
MASTRO STUDIO: Managing Ontology-Based
Data Access applications

Cristina Civili, Marco Console, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Lorenzo Lepore, Riccardo Mancini, Antonella Poggi,

Riccardo Rosati, Marco Ruzzi, Valerio Santarelli, and Domenico Fabio Savo
DIAG, Sapienza Università di Roma

<lastname>@dis.uniroma1.it

ABSTRACT
Ontology-based data access (OBDA) is a novel paradigm for ac-
cessing large data repositories through an ontology, that is a formal
description of a domain of interest. Supporting the management of
OBDA applications poses new challenges, as it requires to provide
effective tools for (i) allowing both expert and non-expert users to
analyze the OBDA specification, (ii) collaboratively documenting
the ontology, (iii) exploiting OBDA services, such as query answer-
ing and automated reasoning over ontologies, e.g., to support data
quality check, and (iv) tuning the OBDA application towards op-
timized performances. To fulfill these challenges, we have built a
novel system, called MASTRO STUDIO, based on a tool for auto-
mated reasoning over ontologies, enhanced with a suite of tools and
optimization facilities for managing OBDA applications. To show
the effectiveness of MASTRO STUDIO, we demonstrate its usage in
one OBDA application developed in collaboration with the Italian
Ministry of Economy and Finance.

1. INTRODUCTION
A key requirement for many organizations nowadays is that they

can make use of advanced methods and systems for accessing their
data. Indeed data are often dispersed in heterogeneous and au-
tonomously evolving systems, or have been adapted through the
years to the needs of the applications they serve, which makes it
difficult to extract them in an useful format for the business of the
organization.

Data integration solutions [4] provide some support to this prob-
lem. The tools they have produced are usually classified into ma-
terialized (aka Extract-Transform-Load, ETL) and virtual systems
(aka mediators). In particular, the latter aim at providing access to
autonomous data sources, through a unified virtual global schema.
Thus, by taking into account declarative mappings from the sources
to the schema, queries over the global schema are rewritten in terms
of appropriate queries over the sources. However, the integrated
global view offered by this kind of systems is often merely a struc-
ture accommodating the various data at the sources, whose seman-
tics is typically unclear to information consumers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

Ontology-based data access (OBDA) [8] is a novel paradigm that
is similar in spirit to virtual data integration, but relies on the idea
of replacing the global schema by an explicit formal representa-
tion of the domain of interest. So, OBDA resorts to a three-level
architecture, constituted by an ontology, the data sources, and the
mapping between the two. By virtue of the use of an ontology
as “a single point of semantic data access”, OBDA overcomes the
above mentioned drawback. Indeed, ontologies allow one to ex-
press information needs in terms of predicates whose semantics is
explicitly defined in the ontology itself and natively abstracts from
data. We note also that ontologies are nowadays extremely pop-
ular, as proven by a bunch of related logic-based standards (e.g.,
the W3C Ontology Web Language, OWL1) and practical tools for
their exploitation, such as ontology reasoners (e.g., [11, 12]). This
makes them ideally suited to provide access to actual information
consumers.

In this work, we present MASTRO STUDIO, a new system of-
fering effective capabilities for the management of OBDA appli-
cations. It is based on the MASTRO reasoner for OBDA. Hence,
internally, ontologies are specified in logics of the DL-Lite family
of Description Logics [2], well-known for providing a good trade-
off between expressivity and reasoning computational complexity.
DL-Lite logics essentially capture standard conceptual modeling
formalisms, such as UML Class Diagrams and Entity-Relationship
Schemas, and are at the basis of OWL 2 QL, one of the tractable
profiles of OWL 2, the current W3C standard language for on-
tologies2. Also, in MASTRO, data sources are seen as relational
databases. Finally, the relationship between the sources and the
ontology is essentially expressed by a set of GAV assertions [7],
which associate ontology elements with queries specified on the
underlying database. By virtue of these design choices, OBDA ser-
vices, such as query answering, are realized in MASTRO through a
very efficient technique that reduces them, via query rewriting, to
standard SQL query evaluation.

In order to support the management of OBDA applications,
MASTRO STUDIO is equipped with a suite of effective features.
First, ontologies are specified and represented by means of a novel
graphical language aiming both at making them accessible to non-
experts of logical and ontology formalisms, and at capturing the
main modeling features of OWL. This effectively supports the def-
inition and the analysis of the ontology. Second, MASTRO STUDIO
provides the capability to equip the ontology with a wiki-like doc-
umentation that, for every ontology element (concept, attribute or
role) (i) specifies its meaning (in natural language) and (ii) reports

1http://www.w3.org/TR/owl2-overview/
2http://www.w3.org/TR/owl-profiles/

on the ontology and mappings assertions in which it is involved.
Third, MASTRO STUDIO allows to exploit all OBDA services of-
fered by MASTRO. Specifically, it allows to analyse the domain
ontology exploiting intensional reasoning. Also, it allows to in-
voke query answering, and it provides support to the check of the
quality of data with respect to the ontology, by returning to the user
ontology assertions that are not satisfied together with the actual
data that violate them. Finally, MASTRO STUDIO is equipped with
a semi-automatic tuning mechanism, aiming at optimizing OBDA
applications.

In order to demonstrate MASTRO STUDIO we will invite atten-
dees to experiment all its capabilities through an OBDA applica-
tion recently developed in collaboration with the Italian Ministry
of Economy and Finance (MEF) directorate that is responsible for
the Italian public dept management.

2. TECHNICAL BACKGROUND
In this section, we provide a brief overview of the theoretical

background of our approach. We start by introducing the notion of
OBDA specification. Then we discuss the choice we made for the
languages used in MASTRO STUDIO to express the various com-
ponents of an OBDA specification. We also illustrate the OBDA
tasks that our system is able to perform. Finally, we briefly discuss
the issue of tuning an OBDA application towards the optimization
of query answering.
OBDA specification. An OBDA specification is a triple
〈O,M,D〉, where O is an ontology, D is a relational database,
and M is the mapping between O and D. In principle, O is a
set of axioms expressed in any fragment of first-order logic, whose
goal is to provide a formal account of the domain of interest. The
database D models the actual resources where real data are stored.
We assume that D is expressed in the relational model. M is a set
of assertions of the form Φ Ψ, where Φ is an SQL query over
D, and Ψ is a query over the alphabet of O, without existential
variables, of the same arity as Φ. Intuitively, such a mapping asser-
tion specifies that the tuples returned by the query Φ satisfies the
formula Ψ, and therefore create the bridge between the data in the
sources and the objects satisfying the predicates in the ontology.

The semantics of an OBDA specification is given in terms of
FOL interpretations. A FOL interpretation I is a model for an
ontology O if it satisfies (in the classical FOL sense) all logical
axioms specified in O [2]. Then, given an OBDA specification
B = 〈O,M,D〉, a FOL interpretation I is a model for B if (i)
I is a model for O, and (ii) I satisfiesM, i.e., for each mapping
assertion Φ ψ and each tuple ~t, if ~t is answer to the query Φ
over D, then ~t satisfies Ψ in I (see also [8]). Notice that the above
notion of mapping satisfaction corresponds to the classical notion
of satisfaction of sound GAV mapping in data integration [7]. An
OBDA specification B is satisfiable if it admits at least one model.

Languages in MASTRO STUDIO. The ultimate goal of an OBDA
system is to provide several services to the user. One notable ser-
vice is computing the answers to queries expressed over the ontol-
ogy O. It is immediate easy to see that the tractability, and even
the feasibility, of this task depends on the languages used to ex-
press the ontology and the mappings of the OBDA specification.
The choices we have made in MASTRO STUDIO aims at an opti-
mal compromise between expressive power of languages and com-
putational complexity the reasoning services. To this end, a logic
of the DL-Lite family of lightweight Description Logics (DLs) [2]
specifically designed for the tractability requirement in OBDA, is
used in MASTRO STUDIO. Analogously, MASTRO STUDIO limits
the expressive power of the mapping language by letting specify

only GAV mappings [7]. So,M is a set of assertions of the form
Φ ψ, where Φ is an SQL query specified over the schema of
D, and ψ is an element of the ontology O, i.e., a concept, a role,
or an attribute (see also [8]). With such choices, it can be shown
that query answering can be done with the same data complexity as
SQL [8].
Services provided by MASTRO STUDIO. Services provided by
MASTRO STUDIO can be classified into intensional and exten-
sional reasoning services. The former are concerned with rea-
soning over the ontology, independently of the mappings to the
sources. Essentially, all intensional reasoning services rely on the
ability, given a formula, to check whether it is logically implied by
the axioms constituting the ontology. The main services regarding
the extensional level, i.e., the one with the mappings and the data
sources, are query answering and data quality checking. Query
answering amounts to compute the so-called certains answers to
(unions of) conjunctive queries ((U)CQs) expressed over the on-
tology O. Given an OBDA specification B = 〈O,M,D〉, the
certain answers, to query Q, denoted CertAns(Q,B),are the the
tuples that satisy Q in every model of B (the FOL interpretation of
a UCQ is the standard one [1]). MASTRO STUDIO computes such
answers by evaluating over the database D the so-called perfect
rewriting of Q, where a query QDB over D is a perfect rewrit-
ing of a query Q under O if the evaluation of QDB over D re-
turns the set CertAns(Q,B). In our setting, the perfect rewriting
of a UCQ Q posed over O can be obtained in two steps: (i) com-
pute an ontology-rewritingQ′ ofQ with respect to the ontologyO;
(ii) compute the mapping-rewriting of Q′ by using the mapping
M, thus obtaining an SQL query on D. Intuitively, an ontology-
rewriting ofQ is another queryQ′, expressed overO, which incor-
porates all the relevant properties of the ontology axioms, so that,
by using Q′, we can compute the certain answers of Q by ignor-
ing O, i.e., CertAns(Q, 〈O,M,D〉) = CertAns(Q′, 〈∅,M,D〉).
Then, the mapping-rewriting step can be seen as a variant of the
unfolding procedure in GAV data integration, as it essentially sub-
stitutes each atom in the queryQ′ with the SQL query that the map-
ping associates to the atom predicate. After the rewriting process,
the query is fully expressed in SQL and can be directly evaluated
over the sources. Data quality checking amounts to perform several
checks aiming at comparing the data at the sources with the axioms
of the ontology. A notable example is satisfiability checking, i.e.,
checking whether there are patterns in the data contradicting the
axioms in the ontology. In MASTRO STUDIO, satisfiability can be
reduced to query answering, based on the fact that to each ontology
axiom we can associate a query aiming at identifying the existence
of patterns representing violations in the data.
Tuning ODBA applications. While in recent years we have seen
many approaches to the ontology rewriting step and its optimiza-
tions, (see, e.g., [2, 10, 5]), very little has been done towards the
optimization of the mapping rewriting step. Note the literature
on data integration has mainly focused on the LAV approach to
mappings [9, 6], where mapping rewriting is a form of view-based
query rewriting, a well-known NP-complete problem. Differently,
query answering under GAV mappings does not suffer from the
intractability problem, and has been considered somehow trivial.
On the contrary, according to our experiments in real world scenar-
ios, the mapping rewriting phase is a bottleneck of query rewrit-
ing in OBDA, even under GAV mappings. In particular, comput-
ing the mapping rewriting of a CQ may be prohibitive if the map-
ping is even moderately complex. To address this problem, MAS-
TRO STUDIO provides mechanisms for optimizing mapping rewrit-
ing [3]. We add view inclusions to the OBDA specification, i.e.,
inclusion assertions between (projections of) the SQL queries used

in mapping assertions, or, more precisely, between the correspond-
ing view predicates. Based on such inclusions, derived automati-
cally through a theorem prover, we are able to eliminate conjunctive
queries contained into other conjunctive queries of the rewritten
query. Using view inclusions, we then use a further optimization
method, based on the use of so-called perfect mapping assertions.
These are special assertions logically entailed by the OBDA speci-
fication, which allow the ontology and the mapping rewriting pro-
cesses to handle whole subqueries as single atoms. We have shown
that their usage leads to a drastic reduction of the combinatorial
explosion of the mapping rewriting phase. In particular, we have
designed a module that learns and exploit a suitable set of perfect
mappings, so as to tune the application and make query asnwering
more efficient. For further details, see [3].

3. SYSTEM OVERVIEW
MASTRO STUDIO components can be organized into three lay-

ers: a Graphical User Interface (GUI) layer, a Utilities layer and a
Reasoning layer.
GUI layer. The MASTRO STUDIO functionalities are provided
through a web-based GUI, realized through the Drupal3 open
source CMS (Content Management System). Hence, besides com-
prising Drupal core modules, the GUI layer includes contributed
Drupal modules, for the management and the moderation of col-
laborative editing of the ontology wiki-like documentation. Fur-
thermore, the GUI layer comprises custom modules (that is, exten-
sions of the Drupal CMS) for (i) the loading and the analysis of the
OBDA specification, (ii) the invocation of reasoning services over
the OBDA application and the analysis of their results.
Utilities layer. This layer comprises modules to (i) translate a
graphical representation of an ontology into the OWL functional-
syntax representation required by components of the reasoning
layer, (ii) automatically generate and update a structured wiki-like
documentation, starting from the OBDA specification, by creating
and updating a wiki page, for each concept, attribute and role of
the ontology, according to a predefined template that, besides man-
ually inserted description, includes related ontology and mapping
assertions.
Reasoning layer. Components of this layer are modules that invoke
and exploit the MASTRO reasoning services, through a web-service
interface.

4. DEMONSTRATION
We demonstrate MASTRO STUDIO through a real world OBDA

application that we developed in a joint project with the Italian Min-
istry of Economics and Finance (MEF), and more precisely with
the MEF directorate, responsible for the management of the Italian
public debt. Within such a context, the use of OBDA techniques
has several motivations, e.g.,:

• Each office working group has a clear understanding only
on particular portions of the public debt domain, adopts its
own (informal) representation of it, and refers to common
concepts with a specific terminology. This results in the lack
of a shared (and formalized) specification of the knowledge
on the overall public debt domain.
• Data within MEF are managed in various systems, which

underwent several modifications in the years, often to serve
specific application needs, so that they have lost the original
shape and modeling, often without an adequate documenta-
tion, and are now easily accessible only by few experts of the

3http://drupal.org

Figure 1: MEF ontology excerpt

systems, whereas current databases in use at MEF are essen-
tially incomprehensible for the domain users.
• Integrity constraints on data are very often not forced in the

systems, or are easily circumvented, so that their quality is
compromised.
• Each time a new information need would arise, managers of

the directorate would have to launch a new complicate pro-
cess that would typically require several days and an impor-
tant amount of money to be accomplished.

We will show how MASTRO STUDIO, instantiated to the MEF
OBDA application helps to face and solve the above issues. To this
aim, we next provide a brief overview of the MEF ontology. The
ontology describes the financial instruments used by the Ministry to
generate debt, as well as the debt composition and the main features
of debt components, such as the amount and the expiry date. It also
describes how the debt evolves, across tasks aiming at producing
new debt, increasing, reducing or extinguishing current debt. The
ontology that we realized is specified through around 1440 DL-Lite
assertions.

To have an idea of the graphical representation, consider the
small excerpt of the ontology that will be the heart of the
MASTRO STUDIO demonstration, given in Figure 1. As in
Entity-Relationship (ER) diagrams, we represent (named) concepts
through labeled rectangle, (named) roles through labeled diamond,
(named) attributes through labeled circles. Differently from ER,
besides named (a.k.a. atomic) concepts, roles, or attributes, also
complex ones can be represented, through suitable graphic con-
structs. For example, the white (resp. black) square connected to
a role R via a dotted line (possibly with a vertical dash) denotes
the set of objects occurring in the first (resp. second) component of
R, i.e., its domain (resp. range) (we remind that roles are binary
relationships between sets of objects). The optional vertical dash
on the dotted line between R and the white (resp. black) square
imposes that the role (resp. its inverse) is functional, i.e., the every
object in its domain (resp. range) is associated via R to at most one
object. Analogously if we connect the square to an attribute, where
however the range denotes a set of values belonging to predefined
data types (cf. the labels associated to back squares connected to
attributes). Also, the white square connected to both a role R and a
concept C through two different dotted lines, denotes the set of ob-
jects that participates in the first component ofR and are associated
viaR to at least one instance ofC (this corresponds to so-called ex-
istential qualified restrictions in DL-Lite and OWL). Finally, solid
arrows denote inclusions between concepts, which can be used to
model ISA between concepts, mandatory participations of concepts
into roles, typings of roles and attributes, ecc. In words, the frag-
ment of ontology in Figure 1 says that: a Task refers to exactly
one particular Financial Instrument (notice that the concept Task
is included in the domain of refers to, i.e., it has a mandatory par-
ticipation in such role, and that refers to is functional); a Bond
is a particular Financial Instrument; a Bond Sale is a particular
Task, which refers to a Bond (notice that Bond Sale is included
in the existential restriction on the concept Bond of the role refers
to); a Financial Instrument has an issue date and a maturity

(i.e., a duration), each Bond as an ISIN (International Securities
Identification Numbering), and each Bond Sale is associated to
the sold amount. All mentioned attributes are functional. Notice
that, differently from ER, typing of roles is not compulsory in the
ontology. For example the domain of refers to is not typed, which
means that also objects not necessarily instances of Task can occur
in the domain of refers to. Similarly for the attributes issue date
and amount.

We are now ready to describe the various MASTRO STUDIO
functionalities that will be demonstrated.

Browsing the ontology documentation Participants will experi-
ence the effectiveness of the ontology wiki-like documentation pro-
vided by MASTRO STUDIO, which will introduce them to the over-
all ontology semantics, as well as to the semantics of each ontol-
ogy element. Participants will test the collaborative semi-automatic
process supporting the production of such documentation.

Analysing the ontology Participants will be introduced to the
richness of the Italian public debt scenario, by analysing the ontol-
ogy through the MASTRO STUDIO GUI and the intensional reason-
ing facilities it offers. Participants will be able to test the usefulness
of the diagrammatic representation as a means to get an easy access
to the ontology and to disclose it to users not willing to go through
complex formalizations.

Analysing the data sources and the mappings. Participants
will be able to analyse the sources and to issue directly SQL queries
over them. This will give the feeling about how difficult is to query
the data sources without the mediation of the ontology (and the
mapping). Then, they will have a look at the mappings: these will
give an insight of the “cognitive distance” between the ontology
and the sources, i.e., the huge difference between the data schema
of the sources and the conceptualization of the domain, and will
provide at the same time a mechanism to understand the sources in
the light of the ontology, offering a valid documentation means.

Checking the quality of data. Participants will be able to iden-
tify unsatisfiable ontology assertions, and retrieve source data that
violate them. This will show how, in the MEF scenario, MASTRO
STUDIO allowed us to localize inconsistencies in the data, thus re-
sulting a valid support for data quality management.

Querying the system. Participants will be invited to issue
queries over the ontology, and for each query, to access, besides its
results, both the ontology rewriting and the mapping rewriting. For
example, they will be able to ask for the amount of the Italian pub-
lic debt at a certain date and how much such a debt costs in terms
of interests to the state. By analysing the ontology rewriting, they
will discover the kind of reasoning at the ontology level which is
automatically performed by the system to produce the result. In the
example query mentioned, they can discover which are the compo-
nents of the debt and which are the financial instruments that can
produce debt. Furthermore, by analysing the mapping rewriting,
they will be able to see how and from which sources results to spe-
cific queries come from. Figure 2 shows a screenshot of the MAS-
TRO STUDIO GUI, with the SPARQL query that asks, for each fi-
nancial instrument, its ISIN, type, and the amount of debt currently
generated by it. This simple way of querying the OBDA specifica-
tion can be immediately contrasted with the current complex way in
which reports corresponding to such queries are produced at MEF.

Tuning the system. We will invite participants to have a closer
look at the mapping specification and will show how this evolves,
by acquiring new perfect mapping assertions derived from per-
fect rewritings computed during the evaluation of previous queries.
This corresponds to a tuning of the system, which is able to learn
from previous processing of queries in order to avoid to execute

Figure 2: MASTRO GUI screenshot

some reasoning steps it already performed. We will demonstrate
how queries, corresponding to reports of crucial importance for
MEF, can be executed only thanks to this tuning.
Acknowledgments. Research on OBDA, and in particular on map-
ping management, has been partially funded by the EU under FP7
project Optique – Scalable End-user Access to Big Data (grant n.
FP7-318338).

5. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley Publ. Co., 1995.
[2] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and

R. Rosati. Tractable reasoning and efficient query answering
in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

[3] F. Di Pinto, D. Lembo, M. Lenzerini, R. Mancini, A. Poggi,
R. Rosati, M. Ruzzi, and D. F. Savo. Optimizing query
rewriting in ontology-based data access. In Proc. of
EDBT 2013, 2013.

[4] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data
Integration. Morgan Kaufmann, 2012.

[5] G. Gottlob, G. Orsi, and A. Pieris. Ontological queries:
Rewriting and optimization. In Proc. of ICDE 2011, pages
2–13, 2011.

[6] G. Konstantinidis and J. L. Ambite. Scalable query rewriting:
a graph-based approach. In Proc. of ACM SIGMOD, pages
97–108, 2011.

[7] M. Lenzerini. Data integration: A theoretical perspective. In
Proc. of PODS 2002, pages 233–246, 2002.

[8] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to ontologies. J. on
Data Semantics, X:133–173, 2008.

[9] R. Pottinger and A. Y. Halevy. MiniCon: A scalable
algorithm for answering queries using views. VLDB Journal,
10(2–3):182–198, 2001.

[10] M. Rodriguez-Muro and D. Calvanese. High performance
query answering over DL-Lite ontologies. In Proc. of
KR 2012, pages 308–318, 2012.

[11] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and
Y. Katz. Pellet: A practical OWL-DL reasoner. J. of Web
Semantics, 5(2):51–53, 2007.

[12] D. Tsarkov and I. Horrocks. FaCT++ description logic
reasoner: System description. In Proc. of IJCAR 2006, pages
292–297, 2006.

