
When OWL met DL-Lite...

Claudio Corona, Emma Di Pasquale, Antonella Poggi, Marco Ruzzi, and Domenico
Fabio Savo

Dip. di Informatica e Sistemistica, SAPIENZA University of Rome
lastname@dis.uniroma1.it

Abstract. Recent research in the area of ontology representation for the Seman-
tic Web has led to several different language proposals. Among the others, it
led to the standardization of OWL, on one hand, and to the emergence of the
DL-Lite family of Description Logics, on the other hand. These two outcomes
mainly differ on their objective: while OWL aims to be a standard, and as such,
it is tailored towards expressivity, the main goal of the languages in the DL-Lite
family is to allow accessing huge amount of data, by maintaining tractability,
and delegating query processing to a DBMS. In this paper we show how DL-Lite
can meet OWL. Specifically, we focus on DL-LiteA, the language in the DL-Lite
family that is closest to OWL, and introduce the SparSQL language, a concrete
epistemic query language, inspired by both SQL and SPARQL, that allows pos-
ing expressive tractable queries over DL-LiteA ontologies. Finally, we introduce
the main novel DL-LiteA features beyond OWL. The capability of handling such
features, together with the SparSQL queries, are some of the new functionalities
recently implemented in the MASTRO system.

1 Introduction

Web Ontology Language (OWL) has become the standard W3C language for the defini-
tion of ontologies for the Semantic Web community. As a standard language, no limits
have been posed to its expressivity, and the complete language of OWL, OWL Full, is
not decidable. Some fragments of OWL have been identified in order to meet decid-
ability, with restricted forms of constructs. This is the case of OWL Lite and OWL DL.
Although these fragments are decidable, they enforce very high computational costs
even for simple reasoning tasks, not allowing a practical use of OWL.

The DL-Lite family [3] of Description Logics (DLs) is a family of ontology lan-
guages whose aim is to capture some of the most popular conceptual modeling for-
malisms, such as Entity-Relationship model [6] and UML class diagrams1, while pre-
serving the tractability of the most important reasoning tasks, such as ontology satisfia-
bility and query answering. More specifically, reasoning over ontologies of the DL-Lite
family, is LOGSPACE w.r.t. the size of data, that is, the number of instances of the on-
tology, and can be entirely delegated to a standard DBMS technology. Unfortunately,
DL-Lite has no standard syntax, which makes it difficult to use the most popular tools
currently available for the SW community to reason over DL-Lite ontologies.

1 http://www.omg.org/uml/

In this paper we show how the two aspects mentioned above, that is, the need for a
standard language and the capability of handling ontologies with a huge number of in-
stances, can be both achieved. More precisely, the main contributions of this paper can
be summarized as follows: (i) we provide an expressive query language for DL-LiteA

ontologies, named SparSQL , whose syntax is inspired by both SQL and SPARQL,
the W3C recommendation towards a standard query language for RDF ; SparSQL is
actually an epistemic query language that implements the language EQL-Lite(UCQ)
presented in [2]. As such, it is in LOGSPACE and can be reduced to evaluate first-order
logic queries over the ABox; (ii) then, we stress the expressive power of DL-LiteA

by extending its TBox, to make it able to express data properties of object properties,
denials and local identification constraints, and adding a new component to DL-LiteA

ontologies, called the ECBox, containing a general form of constraints called EQL con-
straints, that are based on epistemic logics. Note that this is not the first attempt to
add constraints to OWL. However, previous related work, e.g. [7], are technically and
semantically incomparable with the approach presented in this paper.

Notably, all the contributions discussed in this work are currently implemented
within the MASTRO system, a tool for ontology representation and reasoning that has
DL-LiteA as proprietary core language. The main feature of MASTRO is to reduce all
reasoning tasks, such as consistency checking and query answering to the evaluation
of standard SQL queries over a DBMS. Note that one of the major benefits of using
DBMS technologies, is to allow using huge amounts of possibly pre-existing data, to
populate the ontology instances [10].

The rest of the paper is structured as follows: in Section 2 we introduce DL-LiteA

as a fragment of the standard functional-style syntax of OWL; in Section 3 we present
the SparSQL query language for DL-LiteA ontologies; in Section 4 we introduce all
the new DL-LiteA enrichments that are beyond OWL and present some conclusions in
Section 5.

2 Preliminaries

In this section we present DL-LiteA as a fragment of OWL, coherently with its functio-
nal-style syntax 2. Note that DL-LiteA differs from the tractable fragment of OWL re-
cently proposed and called DL-Lite 3, essentially because it allows using both functional
object properties and sub-object properties, by appropriately restricting their use. In pro-
viding the specification of our language, we useA to denote a named class, P (possibly
with subscripts) an object property, UC a data property, D a datatype, owl:Thing
the most general class, and rdfs:Literal the universal datatype. Then, DL-LiteA

expressions are defined as follows:

objectPropertyExpression ::= P | InverseObjectPropertyOf(P)
dataPropertyExpressions ::= UC

classExpression ::= A | DataMinCardinality(1UC) |
ObjectMinCardinality(1P) |
ObjectSomeValueFrom(objectPropertyExpressionowl:Thing) |
DataSomeValueFrom(dataPropertyExpressionsrdfs:Literal)

2 From now on we will refer to OWL 2.0, see http://www.webont.org/owl/1.1/.
3 See http://www.w3.org/Submission/owl11-tractable/#3

As usual in DLs, a DL-LiteA ontology O = 〈T ,A〉 represents the domain of dis-
course in terms of two components: the TBox T , i.e. a set of axioms representing the
intensional knowledge, and the ABox A, i.e. a set of axioms representing the exten-
sional knowledge, known as facts.

More precisely, DL-LiteA intensional axioms have the form:

ClassAxiom ::= SubClassOf(classExpression (classExpression |
ObjectComplementsOf(classExpression))) |

EquivalentClasses(2* classExpression) | DisjointClasses(2* classExpression)

ObjectPropertyAxiom ::= SubObjectPropertyOf(2*2 objectPropertyExpression) |
EquivalentObjectProperties(2* objectPropertyExpression) |
DisjointObjectProperties(2* objectPropertyExpression) |
InverseObjectProperties(P1 P2) |
ObjectPropertyDomain(P (classExpression |

ObjectComplementsOf(classExpression))) |
ObjectPropertyRange(P (classExpression |

ObjectComplementsOf(classExpression)))
FunctionalObjectProperty(objectPropertyExpression)
SymmetricObjectProperty(objectPropertyExpression)
AsymmetricObjectProperty(objectPropertyExpression)

DataPropertyAxiom ::= SubDataPropertyOf(2*2 dataPropertyExpression) |
EquivalentDataProperties(2* dataPropertyExpression) |
DisjointDataProperties(2* dataPropertyExpression) |
DataPropertyDomain(dataPropertyExpression (classExpression |

ObjectComplementsOf(classExpression))) |
DataPropertyRange(dataPropertyExpressionD) |
FunctionalDataProperty(dataPropertyExpression)

Then, a DL-LiteA TBox is a set of intensional axioms that must satisfy the follow-
ing restriction: no functional object property α (or functional data property α′) can be
specialized, i.e., α (resp. α′) cannot appear in axioms of the form:

SubObjectPropertyOf(β α) (resp. SubDataPropertyOf(β′ α′)).

We now specify the form of a DL-LiteA ABox. Coherently with OWL, DL-LiteA

uses two disjoint alphabets, i.e. individual URIs to denote objects, and constants to
denote values (e.g. integer, strings). Then, DL-LiteA ABox axioms have the form:

fact ::= ClassAssertion(individualURI A) |
ObjectPropertyAssertion(P 2*2 individualURI) |
DataPropertyAssertion(UC individualURI constant)

Before providing an example of DL-LiteA ontology, we recall that the semantics of
DL-LiteA is given in terms of FOL interpretations with the unique name assumption.
Refer to [9] for details.

Example 1. Consider the following DL-LiteA ontology:

SubClassOf(Female Person) SubClassOf(Male Person)
DisjointClasses(Female Male) ObjectPropertyRange(MARRIES Person)
ObjectPropertyDomain(MARRIES Person) SymmetricObjectProperty(MARRIES)
SubClassOf(Person DataMinCardinality(1 SSN))

ClassAssertion(mary Female) ClassAssertion(john Male)
ClassAssertion(ann Female) ClassAssertion(jane Female)
ClassAssertion(bob Male) ObjectPropertyAssertion(MARRIES john ann)
ObjectPropertyAssertion(MARRIES bob jane) ObjectPropertyAssertion(MARRIES bob mary)

The intensional level of the ontology asserts that males and females are disjoint
sets of persons, where all persons have at least one social security number and can
marry other persons. Moreover, it says that if a person x marries a person y , then
also y marries x. On the other hand, the extensional level of the ontology asserts that
mary, ann, and jane denote female individuals, while john and bob males. Finally,
bob marries both jane and mary, while john marries ann.

3 The SPARSQL query language

In this section, after briefly recalling the EQL-Lite(UCQ) epistemic query language [2],
we introduce the SparSQL query language, that implements EQL-Lite(UCQ) , and is
currently used in MASTRO to pose expressive queries over DL-LiteA ontologies. Then,
we present the strategy adopted in MASTRO to process SparSQL queries.

3.1 EQL-Lite(UCQ)

It is well-known that open-world semantics, typically adopted to interpret DL ontolo-
gies, are essential for representing incomplete information, but make FOL queries sub-
mitted over DL ontologies undecidable. To the best of our knowledge, the most ex-
pressive FOL fragment for which decidability of query answering has been proved in
DLs, is the class of union of conjunctive queries (UCQs) [8, 5], which unfortunately,
has limited expressive power.

Hence, a non monotonic epistemic query language, named EQL-Lite(Q) , was intro-
duced in [2] to query arbitrary DL ontologies. Intuitively, this language is based on the
idea that “we have complete information on what the ontology knows”, which allows to
explicitly referring in the query to the ontology knowledge, by adopting a closed-world
semantics. Thus, EQL-Lite(Q) queries are FOL queries, whose atoms, expressed in the
embedded query language Q, are epistemic formulas that refer to “what the ontology
knows”, i.e. the certain answers. According to the results of [2], EQL-Lite(UCQ) is
particularly suitable to express complicated queries over DL-LiteA ontologies which
can be answered in LOGSPACE w.r.t.the number of instances of the ontology.

3.2 SparSQL

SparSQL is the query language currently implementing EQL-Lite(UCQ) in MASTRO.
Its syntax, as the name of the language suggests, is based both on the SQL STANDARD
syntax and the SPARQL syntax 4. Indeed, in SparSQL queries, SQL plays the role of

4 We refer to http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
for details about SPARQL.

FOL in EQL-Lite(UCQ) , while a fragment of SPARQL is used as embedded query
language, i.e. to define the so-called sparqltables. The latter play the role of EQL-
Lite(UCQ) atoms in SparSQL queries.

Thus, before precisely presenting the SparSQL queries syntax, let us focus on spar-
qltables. These are defined as SPARQL queries in the fragment of the SPARQL syntax
expressing UCQs. More precisely, such a fragment does not include neither the Graph-
GraphPattern, nor the FILTER constraints, nor the OptionalGraphPattern. Moreover,
for the sake of simplicity, the SparSQL syntax does not require the use of the FROM
clause in the SPARQL query. Specifically, a non boolean SPARQL query in SparSQL
has the following syntax:

SELECT listOfV ariables
WHERE GroupGraphPattern

On the contrary, a boolean SPARQL query in SparSQL has the following syntax:

ASK GroupGraphPattern

Now that we have introduced how sparqltables are defined, we can present the
SparSQL syntax. A non boolean SparSQL query has the following form:

SELECT listOfAttributesOrExpressions
FROM listOfSparqltables
[WHERE conditions]
[GROUPBY listOfGroupingAttributes]
[HAVING listOfGroupingConditions]
[ORDERBY listOfAttributesToOrder]

where each sparqltable (defined in terms of a SPARQL query as described above) is as-
sociated to an alias, and no joins can occur between sparqltables defined as non boolean
SPARQL queries and sparqltables defined as boolean SPARQL queries. As expected, a
SparSQL query differs from an SQL query mainly because of the presence of one or
more sparqltables in the FROM clause. Note that SparSQL queries, like SQL queries,
can have nested queries that are again SparSQL queries. Next we illustrate SparSQL by
providing two examples of non boolean queries, the first one referring to a sparqltable
defined in terms of a non boolean SPARQL query, and the second one to a sparqltable
defined in terms of a boolean SPARQL query.

Example 2. Consider the ontology presented in Example 1, and suppose that we want
to know the persons that we know have married at least two persons. This query can be
expressed by the following SparSQL query:

SELECT spouses.x, count(spouses.y)
FROM SparqlTable(SELECT ?x ?y

WHERE{?x :MARRIES ?y}) spouses
GROUPBY spouses.x
HAVING count(spouses.y) >= 2

The answer to this query would be the tuple (bob, 2).
Now, suppose that we want to know all the known wifes, provided we know that

Bob is married either with Mary or with Ann:

SELECT wifes.x
FROM SparqlTable(SELECT ?x

WHERE{?x rdf:type ′Female′.
?x :MARRIES ?y}) wifes,

SparqlTable(ASK{{′bob′ :MARRIES ′mary′}
UNION
{′bob′ :MARRIES ′ann′}}) spouses

Since the boolean sparqltable conditions are verified, the answers to the query are the tu-
ples (mary), (ann) and (jane). Observe, however, that if the spouses sparqltable would
have been false, then the overall SparSQL query would have been empty.

Let us next focus on boolean SparSQL queries. A boolean SparSQL query has the
following syntax5:

VERIFY conditions

where conditions is defined as for non boolean SparSQL query. A boolean SparSQL
query returns true if the conditions are verified, otherwise it returns false.

Next, we provide an example of boolean SparSQL query.

Example 3. Consider again the ontology of Example 1, and suppose that we want to
know if there is not any person that is not known be a male or a female. This query can
be expressed by the following boolean SparSQL query:

VERIFY not exists (SELECT persons.x
FROM SparqlTable(SELECT ?x
WHERE{?x rdf:type ′Person′}) persons
EXCEPT(SELECT males.x

FROM SparqlTable(SELECT ?x
WHERE{?x rdf:type ′Male′}) males

UNION
SELECT females.x
FROM SparqlTable(SELECT ?x

WHERE{?x rdf:type ′Female′})
females))

This query returns true, since there are no persons that are not known to be males or
females.

The example above shows that using SparSQL , we can express negation (which cannot
be expressed in UCQ) through the use of the EXCEPT SQL operator (or NOT IN SQL
operator using nested queries) .

3.3 SparSQL processing

In this section we sketch out the processing of SparSQL queries. The technique exposed
below is currently implemented in the QuOntoEQL module, that is a client of MASTRO
in charge to process SparSQL queries.

In particular, QuOntoEQL takes as input a SparSQL query qEQL and a DL-LiteA

ontology O = (T ,A) and performs the following steps:
5 Note that this syntax simplifies the SQL syntax used to express boolean queries.

– every sparqltable γ occurring in the qEQL query is expanded according to the TBox
T : the expansion process amounts to compute the perfect reformulation (see [1])
γREF of the sparqltable;

– the γREF query is unfolded and rewritten as γUNF , so to be expressed in terms of
the database where the ABox A is stored (cf. details in [1]);

– every γ sparqltable is then replaced with the corresponding γUNF query SQL in
the original SparSQL query.

Hence we obtain a whole query expressed in SQL that can be executed by any DBMS.
We refer to [2] for the proof of correctness of the query processing described above.

4 Extending DL-LiteA beyond OWL

This section aims to present new features of DL-LiteA, that are absent in OWL. These
amount to (i) extend the intensional level of DL-LiteA ontologies, and (ii) introduce
a new component of DL-LiteA ontologies, called ECBox (Epistemic Constraints Box),
embracing a useful expressive kind of epistemic constraints.

4.1 Enriching DL-LiteA intensional level

We next present a series of extensions of DL-LiteA that are beyond OWL and concern
the intensional level of ontologies. More precisely, we first introduce object property
data, that allow handling data properties of object properties. Then, we present denial
and local identification constraints, that were formally introduced in [4, 2].

Object property data To be closer to ER and UML formalisms, DL-LiteA has been en-
riched with object property data, representing binary relations between pairs of objects
and values [1].

In the following we use UR to denote an object property data. Then, the new axioms
involving object property data are defined as follows:

ObjectPropertyDataAxiom ::= SubObjectPropertyDataOf(2*2 UR) |
EquivalentObjectPropertyData(2* UR) | DisjointObjectPropertyData(2* UR) |
ObjectPropertyDataDomain(UR objectPropertyExpression) |
ObjectPropertyDataRange(UR D) | FunctionalObjectPropertyData(UR)

For the semantics of these axioms refer to [1].

Denial constraints Now, we pass considering the second extension to the intensional
level of DL-LiteA ontologies: the denial constraints. Denial constraints (for short, DCs)
are TBox assertions defined as follows:

DCAxiom ::= deny(q)

where q is a boolean union of conjunctive queries. The semantics of denial constraints
is given in terms of FOL interpretations. Specifically, an interpretation I satisfies the
DC deny(q) if q is false in I. Thus, the semantics of ontologies with denial constraints
is the set of interpretations that satisfy all assertions inA and T , including every denial
constraint in T .

Local identification constraints Finally, we present the third and last extension: the
local identification constraints. Local identification constraints (LIdCs) are TBox as-
sertions defined as follows:

LIdCAxiom ::= KeyFor(simplePropertyExpression *(, path) classExpression)

where
path ::= simplePropertyExpression | testRoleExpression | CompositionOf(2*(path))
simplePropertyExpression ::= keyDataPropertyExpression | objectPropertyExpression
testRoleExpression ::= TestRole(classExpression | valueDomainExpression)
valueDomainExpression ::= D | RangeOf(UC) | RangeOf(UR)
keyDataPropertyExpression ::= UC | InverseDataPropertyOf(UC)

As for DCs, the semantics of LIdCs is given in terms of FOL interpretations 6. In-
tuitively, let KeyFor(π1, ..., πn A) be an LIdC, n ≥ 1, where A denotes a classExpres-
sion, π1 denotes a path of length 1, i.e. a simplePropertyExpression, and πi denotes
a path of arbitrary length, for i = 2, ..., n. Then an interpretation satisfies such an LIdC
if for any two individuals a, a′ of A, there exists at least one path πj , j ∈ {1, n}, such
that a, a′ differ on the set of individuals and values that are reachable resp. from a, a′ by
means of πj (for more details about the formal semantics of LIdCs, please refer to [4]).

Now, a DL-LiteA ontology with LIdCs is a DL-LiteA ontology whose TBox T can
also include LIdCs, such that for each LIdC γ in T , every simplePropertyExpression
in a path of γ is not specialized in T . Then, as for DCs, the semantics of a DL-LiteA

ontology with LIdCs is the set of interpretations that satisfy all assertions in A and T ,
including every LIdC in T .

Let us now illustrate by an example the extensions presented above.

Example 1 (cont.) The ontology of Example 1 can be now enriched with these axioms:
ObjectPropertyDataDomain(WeddingDate MARRIES)
ObjectPropertyDataRange(WeddingDate rdf:date)
KeyFor(SSN Person)
deny(q()← WeddingDate(X, X))
ObjectPropertyDataAssertion(WeddingDate bob mary ′06/02/06′)

The new intensional assertions state that MARRIES is the domain of the object property
data WeddingDate, while its range is date. Moreover, they state that SSN is an
identifier for Person, and that nobody is married with himself. Finally, the extensional
assertions specify the date of the wedding of bob and mary.

4.2 Expressing epistemic constraints in DL-LiteA: the ECBox

In this section we present a new component of a DL-LiteA ontology, called ECBox,
consisting of a set of epistemic constraints, named EQL constraints, formally intro-
duced in [2]. It is worth noting that, as opposed to rules and other kinds of assertions,
constraints are not interpreted as assertions allowing inferring the set of models of the
ontology. On the contrary, constraints are interpreted as simple “checks” over the on-
tology set of models.

The syntax for the EQL constraints (or EQLCs) is the following:
6 Note that OWL 2.0 Easy Keys fundamentally differ from LIdCs, since they are interpreted

with an epistemic semantics.

EQLCAxiom ::= EQLC(q)

where q is a boolean SparSQL query.
The semantics of such constraints is given in terms of epistemic interpretations [2].

An epistemic interpretationE,w satisfies EQLC(q) if q is true inE,w. Notice that such
constraints are a particular form of the constraints introduced in [11].

With this notion in place, we can revise the notion of DL-LiteA ontology: a DL-LiteA

ontology with ECBox is a triple (T ,A, C), where T and A resp. denote as usual a
DL-LiteA TBox and ABox, and C is a ECBox.

Now, we say that an ontology (T ,A) satisfies an ECBox C, if for each EQLC(q) ∈
C, the boolean SparSQL query q is true over the ontology (T ,A). Then, the semantics
of an ontology with ECBox (T ,A, C) is defined as the set of models of (T ,A), if
(T ,A) satisfies C, and the empty set of models, otherwise. Also, we say that an ontology
with ECBox is satisfiable if its set of models is non-empty. We remind that the idea of
epistemic constraints, follows the research line introduced in [11].

Let us now illustrate the role of the ECBox.

Example 1 (cont.) Through the ECBox, we can now enrich the ontology of Example 1
and model the following:

– if someone, let us say X , is married with someone else, let us say Y , and Y is
married with X , then their wedding dates have to be the same: EQLC(q′), where
q′ is the boolean SparSQL query asking for the nonexistence of two persons X,Y
such that it is known that X is married with Y , that Y is married with X , and that
their wedding dates are different. For shortness, we don’t show the actual form of
q′.

– a person is a male or a female: EQLC(q′′), where q′′ is the boolean SparSQL query
showed in Example 3.

Let us focus on the last constraint. It is well-known that DL-LiteA, being conceived to
keep data complexity of the main reasoning tasks within LOGSPACE, has renounced to
express few constructs typically used in the ER (or UML) formalisms, such as complete
generalization and minimal cardinality (greater than 1) on relations. Hence, for exam-
ple, it is not possible to assert in a DL-LiteA ontology that a person is either a male or
a female (and nothing else). However, by weakening the semantics and using the last
EQLC, it is possible to guarantee that if the ontology with constraints is satisfiable, then
a person is either a male or a female, in all the models of the ontology.

5 Conclusion

The main contribution of this paper is to show how to implement efficient reasoning
tasks over ontologies while keeping compliant with OWL. To this aim, we presented a
new query language, called SparSQL , that is an implementation of the EQL-Lite(UCQ)
epistemic query language presented in [2], whose syntax is inspired by both SQL and
SPARQL. Last but not least, we enriched the ontology language introduced so far with
a new set of constructs, beyond OWL, to handle data properties of object properties,

and to express constraints that might be particularly useful for modeling ontologies of
practical interest.

It is worth noting that all along this paper we considered DL-LiteA ontologies, hav-
ing traditional ABoxes as for data layer. Actually, MASTRO is able to access through
an ontology and an appropriate set of mappings [9] any data layer, provided that it is
accessible through a standard SQL engine. Notably, both the functional-style syntax
for DL-LiteA, the SparSQL query language and the expressive DL-LiteA constraints
that were presented, are currently implemented within the MASTRO system, and keep
working when MASTRO is used to access a general data layer. Furthermore, the first
experiments with the overall system are very encouraging.

As future work we plan to follow two main directions. On one hand, we plan to
investigate the use of SparSQL to query ontologies written in DLs, other than DL-LiteA,
e.g. OWL-DL, and in RDFS. On the other hand, we plan to run experiments with actual
users, in order to compare the usability of MASTRO with the other tools for ontology
management reasoning that are currently available.

Acknowledgments. This research has been partially supported by the MIUR FIRB
2005 project “Tecnologie Orientate alla Conoscenza per Aggregazioni di Imprese in
Internet” (TOCAI.IT), and by the FET project TONES (Thinking ONtologiES), funded
by the EU under contract number FP6-7603.

References
1. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati. Linking

data to ontologies: The description logic DL-LiteA. In Proc. of OWLED 2006, volume 216 of
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-216/, 2006.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. EQL-Lite: Effective
first-order query processing in description logics. In Proc. of IJCAI 2007, pages 274–279,
2007.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Path-based identifi-
cation constraints in description logics. In Proc. of KR 2008, 2008. To appear.

5. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment
under constraints. In Proc. of PODS’98, pages 149–158, 1998.

6. P. P. Chen. The Entity-Relationship model: Toward a unified view of data. ACM Trans. on
Database Systems, 1(1):9–36, Mar. 1976.

7. B. Motik, I. Horrocks, and U. Sattler. Adding integrity constraints to OWL. In Proceedings
of the Workshop OWLED, 2007.

8. M. M. Ortiz de la Fuente, D. Calvanese, and T. Eiter. Data complexity of answering
unions of conjunctive queries in SHIQ. Technical report, Fac. of Computer Science,
Free Univ. of Bozen-Bolzano, Mar. 2006. Available at http://www.inf.unibz.it/
˜calvanese/papers/orti-calv-eite-TR-2006-03.pdf.

9. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

10. A. Poggi and M. Ruzzi. Ontology-based data access with MASTRO (demo). In Proceedings
of the Workshop OWLED, 2007.

11. R. Reiter. What should a database know? J. of Logic Programming, 14:127–153, 1990.

