
Inconsistency-tolerant Semantics for Description Logic
Ontologies (extended abstract)?

Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati,
Marco Ruzzi, and Domenico Fabio Savo

Dipartimento di Informatica e Sistemistica
Sapienza Università di Roma

lastname@dis.uniroma1.it

1 Introduction
It is well-known that inconsistency causes severe problems in classical logic. In par-
ticular, since an inconsistent logical theory has no model, it logically implies every
formula, and, therefore, query answering on an inconsistent knowledge base becomes
meaningless. In this paper, we address the problem of dealing with inconsistencies in
Description Logic (DL) knowledge bases. Our goal is both to study DL semantical
frameworks which are inconsistency-tolerant, and to devise techniques for answering
queries posed to DL knowledge bases under such inconsistency-tolerant semantics.

A DL knowledge base is constituted by two components, called the TBox and the
ABox, respectively. Intuitively, the TBox includes axioms sanctioning general prop-
erties of concepts and relations (such as Dog isa Animal), whereas the ABox con-
tains axioms asserting properties of instances of concepts and relations (such as Bob
is an instance of Dog). The various DLs differ in the language (set of constructs) used
to express such axioms. We are particularly interested in using DLs for the so-called
“ontology-based data access” [8] (ODBA), where a DL TBox acts as an ontology used
to access a set of data sources. Since it is often the case that, in this setting, the size of
the data at the sources largely exceeds the size of the ontology, DLs where query an-
swering is tractable with respect to the size of the ABox have been studied recently. In
this paper, we will consider DLs specifically tailored towards ODBA, in particular DLs
of the DL-Lite family [8], where query answering can be done efficiently with respect
to the size of the ABox.

Depending on the expressive power of the underlying language, the TBox alone
might be inconsistent, or the TBox might be consistent, but the axioms in the ABox
might contradict the axioms in the TBox. Since in ODBA the ontology is usually repre-
sented as a consistent TBox, whereas the data at the sources do not necessarily conform
to the ontology, the latter situation is the one commonly occurring in practice. There-
fore, our study is carried out under the assumption that the TBox is consistent, and
inconsistency may arise between the ABox and the TBox (inconsistencies in the TBox
are considered, e.g., in [5, 9]).

There are many approaches for devising inconsistency-tolerant inference sys-
tems [1], originated in different areas, including Logic, Artificial Intelligence, and
Databases. Our work is especially inspired by the approaches to consistent query an-
swering in databases [3], which are based on the idea of living with inconsistencies (i.e.,

? This paper is an extended abstract of [6].

data that do not satisfy the integrity constraints) in the database, but trying to obtain
only consistent information during query answering. But how can one obtain consis-
tent information from an inconsistent database? The main tool used for this purpose
is the notion of database repair: a repair of a database contradicting a set of integrity
constraints is a database obtained by applying a minimal set of changes which restore
consistency. In general, there are many possible repairs for a database D, and, there-
fore, the approach sanctions that what is consistently true in D is simply what is true
in all possible repairs of D. Thus, inconsistency-tolerant query answering amounts to
compute the tuples that are answers to the query in all possible repairs.

In [7], a semantics for inconsistent knowledge bases expressed in DL-Lite has been
proposed, based on the notion of repair. More specifically, an ABox A′ is a repair of
the knowledge base K = 〈T ,A〉, where T is the TBox and A is the ABox, if A′ is
a maximal subset of A consistent with T . In this paper, we call such semantics the
ABox Repair (AR) semantics, and we show that for the DLs of the DL-Lite family,
inconsistency-tolerant query answering under such a semantics is coNP-complete even
for ground atomic queries, thus showing that inconsistency-tolerant instance checking is
already intractable. For this reason, we propose a variant of the AR-semantics, based on
the idea that inconsistency-tolerant query answering should be done by evaluating the
query over the intersection of all AR-repairs. The new semantics, called the Intersection
ABox Repair (IAR) semantics, is a sound approximation of the AR-semantics, and
it enjoys a desirable property, namely that inconsistency-tolerant query answering is
polynomially tractable.

Then, we highlight some drawbacks of the AR semantics, and propose a variant
called the Closed ABox Repair (CAR) semantics, that essentially considers only repairs
that are “closed” with respect to the knowledge represented by the TBox. We show that,
while inconsistency-tolerant instance checking is tractable under this new semantics in
DL-Lite, query answering is coNP-complete for unions of conjunctive queries. For this
reason, we also study the “intersection-based” version of the CAR-semantics, called
the Intersection Closed ABox Repair (ICAR) semantics, showing that it is a sound
approximation of the CAR-semantics, and that inconsistency-tolerant query answering
under this new semantics is again polynomially tractable.

2 Preliminaries
Description Logics (DLs) are logics that represent the domain of interest in terms of
concepts, denoting sets of objects, value-domains, denoting sets of values, attributes,
denoting binary relations between objects and values, and roles, denoting binary rela-
tions over objects. DL expressions are built starting from an alphabet Γ of symbols
for atomic concepts, atomic value-domains, atomic attributes, atomic roles, and object
and value constants. We denote by ΓO the set of object constants, and by ΓV the set of
value constants. Complex expressions are constructed starting from atomic elements,
and applying suitable constructs. Different DLs allow for different constructs.

A DL knowledge base (KB) is constituted by two main components: a TBox
(i.e.,“Terminological Box”), which contains a set of universally quantified assertions
stating general properties of concepts and roles, thus representing intensional knowl-
edge of the domain, and an ABox (i.e.,“Assertional Box”), which is constituted by as-
sertions on individual objects, thus specifying extensional knowledge. Again, different
DLs allow for different kinds of TBox and/or ABox assertions.

2

Formally, if L is a DL, then an L-knowledge base K is a pair 〈T ,A〉, where T
is a TBox expressed in L and A is a ABox. In this paper we assume that the ABox
assertions are atomic, i.e., they involve only atomic concepts, attributes and roles. The
alphabet of K, denoted by ΓK, is the set of symbols from Γ occurring in T and A. The
semantics of a DL knowledge base is given in terms of first-order (FOL) interpretations.
We denote with Mod(K) the set of models of K, i.e., the set of FOL interpretations
that satisfy all the assertions in T and A, where the definition of satisfaction depends
on the kind of expressions and assertions in the specific DL language in which K is
specified. As usual, a KB K is said to be satisfiable if it admits at least one model, i.e.,
if Mod(K) 6= ∅, and K is said to entail a First-Order Logic (FOL) sentence φ, denoted
K |= φ, if φI = true for all I ∈ Mod(K). In the following, we are interested in
particular in UCQ entailment, i.e., the problem of establishing whether a DL KB entails
a boolean union of conjunctive queries (UCQ), i.e., a first order sentence of the form
∃y1.conj 1(y1) ∨ · · · ∨ ∃yn.conjn(yn), where y1, . . . ,yn are terms (i.e., constants or
variables), and each conj i(yi) is a conjunction of atoms of the form A(z), P (z, z′) and
U(z, z′) whereA is an atomic concept, P is an atomic role and U is an atomic attribute,
and z, z′ are terms.

3 Inconsistency-tolerant semantics
In this section we present our inconsistency-tolerant semantics for DL knowledge bases.
As we said in the introduction, we assume that for a knowledge base K = 〈T ,A〉,
T is satisfiable, whereas A may be inconsistent with T , i.e., the set of models of K
may be empty. The challenge is to provide semantic characterizations for K, which
are inconsistency-tolerant, i.e., they allow K to be interpreted with a non-empty set of
models even in the case where it is unsatisfiable under the classical first-order semantics.

The inconsistency-tolerant semantics we give below are based on the notion of re-
pair. Intuitively, given a DL KB K = 〈T ,A〉, a repair AR for K is an ABox such that
the KB 〈T ,AR〉 is satisfiable under the first-order semantics, and AR “minimally” dif-
fers from A. Notice that in general not a single, but several repairs may exist, depend-
ing on the particular minimality criteria adopted. We consider here different notions
of “minimality”, which give rise to different inconsistency-tolerant semantics. In all
cases, such semantics coincide with the classical first-order semantics when inconsis-
tency does not come into play, i.e., when the KB is satisfiable under standard first-order
semantics.

The first notion of repair that we consider can be phrased as follows: a repairAR of
a KB K = 〈T ,A〉 is a maximal subset of A such that 〈T ,AR〉 is satisfiable under the
first-order semantics, i.e., there does not exist another subset of A that strictly contains
AR and that is consistent with T . Intuitively, each such repair is obtained by throwing
away from A a minimal set of assertions to make it consistent with T . In other words,
adding to AR another assertion of A would make the repair inconsistent with T . The
formal definition is given below.

Definition 1. Let K = 〈T ,A〉 be a DL KB. An ABox Repair (AR) of K is a set A′ of
membership assertions such that: (i) A′ ⊆ A; (ii) Mod(〈T ,A′〉) 6= ∅; (iii) there exists
no A′′ such that A′ ⊂ A′′ ⊆ A and Mod(〈T ,A′′〉) 6= ∅. The set of AR-repairs for K
is denoted by AR-Rep(K).

Based on the above notion of repair, we now define ABox repair models.

3

Definition 2. Let K = 〈T ,A〉 be a DL KB. An interpretation I is an ABox repair
model, or simply an AR-model, of K if there exists A′ ∈ AR-Rep(K) such that I |=
〈T ,A′〉. The set of ABox repair models of K is denoted by AR-Mod(K).

The following notion of consistent entailment is the natural generalization of clas-
sical entailment to the ABox repair semantics.

Definition 3. Let K be a DL KB, and let φ be a first-order sentence. We say that φ is
AR-consistently entailed, or simply AR-entailed, by K, written K |=AR φ, if I |= φ
for every I ∈ AR-Mod(K).

Example 1. Consider the DL-LiteA knowledge base K′ = 〈T ,A′〉, where T contains
the following assertions:

Mechanic v TeamMember Driver v TeamMember Driver v ¬Mechanic
∃drives v Driver ∃drives− v Car (funct drives)

Assertions from the first row, from left to right, respectively specify that drivers are
team members, mechanics are team members, and drivers are not mechanics (disjoint-
ness). In the second row, first two assertions say that the role drives is specified between
Driver (domain) and Car (range), and that it is functional, i.e., every driver can drive
at most one car. A′ is an ABox constituted by the set of assertions {Driver(felipe),
Mechanic(felipe),TeamMember(felipe),drives(felipe, ferrari)}. This ABox
states that felipe is a team member and that he is both a driver and a mechanic. No-
tice that this implies that felipe drives ferrari and that ferrari is a car. It is easy
to see that K is unsatisfiable, since felipe violates the disjointness between driver and
mechanic. The set AR-Rep(K′) is constituted by the set of T -consistent ABoxes:

AR-rep1= {Driver(felipe),drives(felipe, ferrari),TeamMember(felipe)};
AR-rep2= {Mechanic(felipe),TeamMember(felipe)}.

The AR-semantics given above in fact coincides with the inconsistency-tolerant se-
mantics for DL KBs presented in [7], and with the loosely-sound semantics studied
in [2] in the context of inconsistent databases. Although this semantics can be consid-
ered to some extent the natural choice for the setting we are considering, since each
ABox repair stays as close as possible to the original ABox, it has the characteristic to
be dependent from the form of the knowledge base. Suppose that K′′ = 〈T ,A′′〉 dif-
fers from the inconsistent knowledge base K′ = 〈T ,A′〉, simply because A′′ includes
assertions that logically follow, using T , from a consistent subset of A (implying that
K′′ is also inconsistent). One could argue that the repairs of K′′ and the repairs of K′
should coincide. Conversely, the next example shows that, in the AR-semantics the two
sets of repairs are generally different.

Example 2. Consider the KB K′′ = 〈T ,A′′〉, where T is the same as in K′ = 〈T ,A′〉
of Example 1, and the ABox A′′ is as follows:

A′′ ={Driver(felipe),Mechanic(felipe),TeamMember(felipe),Car(ferrari),
drives(felipe, ferrari)}.

4

Notice that A′′ can be obtained by adding Car(ferrari) to A′. Since Car(ferrari) is
entailed by the KB 〈T , {drives(felipe, ferrari)}〉, i.e., a KB constituted by the TBox
T of K′ and a subset of A′ that is consistent with T , one intuitively would expect that
K′ andK′′ have the same repairs under the AR-semantics. This is however not the case,
since we have that AR-Rep(K′′) is formed by:

AR-rep3= {Driver(felipe),drives(felipe, ferrari),TeamMember(felipe),
Car(ferrari)};

AR-rep4= {Mechanic(felipe),TeamMember(felipe),Car(ferrari)}.

Let us finally consider the ground sentence Car(ferrari). It is easy to see that
Car(ferrari) is AR-entailed by the KB K′′ but it is not AR-entailed by the KB K′.

Depending on the particular scenario, and the specific application at hand, the above
behavior might be considered incorrect. This motivates the definition of a new semantics
that does not present such a characteristic. According to this new semantics, that we
call Closed ABox Repair, the repairs take into account not only the assertions explicitly
included in the ABox, but also those that are implied, through the TBox, by at least one
subset of the ABox that is consistent with the TBox.

To formalize the above idea, we need some preliminary definitions. Given a DL KB
K = 〈T ,A〉, we denote with HB(K) the Herbrand Base of K, i.e. the set of ABox
assertions that can be built over the alphabet of ΓK. Then we define the consistent
logical consequences of K as the set clc(K) = {α | α ∈ HB(K) and there exists S ⊆
A such that Mod(〈T , S〉) 6= ∅ and 〈T , S〉 |= α}. With the above notions in place we
can now give the definition of Closed ABox Repair.

Definition 4. Let K = 〈T ,A〉 be a DL KB. A Closed ABox Repair (CAR) for K is
a set A′ of membership assertions such that: (i)A′ ⊆ clc(K), (ii)Mod(〈T ,A′〉) 6= ∅,
(iii) there exists noA′′ ⊆ clc(K) such that Mod(〈T ,A′′〉) 6= ∅ The set of CAR-repairs
for K is denoted by CAR-Rep(T ,A).

In words, a CAR-repair is a maximal subset of clc(K) consistent with T . The set
of CAR-models of a KB K, denoted CAR-Mod(K), is defined analogously to AR-
models (cf. Definition 2). Also, CAR-entailment, denoted |=CAR, is analogous to AR-
entailment (cf. Definition 3).

Example 3. Consider the two KBs K′ and K′′ presented in the Example 1 and Exam-
ple 2. It is easy to see that both CAR-Rep(K′) and CAR-Rep(K′′) are constituted by the
two sets below:

CAR-rep1={Driver(felipe),drives(felipe, ferrari),TeamMember(felipe),
Car(ferrari)};

CAR-rep2={Mechanic(felipe),TeamMember(felipe),Car(ferrari)}.

It follows that both K′ and K′′ CAR-entail the ground sentence Car(ferrari), differ-
ently from what happen under the AR-semantics, as showed in Example 2.

As we will see in the next section, entailment of a union of conjunctive queries from
a KB K is intractable both under the AR-semantics and the CAR-semantics. Since this

5

can be an obstacle in the practical use of such semantics, we introduce here approxi-
mations of the two semantics, under which we will show in the next section that entail-
ment of unions of conjunctive queries is polynomial. In both cases, the approximation
consists in taking as unique repair the intersection of the AR-repairs and of the CAR-
repairs, respectively. This actually corresponds to follow the WIDTIO (When you are
in doubt throw it out) approach, proposed in belief revision and update [10, 4].

Definition 5. LetK = 〈T ,A〉 be a DL KB. An Intersection ABox Repair (IAR) forK is
the setA′ of membership assertions such thatA′ =

⋂
Ai∈AR-Rep(K)Ai}. The (singleton)

set of IAR-repairs for K is denoted by IAR-Rep(K).

Analogously, we give below the definition of Intersection Closed ABox Repair.

Definition 6. Let K = 〈T ,A〉 be a DL KB. An Intersection Closed ABox Re-
pair (ICAR) for K is the set A′ of membership assertions such that A′ =⋂
Ai∈CAR-Rep(K)Ai}. The (singleton) set of ICAR-repairs for K is denoted by

ICAR-Rep(K).

The sets IAR-Mod(K) and ICAR-Mod(K) of IAR-models and ICAR-models, re-
spectively, and the notions of IAR-entailment and ICAR-entailment are defined as
usual (cf. Definition 2 and Definition 3). Consider for example the KB K′ = 〈T ,A′〉
presented in Example 1. Then IAR-Rep(K′) is the singleton formed by the ABox IAR-
rep = AR-rep1 ∩ AR-rep2 = {TeamMember(felipe)}. In turn, referring to Ex-
ample 3, ICAR-Rep(K′) is the singleton formed by the ABox ICAR-rep1 = CAR-
rep1 ∩ CAR-rep2 = {TeamMember(felipe),Car(ferrari)}. It is not difficult to show
that the IAR-semantics is a sound approximation of the AR-semantics, and that the
ICAR-semantics is a sound approximation of the CAR-semantics. It is also easy to
see that the converse is not true in general. For instance, the sentence Driver(felipe)
is entailed by K = 〈T , {drives(felipe, ferrari),drives(felipe,mcLaren)}〉, where
T is the TBox of Example 1, under the AR-semantics, but it is not entailed under the
IAR-semantics. It can also be proved that the IAR-semantics is a sound approximation
of the ICAR-semantics (and not vice versa).

4 Reasoning
In this section we study reasoning in the inconsistency-tolerant semantics introduced in
the previous section. In particular, we analyze the problem of UCQ entailment under
such semantics in the specific DL DL-LiteA [8] for which reasoning under standard FOL
semantics is tractable. We will also consider instance checking, which is a restricted
form of UCQ entailment. In this section we will focus on the data complexity of query
answering, i.e., we will measure the computational complexity only with respect to
the size of the ABox (which is usually much larger than the TBox and the queries). It
follows from the results in [8] that query answering in DL-LiteA is in ACo, which is a
complexity class contained in PTIME, and therefore is tractable in data complexity.

We start by considering the AR-semantics. It is known that UCQ entailment is
intractable under this semantics [7]. Here, we strengthen this result, and show that in-
stance checking under the AR-semantics is already coNP-complete in data complexity
even if the KB is expressed in DL-Litecore . We recall that DL-Litecore is the least ex-
pressive logic in the DL-Lite family, as it only allows for concept expressions of the
form C ::= A|∃R|∃R−, and for TBox assertions of the form C1 v C2, C1 v ¬C2.

6

Theorem 1. Let K be a DL-Litecore KB and let α be an ABox assertion. Deciding
whether K |=AR α is coNP-complete with respect to data complexity.

Next, we focus on the CAR-semantics, and obtain that UCQ entailment under this
semantics is coNP-complete even if the TBox language is restricted to DL-Litecore .

Theorem 2. Let K be a DL-Litecore KB and let Q be a UCQ. Deciding whether
K |=CAR Q is coNP-complete with respect to data complexity.

Notice that, differently from the AR-semantics, the above intractability result for
the CAR-semantics does not hold already for the instance checking problem: we will
show later in this section that instance checking is indeed tractable under the CAR-
semantics.

We now turn our attention to the IAR-semantics, and define the algorithm
Compute-IAR-Repair (see Figure 1) for computing the IAR-repair of a DL-LiteA KB
K. The algorithm simply computes the set D ⊆ A of ABox assertions which must be
eliminated from the IAR-repair of K.

Algorithm Compute-IAR-Repair(K)
input: DL-LiteA KB K = 〈T ,A〉
output: DL-LiteA ABox A′

begin
let D = ∅;
for each fact α ∈ A do

if 〈T , {α}〉 unsatisfiable
then let D = D ∪ {α};

for each pair of facts α1, α2 ∈ A−D do
if 〈T , {α1, α2}〉 unsatisfiable
then let D = D ∪ {α1, α2};

return A−D
end

Algorithm Compute-ICAR-Repair(K)
input: DL-LiteA KB K = 〈T ,A〉
output: DL-LiteA ABox A′

begin
Compute clc(K);
let D = ∅;
for each pair of facts α1, α2 ∈ clc(K) do

if 〈T , {α1, α2}〉 unsatisfiable
then let D = D ∪ {α1, α2};

return clc(K)−D
end

Fig. 1. The Compute-IAR-Repair and Compute-ICAR-Repair algorithms

The following property, based on the correctness of the previous algorithm, estab-
lishes tractability of UCQ entailment under IAR-semantics.

Theorem 3. LetK be a DL-LiteA KB, and letQ be a UCQ. Deciding whetherK |=IAR

Q is in PTIME with respect to data complexity.

We now turn our attention to the ICAR-semantics and present the algorithm
Compute-ICAR-Repair (see Figure 1) for computing the ICAR-repair of a DL-LiteA
KB K. This algorithm is analogous to the previous algorithm Compute-IAR-Repair.
The main differences are: (i) the algorithm Compute-ICAR-Repair returns (and oper-
ates on) a subset of clc(K), while the algorithm Compute-IAR-Repair returns a subset
of the original ABox A; (ii) differently from the algorithm Compute-IAR-Repair, the
algorithm Compute-ICAR-Repair does not need to eliminate ABox assertions α such
that 〈T , {α}〉 is unsatisfiable, since such facts cannot occur in clc(K).

7

Again, through the algorithm Compute-ICAR-Repair it is possible to establish the
tractability of UCQ entailment under ICAR-semantics.

Theorem 4. LetK = 〈T ,A〉 be a DL-LiteA KB and letQ be a UCQ. Deciding whether
K |=ICAR Q is in PTIME with respect to data complexity.

Finally, we consider the instance checking problem under CAR-semantics, and ob-
tain that instance checking under CAR-semantics coincides with instance checking un-
der the ICAR-semantics.

Lemma 1. LetK be a DL-LiteA KB, and let α be an ABox assertion. Then,K |=CAR α
iff K |=ICAR α.

The above property and Theorem 4 allow us to establish tractability of instance check-
ing under the CAR-semantics.

Theorem 5. Let K be a DL-LiteA KB, and let α be an ABox assertion. Deciding
whether K |=CAR α is in PTIME with respect to data complexity.

We remark that the analogous of Lemma 1 does not hold for AR, because AR-
repairs are not deductively closed. This is the reason why instance checking under AR-
semantics is harder, as stated by Theorem 1.

5 Conclusions
Our work can proceed along different directions. One notable problem we aim at ad-
dressing is the design of new algorithms for inconsistency-tolerant query answering
both under the IAR-semantics and the ICAR-semantics, based on the idea of rewriting
the query into a FOL query to be evaluated directly over the inconsistent ABox. We
would also like to study reasoning under inconsistency-tolerant semantics in Descrip-
tion Logics outside the DL-lite family.

References

1. L. E. Bertossi, A. Hunter, and T. Schaub, editors. Inconsistency Tolerance, volume 3300 of
LNCS. Springer, 2005.

2. A. Calı̀, D. Lembo, and R. Rosati. On the decidability and complexity of query answering
over inconsistent and incomplete databases. In Proc. of PODS 2003, pages 260–271, 2003.

3. J. Chomicki. Consistent query answering: Five easy pieces. In Proc. of ICDT 2007, volume
4353 of LNCS, pages 1–17. Springer, 2007.

4. T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revision, updates
and counterfactuals. Artificial Intelligence, 57:227–270, 1992.

5. Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontologies. In
Proc. of IJCAI 2005, pages 454–459, 2003.

6. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-tolerant seman-
tics for description logics. In Proc. of RR 2010, 2010.

7. D. Lembo and M. Ruzzi. Consistent query answering over description logic ontologies. In
Proc. of RR 2007, 2007.

8. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

9. G. Qi and J. Du. Model-based revision operators for terminologies in description logics. In
Proc. of IJCAI 2009, pages 891–897, 2009.

10. M. Winslett. Updating Logical Databases. Cambridge University Press, 1990.

8

