
From OWL to DL-Lite through efficient
ontology approximation

Marco Console, Valerio Santarelli, Domenico Fabio Savo

Dipartimento di Ingegneria Informatica Automatica e Gestionale “Antonio Ruberti”
Sapienza Università di Roma

lastname@dis.uniroma1.it

1 Introduction

Ontologies provide a conceptualization of a domain of interest which can be
used for different objectives, such as for providing a formal description of the
domain of interest for documentation purposes, or for providing a mechanism
for reasoning upon the domain. For instance, they are the core element of the
Ontology-Based Data Access (OBDA) [3,8] paradigm, in which the ontology
is utilized as a conceptual view, allowing user access to the underlying data
sources. With the aim to use an ontology as a formal description of the domain
of interest, the use of expressive languages proves to be useful. If instead the
goal is to use the ontology for reasoning tasks which require low computational
complexity, the high expressivity of the language used to model the ontology
may be a hindrance. In this scenario, the approximation of ontologies expressed
in very expressive languages through ontologies expressed in languages which
keep the computational complexity of the reasoning tasks low is pivotal.

In this paper, we focus on the semantic approximation of an ontology for
OBDA applications. Thus, we study approaches for approximating ontologies
in very expressive languages with ontologies in languages that, characterized
by low reasoning complexity, are suitable for query answering purposes. Among
the most significant works in which this problem is studied are [7] and [2], in
which the described approaches can be traced back to the work of Selman and
Kautz [9].

Since OWL 21 is the W3C standard language for expressing ontologies, it
is often used as the expressive language for formulating ontologies describing
the domain of interest. On the other hand, in scenarios in which ontologies are
used for OBDA purposes, one naturally focuses on the logics of the DL-Lite
family [4]. This is a family of Description Logics (DLs) specifically designed to
keep all reasoning tasks polynomially tractable in the size of the data, and is
thus suitable for OBDA. For this reason, in this work we study the problem
of approximating OWL 2 ontologies with ontologies in DL-Lite. To this aim
we provide an algorithm for the computation of these approximations, and an
optimized technique for the computation of the entailment set of an OWL 2
ontology in DL-Lite, which can be used efficiently in practice.

1 http://www.w3.org/TR/2012/REC-owl2-primer-20121211/

http://www.w3.org/TR/2012/REC-owl2-primer-20121211/


2 Marco Console, Valerio Santarelli, Domenico Fabio Savo

2 Approximation of DL ontologies

In this section, we present our notion of approximation of an ontology expressed
in a language L in a target language L′.

We recall that, given a signature Σ and a language L, an L ontology O is a
set T ∪A of assertions over Σ expressed in L, where T , the TBox, is a finite set
of intentional assertions and A, the ABox, is a finite set of instance assertions.
Different languages allow for different kinds of TBox and/or ABox assertions
and allow for different manners in which these can be combined for obtaining
TBoxes and ABoxes in the specific language.

We begin by introducing the notion of entailment set [7] of a satisfiable
ontology with respect to a language.

Definition 1. Let O be a satisfiable ontology expressed in a language L over
a signature Σ, and let L’ be a language, not necessarily different from L. The
entailment set of O with respect to L′, denoted as ES(O,L′), is the set which
contains all L′ axioms over Σ that are entailed by O.

Given an ontology O and a language L′, we observe that the entailment set
of O with respect to L′ is unique. A straightforward solution in defining the
approximation of O in L′ may be to define this as ES(O,L′). This is the solution
adopted, for instance, in [7]. Unfortunately, this solution is not suitable for every
language, because ES(O,L′) may not be a valid L′ ontology. This occurs in two
instances. The first is the case in which the entailment set ES(O,L′) is infinite.
This may happen in DL-LiteA, the most expressive DL of the DL-Lite family, in
which the infiniteness of the entailment set arises from the possibility of inferring
infinitely-long existential chains. The second case occurs when ES(O,L′) is a
finite set of L′-axioms, but, nevertheless, there is no finite set of L′-axioms over
the signature of O that is an L′ ontology and that is logically equivalent to
ES(O,L′). This may happen when syntactic restrictions are imposed on the
manner in which assertions can be combined in order to obtain an ontology in
the target language. This is the case for instance for EL++ [1] and DL-LiteA.

These observations lead us to formulate the following more sophisticated
notion of approximation.

Definition 2. Let O be a satisfiable ontology expressed in a language L over a
signature Σ, and let L′ be a language such that ES(O,L′) is finite. A satisfiable
L′ ontology O′ over Σ is an approximation in L′ of O if both the following state-
ments hold: (i) ES(O′,L′) ⊆ ES(O,L′); (ii) there is no satisfiable L′ ontology
O′′ such that ES(O′,L′) ⊂ ES(O′′,L′) ⊆ ES(O,L′).

In other words, a satisfiable ontology O′ is an approximation in L′ of O, if
it is an L′ ontology and there is no satisfiable L′ ontology O′′ whose entailment
set in L′ is “nearer” to the entailment set of O in L′ than the entailment set in
L′ of O′, where the distance here is measured in terms of set inclusion.

It is easy to see that in accordance with Definition 2, there may exist more
than one ontology which is an approximation in L′ of O. We denote the set
containing these ontologies as ApxMAX(O,L′).



From OWL to DL-Lite through efficient ontology approximation 3

Algorithm 1: isApx(T ,O)

Input: a DL-Lite
(k)
A TBox T , a satisfiable OWL 2 ontology O

Output: true or false
begin

E ← ES(T ,DL-Lite
(k)
A );

S ← ES(O,DL-Lite
(k)
A ) \ E ;

foreach α ∈ S
if T ∪ {α} is a DL-Lite

(k)
A TBox then return false;

foreach functionality assertion φ ∈ E
E ← E \ clashes(φ, E);

foreach functionality assertion ϕ ∈ S
if ES(E \ clashes(ϕ, E),DL-Lite

(k)
A ) = ES(T ,DL-Lite

(k)
A ) then return false;

return true;
end

3 Approximation in DL-LiteA of OWL 2 ontologies

In this section, we study the problem of computing the approximation of a
satisfiable OWL 2 ontology O with a DL-LiteA TBox. According to Definition 2,
to guarantee the existence of an approximation, it is necessary that ES(O,L′) be
finite. For this reason, in what follows, we only consider versions of DL-LiteA,

which we denote as DL-Lite
(k)
A , in which only existential chains of bounded

length k are allowed in the TBox. As shown in [2], this guarantees that for each

O, ES(O,DL-Lite(k)) is finite.

We recall that in a DL-LiteA TBox no role (resp. attribute) that is functional
or whose inverse is functional can appear positively in the right hand side of a
role (resp. attribute) inclusion assertion or in a qualified existential restriction.

Now, given a set of DL-Lite
(k)
A assertions S, and a functionality assertion ϕ

over a role R (resp. attribute U), we denote with clashes(ϕ,S) the set of all
assertions involving R (resp. U) that, together with ϕ, violate the syntactic

restriction imposed on DL-Lite
(k)
A TBoxes. Hence, clashes(ϕ,S) is a set of role

(resp. attribute) inclusion assertions and assertions with a qualified existential
role (resp. attribute) on the right hand side.

Let O be an OWL 2 ontology, and let F be the set containing all the function-

ality assertions in ES(O,DL-Lite
(k)
A ) for which clashes(ϕ,ES(O,DL-Lite

(k)
A )) 6=

∅. If F 6= ∅, then ES(O,DL-Lite
(k)
A ) is not a valid DL-Lite

(k)
A TBox. In what fol-

lows, we denote by MaxSubES(ES(O,DL-Lite
(k)
A )) the set of DL-Lite

(k)
A TBoxes

computed by retracting, from ES(O,DL-Lite
(k)
A ), either ϕ ∈ F or the assertions

in clashes(ϕ,S), in order to resolve the violations of the syntactic restriction. It

is easy to see that, for each O, there are in MaxSubES(ES(O,DL-Lite
(k)
A )) at

most 2|F| TBoxes.

It can be shown that every TBox in MaxSubES(ES(O,DL-Lite
(k)
A )) satis-

fies the first condition in Definition 2, and is therefore a candidate for being

one of the TBoxes in ApxMAX(O,DL-Lite
(k)
A ). However, in order for a TBox



4 Marco Console, Valerio Santarelli, Domenico Fabio Savo

Algorithm 2: computeApx(O)

Input: a satisfiable OWL 2 ontology O
Output: a set of DL-Lite

(k)
A TBoxes

begin

S ←MaxSubES(ES(O,DL-Lite
(k)
A ));

foreach Ti ∈ S
if isApx(Ti,O) = false then S ← S \ {Ti};

return S;
end

Ti in MaxSubES(ES(O,DL-Lite
(k)
A )) to belong to ApxMAX(O,DL-Lite

(k)
A ), it

must also satisfy the second condition of Definition 2, and thus that there is no

other DL-Lite
(k)
A TBox T ′ ⊆ ES(T ,DL-Lite

(k)
A ) such that ES(Ti,DL-Lite

(k)
A ) ⊂

ES(T ′,DL-Lite
(k)
A ) ⊆ ES(O,DL-Lite

(k)
A ).

We provide the algorithm isApx which, given a TBox T and an ontology O,

returns true if T ∈ ApxMAX(O,DL-Lite
(k)
A ), false otherwise.

With algorithm isApx in place, it is easy to come up with a strategy for
computing the approximation in DL-Lite(k) of an OWL 2 ontology O, that is
the one illustrated in algorithm computeApx.

As expected, Algorithm 2 does not return a single TBox, but instead a set
of TBoxes. For application purposes, the approximation that shall be used must
be chosen from this set. A pragmatic approach could be to choose one non-
deterministically. Instead, one could think to leave this choice to the end user,
according to the use he intends to make of it. A more interesting direction could
be to achieve the identification of a unique TBox by applying some preference
criteria to the set returned by Algorithm 2.

The computation of ES(O,DL-Lite
(k)
A ) is in general very costly. Indeed, a

naive algorithm for computing ES(O,DL-Lite
(k)
A ) is the one described in [7], in

which: (i) one computes the set Γ of DL-Lite
(k)
A TBox assertions which can be

built over the signature of O, and (ii) for each assertion α ∈ Γ , such that O
entails α, one adds α to ES(O,DL-Lite

(k)
A ). For checking if O entails α, one needs

to use an OWL 2 reasoner.

In the rest of this section we show how to optimize the computation of

ES(O,DL-Lite
(k)
A ) by providing a technique which drastically reduces in practice

the calls to the OWL 2 reasoner.

In the computation of ES(O,DL-Lite
(k)
A ), a large portion of the invocations

of the OWL 2 reasoner involve assertions in which a general concept C∃R1...∃Rn

involving an existential role chain occurs. Empirical observation, during our tests,
has brought to light the fact that this kind of general concept very often does
not subsume any concept in O. Hence, all the invocations of the OWL 2 reasoner
involving these childless general concepts are useless. Therefore, at the base of
our strategy is the identification of all these childless general concepts C∃R1...∃Rn ,
without invoking the OWL 2 reasoner.



From OWL to DL-Lite through efficient ontology approximation 5

Ontology # O.A.I. # N.A.I. Total time of O.A.I. in ms
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Pediatric 2.495 2.495 2.495 14.293 78.517 463.861 2.999 2.955 2.992

Mouse Brain 6.059 12.611 19.163 11.018 40.362 157.738 8.426 9.955 12.173

Pathway 10.191 11.999 11.999 14.294 52.374 204.694 11.975 16.498 17.553

Cognitive Atlas 56.883 178.381 474.145 48.006 541.350 6.461.478 348.892 1.812.511 6.832.865

Mammalian Phen. 7.551 7.551 7.551 112.898 413.922 1.618.018 322.527 350.853 350.853

Spatial 51.065 82.735 150.195 47.143 4.541.815 445.019.671 27.827 52.742 132.807

Table 1: Evaluation of the optimization algorithm for the computation of
ES(O,DL-Lite

(k)
A ). # O.A.I. = number of OWL 2 reasoner invocations by op-

timized algorithm, # N.A.I. = number of OWL 2 reasoner invocations by non-
optimized algorithm.

We will make use of the function subsumed(S1,O), where S1 is a general
concept (resp. general role, general attribute) which returns the set of atomic
concepts (resp. roles, attributes) S2 such that O |= S2 v S1. This function
is efficiently performed by the most commonly-used OWL 2 reasoners, such as
Pellet [10], Racer [6], FACT++ [11], and HermiT [5].

Our technique calls, as the first step, for the classification of basic concepts,
roles, and attributes, and its encoding into a directed graph, in which the nodes
represent the predicates of the ontology, and the edges the inclusion assertions.

After this initial step, the remaining invocations, which we work to mini-
mize, are those needed for computing the entailed inclusion assertions involving
general concepts C∃R1...∃Rn

, and the entailed disjointness. Regarding the for-
mer, we exploit the graph encoding of concept, role, and attribute classification
to invoke these subsumption checks in a manner which follows the hierarchi-
cal order of these general concepts C∃R1...∃Rn

, in order to avoid those checks
which can be skipped. Consider, for example, an ontology O that entails the
inclusions A1 v A2 and P1 v P2, where A1 and A2 are concepts and P1 and
P2 are roles. Exploiting these inclusions we are able to deduce the hierarchical
structure involving the general concepts that can be built on these four predi-
cates. For instance, we know that ∃P2.A2 v ∃P2, that ∃P2.A1 v ∃P2.A2, that
∃P1.A1 v ∃P2.A1, and so on. We begin by invoking the OWL 2 reasoner by
asking for the children of the general concepts which are in the highest position
in the hierarchy. So, first we call subsumed(∃P2,O). If subsumed(∃P2,O) = ∅,
we then avoid invoking the reasoner asking for subsumed(∃P2.A2,O), and so
on. Regarding the latter we follow the same procedure, but beginning from the
lowest positions in the hierarchy.

We conclude the computation of ES(O,DL-Lite
(k)
A ) by asking the OWL 2

reasoner for all functionality assertions that are inferred by O.

In Table 1 we present a sample of the evaluation tests for this strategy which
we have performed. We have implemented this technique in a Java-based tool
and have performed extensive experimentation on a suite of about twenty OWL
2 ontologies that are commonly used as benchmarks for standard ontology rea-
soning tasks. We present the results of these tests, in which we compare the
number of invocations to the OWL 2 reasoner performed with optimizations
(O.A.I.), and without (N.A.I.), for computing the entailment set of the OWL 2



6 Marco Console, Valerio Santarelli, Domenico Fabio Savo

ontologies in DL-Lite
(k)
A , with 1 ≤ k ≤ 3. We also provide, for each ontology, the

total time for the computation of ES(O,DL-Lite
(k)
A ).

4 Conclusion

In this paper we have studied the problem of ontology approximation. In partic-
ular, we have focused on approximating OWL 2 ontologies with DL-Lite TBoxes
for OBDA purposes, and presented an optimized technique for this task.

As future work, we plan to improve the performances in computing the ap-
proximation in DL-Lite of OWL 2 ontologies by adopting more sophisticated
techniques. Moreover, it is our intention to study reasonable solutions for ad-
dressing the problem of multiple approximations of an ontology, in particular,
for those settings in which the approximation is intended to be used for OBDA.

Acknowledgments. This research has been partially supported by the EU
under FP7 project Optique – Scalable End-user Access to Big Data (grant n.
FP7-318338).

References

1. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope
further. In Proc. of OWLED 2008 DC, 2008.

2. Elena Botoeva, Diego Calvanese, and Mariano Rodriguez-Muro. Expressive ap-
proximations in DL-Lite ontologies. Proc. of AIMSA 2010, 2010.

3. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. The Mastro system for ontology-based data access. Semantic
Web J., 2(1), 2011.

4. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in descrip-
tion logics: The DL-Lite family. J. of Automated Reasoning, 39(3), 2007.

5. Birte Glimm, Ian Horrocks, Boris Motik, Rob Shearer, and Giorgos Stoilos. A
novel approach to ontology classification. J. of Web Semantics, 10(1), 2011.

6. Volker Haarslev and Ralf Möller. RACER system description. In Proc. of IJ-
CAR 2001, volume 2083 of LNAI. Springer, 2001.

7. Jeff Z Pan and Edward Thomas. Approximating OWL-DL ontologies. In Proc. of
AAAI 2007, 2007.

8. Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Mau-
rizio Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. on Data Se-
mantics, X, 2008.

9. Bart Selman and Henry Kautz. Knowledge compilation and theory approximation.
J. of the ACM, 43(2), 1996.

10. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: a practical OWL-DL reasoner. J. of Web Semantics, 5(2), 2007.

11. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System
description. In Proc. of IJCAR 2006, 2006.


	From OWL to DL-Lite through efficient ontology approximation
	Marco Console, Valerio Santarelli, Domenico Fabio Savo
	Introduction
	Approximation of DL ontologies
	Approximation in DL-LiteA of OWL 2 ontologies
	Conclusion



