) can
be configured in place within an SCA-compliant runtime
platform (like Tuscany) as abstract implementation (or
prototypes) of those (mock) components. They can be then
executed in-place, together with the other components
implementations, possibly available at different level of
abstraction, according to the chosen SCA assembly. This
allows the designer to execute integrated applications
and evaluate different design solutions even when the
implementation of some components – abstract or mock
components2 – is not yet available, but an abstract model,
in terms of ASMs, is available as a prototype specifying
their desired behavior.

We here mainly focus on presenting the SCA-ASM
language and the supporting tool for application proto-
typing. Illustrating results of model formal analysis is

2Mock components are simulated components that mimic the
behavior of real components in controlled ways. A designer typically
creates mock components to validate the behavior of some other
components or of the entire integrated application.

out of the scope of this paper. Moreover, we assume the
reader familiar with the basic notions concerning the SCA
standard and the ASM formal method, which are here not
provided for the sake of space. The remainder of this paper
is organized as follows. Section II describes some related
works along this direction. The SCA-ASM language is
presented in Section III, while Section IV presents the
supporting design tool. Finally, Section V concludes the
paper and outlines some future directions of our work.

II. Related work

Some visual notations for service modeling have been
proposed, such as the OMG SoaML UML profile [4].
SoaML, like the SCA initiative, is more focused on ar-
chitectural aspects of services. UML4SOA [5] is another
UML extension defined within the EU project SENSORIA
[7]. UML4SOA is focused on modeling service orches-
trations as an extension of UML2 activity diagrams. In
order to make UML4SOA models executable, code gener-
ators for low-level target orchestration languages (such as
BPEL/WSDL, Jolie, and Java) have been developed [8];
however, these target languages are used in circumscribed
application domains, and they do not have the same
semantic rigor and abstraction mechanisms, necessary for
early design and analysis, of a formal method.

Some works devoted to provide software developers
with formal methods and techniques tailored to the SOC
domain also exist (see, e.g., the survey in [9] for the
service composition problem), mostly developed within the
SENSORIA and S-Cube [10] EU projects. Several process
calculi for the specification of SOA systems have been
designed (see, e.g., [11], [12], [13]). They provide linguistic
primitives supported by mathematical semantics, and veri-
fication techniques for qualitative and quantitative proper-
ties [14]. In particular, in [15] an encoding of UML4SOA in
COWS (Calculus for the Orchestration of Web Services),
a recently proposed process calculus for specifying services
and their dynamic behavior, is presented. Still within
the SENSORIA project, a declarative modeling language
for service-oriented systems, named SRML [16], has been
developed. SRML supports qualitative and quantitative
analysis techniques using the UMC model checker[17] and
the PEPA stochastic analyzer3. Compared to the formal
notations mentioned above, the ASM method has the
advantage to be executable.

Within the ASM community, the ASMs have been used
in the SOC domain for the purpose of formalizing business
process modeling languages and middleware technologies
related to web services, such as [18], [19], [20], [21] to
name a few. Some of these previous formalization efforts,
as better explained later, are at the basis of our work.

On the formalization of the SCA component model,
some previous works, like [22], [24] to name a few, exist.
However, they do not rely on a practical and executable

3http://www.dcs.ed.ac.uk/pepa/

formal method like ASMs. In [25], an analysis tool, Wom-
bat, for SCA applications is presented; this approach is
similar to our as the tool is used for simulation and verifi-
cation tasks by transforming SCA modules into composed
Petri nets. There is not proven evidence, however, that
this methodology scales effectively to large systems.

An abstract service-oriented component model, named
Kmelia, is formally defined in [26], [27] and is supported
by a prototype tool (COSTO). In the Kmelia model a
component has an interface made of provided services
and required services. Services are used as composition
units and serviced behaviour are captured with labelled
transition systems. Kmelia makes it possible to specify ab-
stract components, to compose them and to check various
properties. Our proposal is similar to the Kmelia approach;
however, we have the advantage of having integrated our
SCA-ASM component model and the ASM-related tools
with the standard SCA and its runtime platform for a
more practical use and an easier adoption by developers.

III. The SCA-ASM language overview

We adopt a suitable subset of the SCA standard for
modeling service-oriented components assemblies, and we
complement such models with an ASM-based formal and
executable description of the services internal behavior,
services orchestration and interactions. To this purpose, we
exploit the notion of distributed multi-agent ASMs. Each
service-oriented component is thus modeled by an ASM
endowed with (at least) one agent (a business partner or
role instance) able to be engaged in conversational interac-
tions with other agents by providing and requiring services
to/from other service-oriented components’ agents.

A. SCA-ASM components and assemblies

An SCA-ASM component is an ASM module that
may provide interfaces (called services), require interfaces
(called references) and expose properties. The services
behaviors encapsulated in an SCA-ASM component are
captured by ASM transition rules. References and services
are connected through wires in an SCA-ASM composite
component to configure and assemble components.

Fig. 2 shows the shape of an SCA-ASM component A

using the graphical SCA notation, and the corresponding
ASM modules for the provided interface AService (on
the left) and the skeleton of the component itself (on the
right) using the textual AsmetaL notation of the ASMETA
toolset. Similarly, Fig. 3 shows the shape of an SCA-ASM
composite component and the resulting ASM module C

corresponding to the SCA composite C in Fig. 1. Details
on these concepts follows.

a) Interface description: An interface is a col-
lection of business functions. It types services (as pro-
vided interface) and references (as required interface) of
a component (see next paragraph). As interface definition
language (IDL), SCA-ASM esploits the ASM notion of
signature for declaring domains and functions symbols

Fig. 1. An SCA composite (adapted from the SCA Assembly Model V1.00 spec.)

Fig. 2. SCA-ASM component shape

charactering an ASM state. An interface of an SCA-
ASM component is therefore an ASM module containing
only an header of the form (name, signature, import,
export): name is the interface name, signature is defined
as (bus agent types decl, bus functions decl) and denotes a
collection of declarations of business agent types (declared
in terms of subdomains of the predefined ASM Agent

domain) and of business functions (declared as parameter-
ized ASM out functions), import denotes other imported
module libraries, and export exposes signature symbols to
be imported from other modules.

As additional IDL, Java interfaces are also supported.

b) Component description: We maintain the vi-
sion that service-oriented components are configured in-
stances of implementations. An SCA-ASM component is
therefore an ASM instance with an associated ASM agent
that executes a specific program (a named ASM transition
rule) as its behavior. To this purpose, an SCA-ASM
component implementation is an extension of an ASM
module of form (header, body). The header has shape
(name, prov services, req services, signature, import, ex-
port), where: name is the component name; prov services
and req services are import clauses annotated, respec-

tively, with @Provided and @Required, to include the
ASM modules of the service interfaces provided/required
by the component; the signature is defined as (pro decl,
ref decl, dom and funct decl) and contains declarations for
externally settable property values (i.e. ASM monitored
functions – or shared functions when promoted as a com-
posite property – annotated with @Property), declarations
for references (ASM controlled functions annotated with
@Reference) that are abstract access endpoints to services
(as better explained below), and declarations of other ASM
domains and functions to be used by the component for
internal computation only; finally, import and export of
other module libraries may be also included as well.

In SCA, references are abstract access endpoints to ser-
vices that will be possibly discovered at runtime. In SCA-
ASM, references are represented as functions (annotated
with @Reference) having as codomain a subset of the
Agent domain named with the name of the reference’s
typing interface (see, e.g., the reference b to a BService

agent in the ASM module A in Fig.1). This domain is de-
clared in the ASM module corresponding to the reference’s
typing interface; the ASM module corresponding to the
component exposing the interface has also to import the
ASM module for the interface. Thus, we identify (even
if it is not known at design time) the partner’s business
role (i.e. the agent type). Back references to requester
agents are modeled as functions in the same way (using
the annotation @Backref), but the agent codomain is the
most generic one (i.e. the Agent domain).

The body of an SCA-ASM component has the
shape (dom and funct def, inv def, rule def, service def,
prog def, init def, handler def), and consists of definitions
of domains and functions (static concrete-domains and
static/derived functions) already declared in the signa-
ture, definitions of state invariants, definitions of (utility)
transition rules for internal computation, definitions of
services (i.e. definition of transition rules annotated with
@Service), the transition rule definition (that takes by
convention the same name of the component’s module)
to assign as “program” to the component’s agent created
during the initialization of the top composite ASM, and
the transition rule with the predefined name r_init that
is in turn invoked in the initialization rule of the container

composite to initialize the internal state (controlled func-
tions). In addition, named transition rules, annotated re-
spectively, with @ExceptionHandler and @Compensation-

Handler can be defined as exception and compensation
handlers (see paragraph III-B4 below).

Fig. 2 shows on the right the ASM module for the com-
ponent A. This module provides definitions for the business
functions declared in the imported ASM module AService
(corresponding to the provided interface AService). The
module A also provides declarations for the property pA,
the reference b to an agent BService, a back reference
client to the requestor agent, and other functions. The
agent domain AService declared in the interface module
AService and the named rule r_A characterize the agent
associated to the component A.

Note that the notion of service operation (so) provided
by a component is characterized by the pair (Is,Rs): Is is
the service interface (an ASM module) imported by the
component as provided interface, Rs is the named ASM
transition rule annotated with @Service (by convention it
takes the same name of the out business function declared
in Is). In case of a return value, the body of such a rule
must contain, among other things, an update of such out
business function (location); the value of such location
denotes the value to be returned to the client. See, e.g.,
the rule r_op1 in the ASM module A in Fig. 2 and the
occurrence within it of the business function op1 (declared
in the module AService) on the left-side of an update-rule.

In case of multiple services provided by the same com-
ponent (i.e. multiple @Provided interfaces and, therefore,
multiple agent types declarations), one is elected as main
service (read: main active agent) by specifying the anno-
tation @MainService when importing the corrisponding
service interface. This allows a componnet to contain more
than one active agent within it, but only one (the main
agent) is responsible for initializing the component’s state
(in the rule r_init) and, eventually, for the startup of the
other agents by assigning programs to them.

c) Assembly description: SCA describes the con-
tent and linkage of an application in assemblies called
composites. Composites can contain components, services,
references, property declarations, plus suitable wires to
establish connections. Composites can be used as complete
component implementations within other composites, al-
lowing for a hierarchical construction of business solutions.
A top level composite describes the overall assembly.

Definitions similar to the ones provided in the previous
paragraph can be given for an SCA-ASM composite com-
ponent. An SCA-ASM composite is essentially an ASM
module that embeds (through import clauses) the ASM
modules corresponding to the sub-components of the SCA
composite. In particular, communication links between
components, that are denoted in SCA by appropriated
wires as configured by the SCA composite, are created
in the initialization (constructor) rule of the composite
ASM in terms of function (reference) assignments. The

Fig. 3. SCA-ASM composite shape

top composite SCA-ASM describing the overall assembly
is the main ASM endowed with an initial state and a main
rule to provide the necessary initialization and the initial
startup of all agents’ programs to make the system model
executable. The resulting system is an asynchronous multi-
agent ASM that will behave accordingly to the behavior
of each service (ASM agent) involved in.

The ASM module C shown in Fig. 3 (corresponding to
the composite C in Fig. 1), for example, imports the ASM
modules for the sub-components A and B, and declares two
references compA and compB to the agents of the subcom-
ponents. It also carries out in the constructor rule r_init

the wires setting, properties setting, agents’ program as-
signment, and initialization of the sub-components.

We abstract from the SCA notion of binding, i.e. from
several access mechanisms used by services and references
(e.g. WSDL binding, JMS binding, RMI binding, etc.).
We assume that components communicate over the com-
munication links through an abstract asynchronous and
message-oriented mechanism (see next subsection), where
a message encapsulates information about the partner link
and the referenced service name and data.

B. Service behavior

Commands of the SCA-ASM language to model be-
havior include constructs to express the control flow of
component’s tasks, as well as primitive for services orches-
tration. Some of these commands correspond to predefined
ASM rules whose semantics have been precisely defined in
terms of ASMs [28] and whose AsmetaL implementation
is provided as external library CommonBehavior to be
imported as part of an SCA-ASM module (see the import
section in listing 1).

1) Service internal behavior: Service tasks are modeled
as ASM rules [2].

2) Service interaction: External services are invoked
in a synchronous and asynchronous manner through the
following primitives:

• wsend[lnk, R, snd]: sends data snd without blocking
to the partner link lnk in reference to the service
operation R (no acknowledgment is expected).

• wreceive[lnk, R, rcv]: receives data in the location
rcv from the partner link lnk in reference to the
service operation R; it blocks until data are received.
No acknowledgment is expected.

• wsendreceive[lnk, R, snd, rcv]: in reference to the
service operation R, some data snd are sent to the
partner link lnk, then the action waits for data to be
sent back, which are stored in the receive location rcv ;
no acknowledgment is expected for send and receive.

• wreplay[lnk, R, snd]: returns some data snd to the
partner link lnk, as response of a previous R request
received from the same partner link; no acknowledg-
ment is expected.

These primitives, mainly inspired by the UML4SOA, cor-
respond to the invocation of predefined ASM rules defined
in [28] as“wrappers”of high-level communication patterns,
originally presented in [29], which model in terms of ASMs
complex interactions of distributed service-based (busi-
ness) processes that go beyond simple request-response
sequences and may involve a dynamically evolving number
of participants. These communication rules rely on a dy-
namic domain Message that represents messages managed
by an abstract message passing mechanism.

The language can be easily enriched with additional
communication patterns (e.g. for multi-party interactions
already supported in ASM as specializations of the more
abstract patterns formalized in [29]). They will be consid-
ered for future extension.

3) Workflow management: Service activities (i.e. ASM
rules invocations) can be orchestrated in accordance with
a workflow expressible by the following constructs4:

• Conditional behavior: if cond then R1 else R2
to select exactly one activity for execution from alter-
native choices.

• Repetitive execution: while cond do R
to repeat execution of an activity R as long as the
Boolean condition cond evaluates to true at the be-
ginning of each iteration.

• Sequential processing: seq R1 R2 . . . Rn enseq
to perform a collection of activities R1, R2, . . . Rn in
sequential order.

• Parallel processing: par R1 R2 . . . Rn endpar
to perform a collection of activities in a synchronous

4These language constructs provide the same expressiveness of the
control-flow commands of WS-BPEL, leaving out aspects as termi-
nation and event handlers within scope activities, synchronization
dependencies within flow activities, wait activities, which will be
considered for future extension. However, our notation has a broader
scope: it provides, in an unique formalism, modeling primitives for
orchestration, communication and computation aspects.

parallel way5.
• Multiple branch processing: forall n ∈ N do R(n)

to split N times the execution of the same activity R.
• Spawn of sub-threads: spawn child with R

to create a child agent having activity R as program
to execute.

4) Error and compensation handling: Fault and com-
pensation handlings are strictly related. They require the
execution of specific activities (attempting) to reverse the
effects of previously executed activities. The mechanism
described here is mainly inspired by the UML4SOA.

The behavior of an exception handler for an activ-
ity RA is specified by an ASM rule to be executed in
case of fault. The annotation @ExceptionHandler de-
notes the rule’s role as exception handler. The function
exceptionHandler(RA) is used, within the initialization
rule for a given component, to associate a component
service operation RA with its exception handler. To raise
an exception when a fault occurs, the predefined rule
raiseException[a,RA,msg] is invoked to put the agent
a in exception mode, expose a possible error message msg
(if any), and lunch the rule exceptionHandler(RA).

As exemplification of the error handling mechanism,
consider the rule failedLogin, in listing 1, acting as error
handler for the activity login – according to the value of
the function exceptionHandler in the rule init –. The
exception is raised by executing the rule raiseException

inside the service rule login.
The mechanism for compensation handling is treated

similarly. The annotation @Compensate is used to mark
a rule acting as compensation handler of a given activity
RA. This last is associated with its handler by the func-
tion compensationHandler(RA) settled in the component
initialization rule. When a compensation for a service
activity RA, already completed successfully, must be acti-
vated, the predefined rule compensate[a,RA] is invoked
to put the agent a in compensation mode and lunch the
rule compensationHandler(RA).

The predefined rule compensateAll[a,RA] can be
used, instead, to invoke all compensation handlers that are
nested in the current service activity RA. This rule invokes,
in a sequential order, all compensation handlers rules for
all service actions inner in the scope of RA, in reverse
order of their completion. It has the same semantics of
the «compensateAll» actions of the UML4SOA.

5) Component Life Cycle: SCA-ASM supports a simple
component life cycle. A component (agent) deployed and
instantiated in an assembly may be in a state ranging
in the set {init, ready, blocked, exited, compensation, ex-
ception}. The initial state of the component is init. The
agent becomes ready when available to interact with other

5This parallel processing corresponds to the fork/join construct of
other languages, which can be used to spawn finitely many sub-agents
and merge the control flow again when all the parallel activities end.
Asynchronous parallel split is not yet supported, although it can be
provided by using the concept of asynchronous ASMs.

service components. It is blocked when data are expected
upon service invocation. Compensation and exception
modes refer to the agent’s activity of compensation and
rollback. An agent puts itself at exited mode upon deferred
termination. The functionality needed to manipulate the
state of a component is implemented through those ASM
rules specifying the semantics of the predefined commands
of the SCA-ASM language regarding service invocation,
components interaction, error and compensation handling.

IV. Tool support and evaluation

We implemented a tool6 that allows modelers to design,
assembly, and execute SCA-ASM models of components
in an unique integrated environment (see Fig. 4).

a) SCA-ASM tool overview: The tool consists of a
graphical modeling front-end and of a run-time platform as
back-end. The graphical front-end is the SCA Composite
Designer that is an Eclipse-based graphical development
environment for the construction of SCA composite as-
semblies. An SCA metamodel (based on the Eclipse Mod-
eling Framework (EMF) – a platform for Model-driven
Engineering) is at the core of such a graphical editor.
We extended the SCA Composite Designer and the SCA
metamodel to support ASM elements like component and
interface implementation. Fig. 4 shows a screenshot of the
tool. Appropriate ASM icons (see the right side of Fig. 4)
may be used to specify ASM modules as (abstract) imple-
mentation of components and interfaces of the considered
SCA assembly; alternatively, ASM modules files can be
selected from the explorer view (on the left side of Fig.
4) and then dragged and dropped on the components and
interfaces of the SCA assembly diagram.

The back-end is the Apache Tuscany SCA runtime 7 –
to run and test SCA assemblies of components developed
with different implementation technologies and spread
across a distributed environment (cloud and enterprise
infrastructures) – combined with the ASMETA toolset to
support various forms of high-level functional analysis. In
particular, we extended the Tuscany platform to allow the
execution of ASM models of SCA components through the
simulator ASMETA/AsmetaS (as shown by the console
output shown in Fig. 4) within Tuscany.

b) Formal functional analysis scenarios and case stud-
ies: SCA-ASM makes it possible to specify abstract com-
ponents, to compose them, and to simulate them and
check various functional properties with the help of the
ASMETA analysis toolset and of the Tuscany platform.

The following functional analysis scenarios are sup-
ported. Offline analysis: First, designers are able to exploit
first the functionality of the ASMETA analysis toolset
(also based on the Eclipse environment) to validate and
verify SCA-ASM models of components in an off line
manner, i.e. ASM models of such abstract (or mock)

6https://asmeta.svn.sourceforge.net/svnroot/asmeta/code/
experimental/SCAASM

7http://tuscany.apache.org/

components may be analyzed in isolation to determine
if they are fit for use. As analysis techniques, the AS-
META toolset includes simulation, scenario-based simu-
lation, model-based testing and model checking.

In-place simulation: Then, an in-place simulation sce-
nario may be also carried out to execute early the behavior
of the overall composite application. In this case, the
designer can exploit the functionality of the AsmetaS simu-
lator directly within the SCA runtime platform to execute
the ASM specification (intended as abstract implementa-
tion) of mock components together with the other real
and heterogeneous (non ASM-implemented) components
according to the chosen SCA assembly.

In addition, the validated and verified SCA-ASM models
can be eventually reused in the future as oracles, when the
real implementation of those components is available, to
perform conformance analysis (or model-based testing) and
run-time monitoring.

Several case studies of varying sizes and covering differ-
ent uses of the SCA-ASM constructs have been developed.
These include a Robotics task coordination case study
[23] of the EU project BRICS [6] and a scenario of the
Finance case study of the EU project SENSORIA [7].
This last is a credit (web) portal application of a credit
institute that allows customer companies to ask for a loan
to a bank. Fig. 4 shows the SCA assembly of the finance
application. It consists of the following SCA components:
Portal, InformationUpload, Authentication, Valida-
tion, InformationUpdate, RequestProcessing and Con-

tractProcessing. Actors supervisor, emploee and the
customer itself (that starts the overall scenario) – appear
as external partners (see the promoted services and ref-
erences of the SCA composite Finance in Fig. 4). The
considered scenario was taken from [15] and is related
to the orchestration of the necessary steps for processing
the credit request, involving a preliminary evaluation by
an employee, and subsequent evaluation by a supervisor
before a contract proposal is sent to the customer. At any
moment the customer may require to abort the process
and the system has to rollback the partially executed
actions, thus preventing an employee or a supervisor from
examining an already aborted request. More details and
functional requirements on this scenario can be found in
the informal description reported in [15]. It should be also
noted that the functional analysis of this case study is out
of the scope of this paper.

Listings 1 and 2 report the ASM specification of the
SCA PortalServiceComponent (or simply Portal) and
its provided service interface, respectively. Consider the
interaction between the customer and the service Portal

when this last receives a login request from the customer
(see the rule r_PortalServiceComponent). The customer
ID is sent to the Portal that invokes the login service (the
rule r_login). Portal synchronously exchanges messages
with the service Authentication, sending the customer
ID and receiving back the boolean valid. If valid is

Fig. 4. SCA-ASM tool screenshot

true, then the service generates a new session ID (by
incrementing the current ID number) and sends it back
to the customer. If valid is false, then the service sends
a message back to the customer signaling the failure of
the login and it raises the exception failedLogin (see
the simulation snapshot in Fig. 4) that terminates the
process (as denoted by the status of the Portal’agent
that is set to exception). Portal also receives the cus-
tomer’s choice about the desired service (here we only
consider the service CREDIT_REQUEST) and invokes the
service InformationUpload by sending it a message with
the requestID. From then on, the customer communicates
with the InformationUpload.

V. Conclusion and future work

We presented a practical approach that combines the
SCA open standard model for service assembly and the
ASM formal support to tackle the complexity of service
oriented applications by offering a high degree of design
and validation at early development phases. The language
permits to express service-oriented components assem-
blies, as well as internal service and service orchestration
behavior. The language is supported by a tool that exploits
the SCA runtime Tuscany and the toolset ASMETA for
system model execution and analysis. The effectiveness
of the language was experimented through various case
studies of different complexity and heterogeneity.

We plan to support more useful SCA concepts, such
as the SCA callback interface for bidirectional services.
Moreover, currently the implementation scope of an SCA-
ASM component is composite, i.e. a single component

instance is cretaed for all service calls. We postpone as
future work the implementation of the other two imple-
mentation scopes, stateless (to create a new component
instance on each service call) and conversation (to create
a component instance for each conversation) supported
by the Tuscany runtime. We want also to enrich the
notation with interaction and workflow patterns based
on the BPMN specification and with specific actions to
support an event-based style of interaction where the com-
ponents of a distributed system communicate via events
which are generated by ones components and received
by others trough a publish/subscribe schema, including
service publication, discovery and negotiation. Moreover,
we aim at addressing self-adaptation issues, both at struc-
tural level (as addition/substitution of components) and at
behavioral level (by modifying components interactions).

On the functional analysis side, we plan to experiment
the use of SCA-ASM models as oracles for reasoning and
testing about real components implementations, including
but not limited to, conformance testing and run-time
monitoring. We also plan to extend the language with
pre/post-conditions defined on services (transition rules)
for contract correctness checking in component assemblies.
Through the SCA Policy Framework, we want also to
enrich service descriptions with non-functional properties
(such as availability, reliability, etc.) that jointly represent
the quality of the service.

References

[1] Service Component Architecture (SCA) www.osoa.org.
[2] E. Börger and R. Stärk, Abstract State Machines: A Method for

High-Level System Design and Analysis. Springer Verlag, 2003.

Listing 1. ASM implementation of the SCA Portal component
module PortalServiceComponent
import STDL/StandardLibrary, STDL/CommonBehavior
//@Provided
import PortalService
//@Required
import InformationUploadService, AuthenticationService,

CustomerService
export ∗
signature:
//@Reference
shared authenticationService : Agent −> AuthenticationService
//@Reference
shared informationUploadService : Agent −> InformationUploadService
//@Reference
shared customerService : Agent −> CustomerService
controlled valid : Boolean
controlled inputPortal : Agent −> Prod(String,String)
controlled inputService : Agent −> Prod(Integer,String)
controlled sessionId : Integer
definitions:
//@ExceptionHandler
rule r failedLogin($a in Agent) = skip

//@Service
rule r login($user in String, $pwd in String) =
seq
r wsendreceive[authenticationService(self),

”r authentication(Agent,String,String)”,
($user,$pwd),valid]

if (valid)
then seq

sessionId:=sessionId+1
r wsend[customerService(self),”r logged(Agent,String,Integer)”,

($user,sessionId)]
endseq

else if (not(valid)) //valid can still be undef
then seq

r wsend[customerService(self),
”r failedLogin(Agent,String)”,$user]

r raiseException[self,”r login”,”Login failed!”]
endseq

endif
endif

endseq

//@Service
rule r selectService($sessionId in Integer, $service in String) =
if ($service=”CREDIT REQUEST”)
then r wsend[informationUploadService(self),

”r createInst(Agent,Integer)”,$sessionId] endif

rule r PortalServiceComponent = //Portal’s agent program
par
if nextRequest(self)=”r login(String,String)”
then seq

r wreceive[customerService(self),
”r login(String,String)”,inputPortal(self)]

if isDef(inputPortal(self))
then r login[first(inputPortal(self)),second(inputPortal(self))]
endif

endseq
endif
if nextRequest(self)=”r selectService(Integer,String)”
then seq

r wreceive[customerService(self),
”r selectService(Integer,String)”,inputService(self)]

if isDef(inputService(self))
then r selectService[first(inputService(self)),

second(inputService(self))]
endif

endseq
endif

endpar

rule r init($a in PortalService) = //Constructor rule
par
sessionId:=0
status($a):=READY
exceptionHandler($a,”r login”):= <<r failedLogin(Agent)>>

endpar

Listing 2. ASM definition of the PortalService interface
module PortalService
export ∗
signature:
domain PortalService subsetof Agent
out login: Prod(Agent,String,String) −> Rule
out selectService : Prod(Agent,Integer,String) −> Rule

[3] The ASMETA tooset website, http://asmeta.sf.net/, 2006.
[4] OMG. Service oriented architecture Modeling Language

(SoaML), http://www.omg.org/spec/soaml/1.0/beta1/.
[5] P. Mayer, A. Schroeder, N. Koch, and A. Knapp, The

UML4SOA Profile, in Technical Report, LMU Muenchen, 2009.
[6] EU project BRICS, http://www.best-of-robotics.org/.
[7] EU project SENSORIA, www.sensoria-ist.eu/.
[8] P. Mayer, A. Schroeder, and N. Koch, A model-driven approach

to service orchestration, Proc. SCC, IEEE, 2008, pp. 533–536.
[9] M. T. Beek, A. Bucchiarone, and S. Gnesi, Formal Methods

for Service Composition. Annals of Mathematics, Computing &
Teleinformatics, vol. 1, no. 5, pp. 1–10, 2007.

[10] EU project S-Cube http://www.s-cube-network.eu/.
[11] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro, A

calculus for service oriented computing, Proc. ICSOC, LNCS
4294, Springer, 2006, pp. 327–338.

[12] I. Lanese, F. Martins, V. T. Vasconcelos, and A. Ravara,
Disciplining orchestration and conversation in service-oriented
computing, Proc. SEFM, IEEE, 2007, pp. 305–314.

[13] R. Bruni, Calculi for service-oriented computing, Proc. SFM,
LNCS 5569, Springer, 2009, pp. 1–41.

[14] The SENSORIA Approach, Oct. 17th, 2007, www.sensoria-
ist.eu/images/stories/frontpage/whitepaper_sensoria.pdf

[15] F. Banti, A. Lapadula, R. Pugliese, F. Tiezzi, Specification and
Analysis of SOC Systems Using COWS: A Finance Case Study,
Electr. Notes Theor. Comput. Sci., vol. 235, pp. 71–105, 2009.

[16] SRML, http://www.cs.le.ac.uk/srml/, 2009.
[17] J. Abreu, F. Mazzanti, J. L. Fiadeiro, and S. Gnesi, A model-

checking approach for service component architectures, Proc.
FMOODS/FORTE, LNCS 5522, Springer, 2009, pp. 219–224.

[18] E. Börger, O. Sörensen, and B. Thalheim, On defining the
behavior of or-joins in business process models, J. of Universal
Computer Science, vol. 15, no. 1, pp. 3–32, 2009.

[19] E. Börger, Modeling Workflow Patterns from First Principles,
Proc. ER, LNCS 4801, Springer, 2007, pp. 1–20.

[20] R. Farahbod, U. Glässer, and M. Vajihollahi, A formal semantics
for the business process execution language for web services,
Proc. WSMDEIS, INSTICC Press, 2005, pp. 122–133.

[21] M. Altenhofen, A. Friesen, and J. Lemcke, ASMs in Service
Oriented Architectures, Journal of Universal Computer Science,
vol. 14, no. 12, pp. 2034–2058, 2008.

[22] Z. Ding, Z. Chen, and J. Liu, A rigorous model of service
component architecture, J. ENTCS, vol. 207, April, 2008.

[23] D. Brugali and L. Gherardi and P. Scandurra, A Robotics Task
Coordination Case Study, Workshop on Software Development
and Integration in Robotics (SDIR), May 9, 2011.

[24] D. Du , J. Liu, and H. Cao, A rigorous model of contract-based
service component architecture, Proc. CSSE, IEEE, 2008.

[25] A. Martens and S. Moser, Diagnosing SCA components using
WOMBAT, Proc. Business Process Management, LNCS 4102,
Springer, 2006, pp. 378–388.

[26] C. Attiogbé, P. André, and G. Ardourel, Checking compo-
nent composability, Proc. Software Composition, LNCS 4089,
Springer, 2006, pp. 18–33.

[27] P. André, G. Ardourel, and C. Attiogbé, Composing compo-
nents with shared services in the kmelia model, Proc. Software
Composition, LNCS 4954, Springer, 2008, pp. 125–140.

[28] E. Riccobene and P. Scandurra, An ASM-based executable
formal model of service-oriented component interactions and
orchestration, Proc. BM-MDA’10, ACM Press, 2010.

[29] A. P. Barros and E. Börger, A compositional framework for
service interaction patterns and interaction flows, in ICFEM,
LNCS 3785, Springer, 2005, pp. 5–35.

