
ar
X

iv
:1

10
4.

40
53

v1
 [

cs
.A

I]
 2

0
A

pr
 2

01
1

On the evolution of the instance level of DL-Lite

knowledge bases

Maurizio Lenzerini, Domenico Fabio Savo

Dipartimento di Informatica e Sistemistica
Sapienza Università di Roma
lastname @dis.uniroma1.it

Abstract. Recent papers address the issue of updating the instance
level of knowledge bases expressed in Description Logic following a model-
based approach. One of the outcomes of these papers is that the result of
updating a knowledge base K is generally not expressible in the Descrip-
tion Logic used to express K. In this paper we introduce a formula-based
approach to this problem, by revisiting some research work on formula-
based updates developed in the ’80s, in particular the WIDTIO (When
In Doubt, Throw It Out) approach. We show that our operator enjoys
desirable properties, including that both insertions and deletions accord-
ing to such operator can be expressed in the DL used for the original
KB. Also, we present polynomial time algorithms for the evolution of
the instance level knowledge bases expressed in DL-LiteA,id, which the
most expressive Description Logics of the DL-Lite family.

1 Introduction

Description Logics (DLs) [3] are logics for expressing knowledge bases (KBs)
constituted by two components, namely, the TBox, asserting general properties
of concepts and roles (binary relations), and the ABox, which is a set of as-
sertions about individuals that are instances of concepts and roles. It is widely
accepted that such logics are well-suited for expressing ontologies, with the TBox
capturing the intensional knowledge about the domain of interest, and the ABox
expressing the knowledge about the instance level of the predicates defined in
the TBox. Following this idea, several Knowledge Representation Systems, called
DL systems, have been recently built, providing methods and tools for managing
ontologies expressed in DLs 1. Notice that numerous DLs have been studied in
the last decades, with the goal of analyzing the impact of the expressive power of
the DL language to the complexity of reasoning. Consequently, each DL system
is tailored towards managing KB expressed in a specific DL.

By referring to the so-called functional view of knowledge representation [13],
DL systems should be able to perform two kinds of operations, called ASK and
TELL. ASK operations, such as subsumption checking, or query answering, are

1 http://www.cs.man.ac.uk/ sattler/reasoners.html

http://arxiv.org/abs/1104.4053v1

used to extract information from the KB, whereas TELL operations aim at chang-
ing the KB according to new knowledge acquired over the domain. In other
words, TELL operations should be able to cope with the evolution of the KB.

There are two types of evolution operators, corresponding to inserting, and
deleting chunks of knowledge, respectively. In the case of insertion, the aim is to
incorporate new knowledge into the KB, and the corresponding operator should
be defined in such a way to compute a consistent KB that supports the new
knowledge. In the case of deletion, the aim is to come up with a consistent KB
where the retracted knowledge is not valid. In both cases, the crucial aspect to
take into account is that evolving a consistent knowledge base should not intro-
duce inconsistencies. We point out that a different approach would be to allow
inconsistencies in the KB, and then resorting to sophisticated quesy answering
mechanisms, tolerant to such inconsistencies (see, for example, [1,12], but this is
outside the scope of the approach presented here.

Notice that, while ASK operations have been investigated in detail by the DL
community, existing DL reasoners do not provide explicit services for KB evolu-
tion. Nevertheless, many recent papers demonstrate that the interest towards a
well-defined approach to KB evolution is growing significantly [9,14,7,15,6].

Following the tradition of the work on knowledge revision and update [11],
all the above papers advocate some minimality criterion in the changes of the
KB that must be undertaken to realize the evolution operations. In other words,
the need is commonly perceived of keeping the distance between the original KB
and the KB resulting from the application of an evolution operator minimal.
There are two main approaches to define such a distance, called model-based
and formula-based, respectively. In the model-based approaches, the result of an
evolution operation applied to the KB K is defined in terms of a set of models,
with the idea that such a set should be as close as possible to the models of K.
One basic problem with this approach is to characterize the language needed to
express the KB that exactly captures the resulting set of models. Conversely,
in the formula-based approaches, the result is explicitly defined in terms of a
formula, by resorting to some minimality criterion with respect to the formula
expressing K. Here, the basic problem is that the formula constituting the result
of an evolution operation is not unique in general.

In this paper, we study the problem of DL KB evolution, by focusing our
attention to scenarios characterized by the following elements:

1. We consider the case where the evolution affects only the instance level of
the KB, i.e., the ABox. In other words, we enforce the condition that the
KB resulting from the application of the evolution operators has the same
TBox as the original KB (similarly to [14,7]).

2. We aim at a situation where the KB resulting from the evolution can be
expressed in the same DL as the original KB. This is coherent with our
goal of providing the foundations for equipping DL systems with evolution
operators: indeed, if a DL system S is able to manage KBs expressed in a
DL L, the result of evolving such KBs should be expressible in L.

3. The KBs resulting from the application of an evolution operator on two
logically equivalent KBs should be mutually equivalent. In other words, we
want the result to be independent of the syntactic form of the original KB.

Assumption (1), although limiting the generality of our approach, captures
several interesting scenarios, including ontology-based data management, where
the DL KB is used as a logic-based interface to existing information systems
(databases, web sources, etc.).

As for item (2), we note that virtually all model-based approaches suffer from
the expressibility problem. This has been reported in many recent papers, includ-
ing [14,7,6], for DLs whose expressive power range from DL-Lite to ALCQIO.
For this reason, we adopt a formula-based approach, inspired in particular by the
work developed in [8] for updating logical theories. As in [8], we consider both
insertions and deletions. However, we differ from [8] for an important aspect. We
already noted that the formula constituting the result of an evolution operation
is not unique in general. While [8] essentially proposes to keep the whole set of
such formulas, we take a radical approach, and consider their intersection as the
result of the evolution. In other words, we follow the When In Doubt Throw It
Out (WIDTIO) [10,16] principle.

Finally, to deal with item (3), we sanction that the notion of distance between
KBs refers to the closure of the ABox of a KB, rather than to the ABox itself.
The closure of an ABox A with respect to an TBox T is defined as the set of all
ABox assertions that logically follows from T and A. By basing the definition
of distance on the closure of ABoxes, we achieve the goal of making the result
of our operators independent of the form of the original KB.

After a brief introduction to DLs (Section 2), we provide the definition of
our evolution operators in Section 3, together with a comparison with related
approaches. The remaining sections are devoted to illustrating algorithms for
deletion (Section 4), and insertion (Section 5) for KBs expressed in the DL
DL-LiteA,id, which is the most expressive logic in the DL-Lite family [4] The
DL-Lite family2 has been specifically designed to keep all reasoning tasks poly-
nomially tractable, and we show that this property still holds for the evolution
operators proposed in this paper. Indeed, we show that computing the result of
both insertions and deletions to KBs expressed DL-LiteA,id is tractable.

2 Preliminaries

Let S be a signature of symbols for individual (object and value) constants, and
atomic elements, i.e., concepts, value-domains, attributes, and roles. If L is a
DL, then an L-KB K over S is a pair 〈T ,A〉 [3] where T , called TBox, is a
finite set of intensional assertions over S expressed in L, and A, called ABox, is
a finite set of instance assertions, i.e, assertions on individuals, over S. Different
DLs allow for different kinds of TBox and/or ABox assertions. In this paper we

2 Not to be confused with the set of DLs studied in [2], which form the DL-Litebool
family.

assume that ABox assertions are always atomic, i.e., they correspond to ground
atoms, and therefore we omit to refer to L when we talk about ABox assertions.

The semantics of a DL KB is given in terms of first-order interpretations [3].
An interpretation is a model of a DL knowledge base K = 〈T ,A〉 if it satisfies all
assertions in T ∪A (the notion of satisfaction depends on the constructs allowed
by the specific DL in which K is expressed). We denote the set of models of K
with Mod(K).

Let T be a TBox in L, and let A be an ABox. We say that A is T -consistent
if 〈T ,A〉 is satisfiable, i.e. if Mod(〈T ,A〉) 6= ∅, T -inconsistent otherwise. The
T -closure of A with respect to T , denoted clT (A), is the set of all atomic ABox
assertion that are formed with individuals in A, and are logically implied by
〈T ,A〉. Obviously, 〈T ,A〉 is logically equivalent to 〈T , clT (A)〉. A is said to
be T -closed if clT (A) = A. Finally, for an ABox assertion γ1, we denote by
Subsumee〈T ,A〉(γ1) the set of atoms γ2 ∈ clT (A) such that 〈T ,A〉 |= γ2 ⊃ γ1.
The description logic DL-LiteA,id. The DL-Lite family [4] is a family of low
complexity DLs particularly suited for dealing with KBs with very large ABoxes,
and forms the basis of OWL 2 QL, one of the profile of OWL 2, the official
ontology specification language of the World-Wide-Web Consortium (W3C)3.

We now present the DL DL-LiteA,id, which is the most exprressive logic in
the family. Expressions in DL-LiteA,id are formed according to the following
syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B T −→ ⊤D | T1 | · · · | Tn

Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

where A, P , and U are symbols in S denoting respectively an atomic concept
name, an atomic role name and an attribute name, T1, . . . , Tn are all the value-
domains allowed in the logic (those corresponding to the data types adopted by
Resource Description Framework (RDF)4), ⊤D denotes the union of all domain
values, P− denotes the inverse of P , ∃Q denotes the objects related to by the
role Q, ¬ denotes negation, δ(U) denotes the domain of U , i.e., the set of objects
that U relates to values, and ρ(U) denotes the range of U , i.e., the set of values
related to objects by U .

A DL-LiteA,id TBox T contains intensional assertions of three types, namely
inclusion assertions, functionality assertions, and identification assertions [5]
(IDs). More precisely, DL-LiteA,id assertions are of the form:

B ⊑ C concept inclusion assertion
E ⊑ T value-domain inclusion assertion
Q ⊑ R role inclusion assertion
(funct U) attribute functionality assertion
(id B π1, ..., πn) identification assertions

3 http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/
4 http://www.w3.org/RDF/

http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/
http://www.w3.org/RDF/

In the identification assertions, π denotes a path, which is an expression built
according to the following syntax rule:

π −→ S | B? | π1 ◦ π2

where S denotes an atomic role, the inverse of an atomic role, or an atomic
attribute, π1 ◦π2 denotes the composition of the paths π1 and π2, and B?, called
test relation, represents the identity relation on instances of the concept B. In
our logic, identification assertions are local, i.e., at least one πi ∈ {π1, ..., πn} has
length 1, i.e., it is an atomic role, the inverse of an atomic role, or an atomic
attribute. In what follows, we only refer to IDs which are local.

A concept inclusion assertion expresses that a (basic) concept B is subsumed
by a (general) concept C. Analogously for the other types of inclusion asser-
tions. Inclusion assertions that do not contain (resp. contain) the symbols ’¬’
in the right-hand side are called positive inclusions (resp. negative inclusions).
Attribute functionality assertions are used to impose that attributes are actually
functions from objects to domain values. Finally, an ID (id B π1, ..., πn) asserts
that for any two different instances a,b of B, there is at least on πi such that
a and b differ in the set of their πi-fillers. Note that IDs can be used to assert
functionality of roles. Specifically, the assertion (id ∃Q− Q−) imposes that Q is
functional.

The set of positive (resp., negative) inclusions in T will be denoted by T +

(resp., T −), whereas the set of identification assertions in T will be denoted by
Tid.

A DL-LiteA,id ABox A is a finite set of assertions of the form A(a), P (a, b),
and U(a, v), where A, P , and U are as above, a and b are object constants in S,
and v is a value constant in S.

Example 1. We consider a portion of the Formula One domain. We know that
official drivers (OD) and test drivers (TD) are both team members (TM), and
official drivers are not test drivers. Every team member is a member of (mf) a
exactly one team (FT), and every team has at most one official driver. Finally,
no race director (RD) is a member of a team. We also know that s is the official
driver of team t1, that b is a test driver, and that p is a team member. The
corresponding DL-LiteA,id-KB K is:

T : OD ⊑ TM TD ⊑ TM OD ⊑ ¬TD RD ⊑ ¬TM TM ⊑ ∃mf

TM ⊑ ¬FT ∃mf ⊑ TM ∃mf− ⊑ FT (id OD mf) (id FT mf−)
A: OD(s) mf(s, t1) TD(b) TM(p)

We conclude this section with a brief discussione on the complexity of reason-
ing about a DL-LiteA,id-KB 〈T ,A〉. Satisfiability can be checked in polynomial
time with respect to |T \Tid| and |A|, and in NP with respect to |Tid|. Moreover,
if 〈T ,A〉 is satisfiable, then answering a query q posed to 〈T ,A〉 can be done
in polynomial time with respect to |T | and |A|, and in NP with respect to |q|.
Finally, clT (A) can be computed in quadratic time with respect to |T | and |A|.

3 WIDTIO approach to KB evolution in DLs

In this section we first present our semantics for the evolution of DL knowl-
edge bases at the instance level, and then we provide a comparison between our
operator and other work in the literature.
Semantics. In what follows, L is a DL, and K = 〈T ,A〉 is a satisfiable L-KB. In
other words, we do not consider the evolution of unsatisfiable KBs. In addition,
F is a finite set of atomic ABox assertions in L.

The following definition specifies when a set of ABox assertions “realizes”
the insertion or deletion of a set of ABox assertions with respect to K = 〈T ,A〉.

Definition 1. Let A′ be a finite set of ABox assertions in L. Then, we say that
〈T ,A′〉 accomplishes the insertion of F into 〈T ,A〉 if 〈T ,A′〉 is satisfiable, and
〈T ,A′〉 |= F (i.e., F ⊆ clT (A′)). Similarly, 〈T ,A′〉 accomplishes the deletion of
F from 〈T ,A〉 if 〈T ,A′〉 is satisfiable, and 〈T ,A′〉 6|= F (i.e., F 6⊆ clT (A′)).

Obviously, we are interested in KBs which accomplish the evolution of a KB
with a minimal change. In order to formalize the notion of minimal change, we
first need to provide some definitions.

Let A1 and A2 be two finite sets of ABox assertions in L. Then, we say that
〈T ,A1〉 has fewer insertions than 〈T ,A2〉 with respect to 〈T ,A〉 if clT (A1) \
clT (A) ⊂ clT (A2) \ clT (A); and 〈T ,A1〉 has fewer deletions than 〈T ,A2〉 with
respect to 〈T ,A〉 if clT (A)\clT (A1) ⊂ clT (A)\clT (A2). Also, we say that 〈T ,A1〉
and 〈T ,A2〉 have the same deletions with respect to 〈T ,A〉 if clT (A)\clT (A1) =
clT (A) \ clT (A2).

Definition 2. Let A1 and A2 be two finite sets of ABox assertions in L. Then,
〈T ,A1〉 has fewer changes than 〈T ,A2〉 with respect to 〈T ,A〉 if 〈T ,A1〉 has
fewer deletions than 〈T ,A2〉 with respect to 〈T ,A〉, or 〈T ,A1〉 and 〈T ,A2〉 have
the same deletions with respect to 〈T ,A〉, and 〈T ,A1〉 has fewer insertions than
〈T ,A2〉 with respect to 〈T ,A〉.

Now that we have defined the relation of fewer changes between two KBs
w.r.t. another one, we can define the notion of a KB which accomplishes the
insertion (resp. deletion) of a set of facts into (resp. from) another KB minimally.

Definition 3. The L-KB 〈T ,A′〉 accomplishes the insertion (deletion) of F into
(from) 〈T ,A〉 minimally if 〈T ,A′〉 accomplishes the insertion (deletion) of F

into (from) 〈T ,A〉, and there is no L-KB 〈T ,A′′〉 that accomplishes the insertion
(deletion) of F into (from) 〈T ,A〉, and has fewer changes than 〈T ,A′〉 with
respect to 〈T ,A〉.

With these notions in place, we can now define our evolution operator.

Definition 4. Let U = {〈T ,A1〉, . . . , 〈T ,An〉} be the set of all L-KBs accom-
plishing the insertion (deletion) of F into (from) 〈T ,A〉 minimally, and let
〈T ,A′〉 be an L-KB. Then, 〈T ,A′〉 is the result of changing 〈T ,A〉 with the
insertion (deletion) of F if (1) U is empty, and 〈T , clT (A′)〉 = 〈T , clT (A)〉, or
(2) U is nonempty, and 〈T , clT (A′)〉 = 〈T ,

⋂
1≤i≤n clT (Ai)〉.

It is immediate to verify that, up to logical equivalence, the result of changing
〈T ,A〉 with the insertion or the deletion of F is unique. In the rest of this
paper, the result of changing K = 〈T ,A〉 with the insertion (resp. deletion) of F
according to our semantics will be denoted by K ⊕T

∩ F (resp. K ⊖T
∩ F). Notice

that, by definition of our operator, in the case where F is inconsistent with T ,
the result of changing 〈T ,A〉 with both the insertion and the deletion of F is
logically equivalent to 〈T ,A〉 itself.

Example 2. Consider the DL-LiteA,id KB K of the Example 1, and suppose
that p becomes now a race director, and b becomes the new official driver ofq
team t1. To reflect this new information, we change K with the insertion of
F1 = {RD(p), OD(b),mf(b, t1)}. Since the TBox implies that a race director
cannot be a team member, RD(p) contradicts TM(p). Also, since every team has
at most one official driver, OD(b) and mf(b, t1) contradict mf(s, t). According
to Definition 3, the KBs accomplishing the insertion of F1 into K minimally are:

K1 = 〈T , {RD(p),OD(b),mf(b, t1),TM(s),mf(s, t1)}〉
K2 = 〈T , {RD(p),OD(b),mf(b, t1),TM(s),OD(s)}〉

Thus, K ⊕T
∩ F1 is:

K3 = 〈T , {RD(p),OD(b),mf(b, t1),TM(s)}〉.

Now, suppose that we do not know anymore whether b is a member of t1, and,
even more, whether b is a team member at all. Then, we change K3 with the
deletion of F2 = {TM(b),mf(b, t1)}, thus obtaining

K3 ⊕T
∩ F2 = 〈T , {RD(p),TM(s),OD(b)}〉.

Comparison with related work. We mentioned in the introduction several
model-based approaches to DL KB evolution, and noticed that they all suffer
from the expressibility problem. This problem is also shared by [15], that uses
features instead of models, and proposes the notion of approximation to cope
with the expressibility problem, similarly to [7].

Related to our proposal are several formula-based approaches proposed in
the literature. We already pointed out that our proposal is inspired by [8], al-
though the problem studied in [8] is evolution in propositional logic, whereas
the context dealt with in our work is instance-level evolution in DLs. Perhaps,
the closest approach to the one proposed in this paper is that reported in [6],
where formula-based evolution (actually, insertion) of DL-Lite KBs is studied.
The main difference with our work is that we base our semantics on the WIDTIO
principles, and therefore we compute the intersection of all KBs accomplishing
the change minimally. Conversely, in the bold semantics discussed in [6], the re-
sult of the change is chosen non-deterministically among the KBs accomplishing
the change minimally. Another difference is that while [6] addresses the issue of
evolution of both the TBox and the ABox, we only deal with the case of fixed
TBox (in the terminology of [6], this corresponds to keep the TBox protected).
It is interesting to observe that the specific DL considered in [6] is DL-LiteFR,

and for this logic, exactly one KB accomplishes the insertion of a set of ABox
assertions minimally. It follows that for instance-level insertion, their bold se-
mantics coincides with ours. On the other hand, the presence of identification
assertions in DL-LiteA,id changes the picture considerably, since with such asser-
tions in the TBox, many KBs may exist accomplishing the insertion minimally.
In this case, the two approaches are indeed different. Finally, [6] proposes a vari-
ant of the bold semantics, called careful semantics, for instance-level insertion
in DL-LiteFR. Intuitively, such a semantics aims at disregarding knowledge that
is entailed neither by the original KB, nor by the set of newly asserted facts.
Although such principle is interesting, we believe that the careful semantics is
too drastic, as it tends to eliminate too many information from the original KB
as shown in the following example.

Example 3. Consider the KB K of the Example 1, and suppose that we c is now
a member of a formula one team, which means changing K with the insertion of
TM(c). Notice that such a new fact does not contradict any information in K.
Therefore, in our approach, the result of the insertion is 〈T , {OD(s), mf(s, t1),
TD(b), TM(p), TM(c) }〉. Conversely, one can verify that the result under the
careful semantics is 〈T , {OD(s), mf(s, t1), TM(c) }〉, thus loosing both the
information that b is a test driver, and the information that p is a team member.

Finally, we point out that, to our knowledge, the evolution operator presented
in this work is the first tractable evolution operator based on the WIDTIO
principle.

4 Deletion in DL-LiteA,id

We study deletion under the assumption that the DL language L is DL-LiteA,id.
Thus, we refer to a DL-LiteA,id-KB K = 〈T ,A〉, and we address the problem of
changing K with the deletion of a finite set F of ABox assertions. We assume
that both 〈T ,A〉 and 〈T , F 〉 are satisfiable.

The following theorem specifies when a DL-LiteA,id-KB accomplishes the
deletion of F from 〈T ,A〉 minimally.

Theorem 1. 〈T ,A′〉 accomplishes the deletion of F from 〈T ,A〉 minimally if
and only if clT (A′) is a maximal T -closed subset of clT (A) such that F 6⊆
clT (A′).

We now consider the case where the set F is constituted by just one assertion
f . By exploiting Theorem 1, it is easy to conclude that there is exactly one KB
accomplishing the deletion of {f} from a given KB.

Theorem 2. Let f be an ABox assertion. Up to logical equivalence, there is
exactly one KB of the form 〈T ,A′〉 that accomplishes the deletion of {f} from
〈T ,A〉 minimally, and such KB can be computed in polynomial time with respect
to |T | and |A|.

Proof (sketch). The proof is based on the fact that 〈T ,A \ SubsumeeK(f)〉
is the unique maximal T -closed subset A′ of clT (A) such that {f} 6⊆ clT (A′).

Let us now consider the case of arbitrary F = {f1, . . . , fm}. Suppose that,
for every 1 ≤ i ≤ m, 〈T ,Ai〉 accomplishes the deletion of {fi} from 〈T ,A〉
minimally. One might wonder whether the set Γ1 of all KBs accomplishing
the deletion of F from 〈T ,A〉 minimally coincides (modulo logical equivalence)
with Γ2 = {〈T ,A1〉, . . . 〈T ,Am〉}. The next theorem tells us that one direction
is indeed valid: for each KB K1 ∈ Γ1 there exists a KB K2 ∈ Γ2 such that
Mod(K1) = Mod(K2).

Theorem 3. If 〈T ,A′〉 accomplishes the deletion of {f1, . . . , fm} from 〈T ,A〉
minimally, then there exists i ∈ {1..m} such that 〈T ,A′〉 accomplishes the dele-
tion of fi from 〈T ,A〉 minimally.

However, the following example shows that the other direction does not hold:
there may exist a K2 ∈ Γ2 that is not logically equivalent to any K1 ∈ Γ1.

Example 4. Let T be {B ⊑ C,C ⊑ D,E ⊑ D}, let A be {B(a), E(a)}, and let
F be {C(a), D(a)}. It is easy to see that the deletion of D(a) from 〈T ,A〉 is ac-
complished minimally by 〈T , ∅〉, while the deletion of C(a) from 〈T ,A〉 is accom-
plished minimally by 〈T , {E(a)}〉. Therefore, in this case Γ2 = {〈T , ∅〉, 〈T , {E(a)}〉}.
Also, one can verify that 〈T , {E(a)}〉 is the only (up to logical equivalence) KB
accomplishing the deletion of F minimally, i.e., Γ1 = {〈T , {E(a)}〉}. Thus, there
is a KB in Γ2, namely 〈T , ∅〉, that is not logically equivalent to any KB in Γ1.

Note that the above example also shows that deleting F is not equivalent to
iteratively deleting all atoms in F .

The next theorem characterizes when a given 〈T ,Ai〉 ∈ Γ2 accomplishes the
deletion of F minimally.

Theorem 4. Let F = {f1, . . . , fm}, and, for every 1 ≤ i ≤ m, let 〈T ,Ai〉
accomplish the deletion of {fi} from 〈T ,A〉 minimally. Then, 〈T ,Aj〉, where
j ∈ {1..m}, accomplishes the deletion of F from 〈T ,A〉 minimally if and only if
there is no h ∈ {1..m} such that h 6= j, and 〈T , {fh}〉 |= fj.

Proof (sketch). We first show that (α) 〈T ,Aj〉, where j ∈ {1..m}, ac-
complishes the deletion of F from 〈T ,A〉 minimally if and only if there is no
h ∈ {1..m} such that Aj ⊂ Ah, and then show that (β) Aj ⊂ Ah if and only if
h 6= j, and 〈T , {fh}〉 |= fj .

By exploiting Theorems 2, 3, and 4, we can directly prove that K ⊖T
∩ F can

be computed by the algorithm ComputeDeletion below. It is easy to see that
the time complexity of the algorithm is O(|T |2 × |F |2 + |A|2).

Theorem 5. ComputeDeletion(〈T ,A〉, F) terminates, and computes 〈T ,A〉⊖T
∩

F in polynomial time with respect to |T |, |A| and |F |.

Input: a satisfiable DL-LiteA,id KB K = 〈T ,A〉, a finite set of ABox assertions
F such that 〈T , F 〉 is satisfiable

Output: a DL-LiteA,id KB.
begin

F ′ ← F ;
foreach fi ∈ F ′ and fj ∈ F such that i 6= j do

if 〈T , {fj}〉 |= fi then F ′ ← F ′ \ {fi}
return 〈T , clT (A) \ {α ∈ SubsumeeK(f) | f ∈ F ′}〉;

Algorithm 1: Algorithm ComputeDeletion(〈T ,A〉, F)

5 Insertion in DL-LiteA,id

We refer to a DL-LiteA,id-KB K = 〈T ,A〉, and we address the problem of chang-
ing K with the insertion of a finite set F of ABox assertions. As in the previous
section, we assume that both 〈T ,A〉 and 〈T , F 〉 are satisfiable. The main prob-
lem to be faced with insertion is described by the following observation.

Suppose that T contains n identification assertions with at least two atoms
that become simoultaneously violated with the insertion of a single ABox asser-
tion f into 〈T ,A〉, and such that every choice of retracting one of such atoms
yields a maximal subset of clT (A) that is T -consistent with f . Obviously, there
are at least 2n such maximal subsets. What the above example shows is that,
given f , there can be an exponential number of maximal subsets A′ of clT (A)
such that 〈T ,A′ ∪ {f}〉 is satisfiable. Note that this cannot happen in those
DLs of the DL-Lite family which do not admit the use of identification asser-
tions (such as the DL studied in [6]). Indeed, in such logic, there is always one
maximal subset of clT (A) that is consistent with a set F of ABox assertions.

It follows from the above observation that building all maximal subsets of
〈T ,A〉 which are T -consistent with F , and then computing their intersection
is computationally costly. Fortunately, we show in the following that we can
compute K ⊕T

∩ F without computing all maximal consistent subsets of 〈T ,A〉
with F .

To describe our method, we need some preliminary notions. A set V of facts
is called a T -violation set for t ∈ T \ T + if 〈T + ∪ {t}, V 〉 is unsatisfiable, while
for every proper subset V ′ of V , 〈T + ∪ {t}, V ′〉 is satisfiable. Any set V of facts
that is a T -violation set for a t ∈ T \ T + is simply called a T -violation set.

Theorem 6. Let 〈T ,A〉 be a satisfiable DL-LiteA,id-KB, and let α be an ABox
assertion such that 〈T , {α}〉 is satisfiable. If 〈T ,A ∪ {α}〉 is unsatisfiable, then
there is a T -violation set V in clT (A∪{α}) such that (i) V contains α, and (ii)
(V \ {α}) ⊆ clT (A).

Proof (sketch). We first show that, if 〈T ,A ∪ {α}〉 is unsatisfiable, then there
is a TBox assertion t in T \ T + such that 〈T +,A ∪ {α}〉 |= qt, where qt is
the boolean query corresponding to the negation of t. This implies that there
is a query q′ in the T -expansion of qt that evaluates true on clT (A ∪ {α}), i.e.,

that forms a T -violation set for t in clT (A ∪ {α}). Now suppose that, for every
t ∈ T \T +, and for every T -violation set V in clT (A∪{α}), V does not contain
α. This means that either (i) there is no T -violation set in clT (A ∪ {α}), or
(ii) all T -violation sets in clT (A ∪ {α}) do not contain α. Btoh cases lead to a
contradiction, and, therefore, we conclude that there is a T -violation set V in
clT (A ∪ {α}) such that V contains α. Finally, since 〈T , {α}〉 is satisfiable, it is
immediate to verify that (V \ {α}) ⊆ clT (A).

The next theorem is the key to our solution.

Theorem 7. Let α be an atom such that α ∈ clT (A) \ clT (F). There exists a
maximal subset Σ of clT (A) such that 〈T , Σ ∪ F 〉 is satisfiable and Σ does not
contain α if and only if there is a T -violation set V in clT (A)∪clT (F) such that
α ∈ V , and 〈T , F ∪ (V \ {α})〉 is satisfiable.

Proof (sketch). (⇒) Suppose that there is a T -violation set V in clT (A)∪clT (F)
such that α ∈ V and 〈T , F ∪ (V \ {α})〉 is satisfiable. Since 〈T , F ∪ (V \ {α})〉 is
satisfiable, the set of maximal subsets Σ of clT (A) such that 〈T , Σ∪F∪(V \{α})〉
is satisfiable is non-empty. Consider any Σ in such a set, i.e., assume that Σ is
a maximal subset of clT (A) such that 〈T , Σ ∪ F ∪ (V \ {α})〉 is satisfiable. It
can be shown that (1) Σ does not contain α, and (2) Σ is a maximal subset of
clT (A) such that 〈T , Σ ∪ F 〉 is satisfiable.

(⇐) Suppose that there is no T -violation set V in clT (A)∪ clT (F) such that
α ∈ V and 〈T , F ∪ (V \ {α})〉 is satisfiable. We show that every maximal subset
Σ′ of clT (A) such that 〈T , Σ′ ∪ F 〉 is satisfiable contains α, by showing that, if
Σ is a subset of clT (A) such that 〈T , Σ∪F 〉 is satisfiable, then 〈T , Σ ∪F ∪{α}〉
is also satisfiable. Indeed, assume by way of contradiction that 〈T , Σ ∪F ∪{α}〉
is unsatisfiable. Note that α ∈ clT (A), and, since 〈T ,A〉 is satisfiable, 〈T , {α}〉
is also satisfiable. We can therefore apply theorem 6, and conclude that there
is a T -violation set V in clT (F ∪ Σ ∪ {α}) such that (1) V contains α, (2)
(V \ {α}) ⊆ clT (F ∪ Σ). Now, since (V \ {α}) ⊆ clT (F ∪ Σ), and 〈T , Σ ∪ F 〉
is satisfiable, it follows that 〈T , F ∪ (V \ {α})〉 is satisfiable. This implies that
there is a T -violation set V in clT (F ∪ Σ ∪ {α}) ⊆ clT (A) ∪ clT (F) such that
α ∈ V and 〈T , F ∪ (V \ {α})〉 is satisfiable, which is a contradiction.

Theorems 6 and 7 allow us to prove that K ⊕T
∩ F can be computed by the

algorithm ComputeInsertion below.
Algorithm ComputeInsertion requires to compute all T -violation sets in

clT (A)∪clT (F). It can be shown that this can be done by computing the results
of suitable conjunctive queries posed to clT (A) ∪ clT (F). Such queries are built
out of the negative inclusion assertions and the identification assertions Tid in
T , and essentially look for tuples that satisfy the negation of such assertions.
From this observation, one can derive the following theorem.

Theorem 8. ComputeInsertion(〈T ,A〉,F) terminates, and computes 〈T ,A〉⊕T
∩

F in polynomial time with respect to |T \ Tid|, |A|, and |F |, and in NP with re-
spect to |Tid|.

Input: a satisfiable DL-LiteA,id KB K = 〈T ,A〉, a finite set of ABox assertions
F such that 〈T , F 〉 is satisfiable

Output: a DL-LiteA,id KB.
begin

F ′ = ∅;
foreach α ∈ clT (A) \ clT (F) do

if ∃ a T -violation set V in clT (A) ∪ clT (F) s.t. α ∈ V and

〈T , F ∪ (V \ {α})〉 is satisfiable then

F ′ ← F ′ ∪ {α}
return 〈T , F ∪ clT (A) \ F ′〉;

Algorithm 2: Algorithm ComputeInsertion(〈T ,A〉,F)

It can also be shown that the problem of checking for the existence of T -
violation sets in a set of ABox assertions is NP-complete with respect to |Tid|.

6 Conclusions

We have illustrated a WIDTIO approach to instance-level evolution in DL, and
we have presented algorithms for the case of DL-LiteA,id. We plan to continue
our work along several directions. First, we will extend the algorithms to the
case where the KB contains denial constraints, which are constraints that can
be added to DL-LiteA,id without changing the complexity of all reasoning tasks.
The extension is based on the fact that denial constraints behave similarly to
identification assertions with respect to KB evolution. Also, we aim at extending
our approach to the problem of evolution of the whole KB, as opposed to the
ABox only. Finally, we will add the notion of protected part to our approach,
to model situations where one wants to prevent changes on specific parts of the
KB when applying insertions or deletions.

References

1. Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query an-
swers in inconsistent databases. In Proc. of PODS’99, pages 68–79, 1999.

2. Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. The DL-Lite family and relations. J. of Artificial Intelligence Re-

search, 36:1–69, 2009.
3. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation

and Applications. Cambridge University Press, 2003.
4. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,

and Riccardo Rosati. Tractable reasoning and efficient query answering in de-
scription logics: The DL-Lite family. J. of Automated Reasoning, 39(3):385–429,
2007.

5. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Path-based identification constraints in description logics.
In Proc. of KR 2008, pages 231–241, 2008.

6. Diego Calvanese, Evgeny Kharlamov, Werner Nutt, and Dmitriy Zheleznyakov.
Evolution of DL-Lite knowledge bases. In Proc. of ISWC 2010, 2010.

7. Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati.
On instance-level update and erasure in description logic ontologies. J. of Logic

and Computation, Special Issue on Ontology Dynamics, 19(5):745–770, 2009.
8. Ronald Fagin, Jeffrey D. Ullman, and Moshe Y. Vardi. On the semantics of updates

in databases. In Proc. of PODS’83, pages 352–365, 1983.
9. Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis, Dimitris Plex-

ousakis, and Grigoris Antoniou. Ontology change: Classification and survey.
Knowledge Engineering Review, 23(2):117–152, 2008.

10. Matthew L. Ginsberg and David E. Smith. Reasoning about action I: A possible
worlds approach. Technical Report KSL-86-65, Knowledge Systems, AI Labora-
tory, 1987.

11. Hirofumi Katsuno and Alberto Mendelzon. On the difference between updating a
knowledge base and revising it. In Proc. of KR’91, pages 387–394, 1991.

12. Nicola Leone, Thomas Eiter, Wolfgang Faber, Michael Fink, Georg Gottlob, Gi-
anluigi Greco, Edyta Kalka, Giovambattista Ianni, Domenico Lembo, Maurizio
Lenzerini, Vincenzino Lio, Bartosz Nowicki, Riccardo Rosati, Marco Ruzzi, Witold
Staniszkis, and Giorgio Terracina. The INFOMIX system for advanced integration
of incomplete and inconsistent data. In Proc. of ACM SIGMOD, pages 915–917,
2005.

13. Hector J. Levesque. Foundations of a functional approach to knowledge represen-
tation. Artificial Intelligence, 23:155–212, 1984.

14. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic ABoxes. In
Proc. of KR 2006, pages 46–56, 2006.

15. Zhe Wang, Kewen Wang, and Rodney W. Topor. A new approach to knowledge
base revision in DL-Lite. In Proc. of AAAI 2010. AAAI Press, 2010.

16. Marianne Winslett. Updating Logical Databases. Cambridge University Press,
1990.

	On the evolution of the instance level of DL-Lite knowledge bases
	Maurizio Lenzerini, Domenico Fabio Savo

