
Inconsistency-tolerant Semantics
for Description Logics

Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati,
Marco Ruzzi, and Domenico Fabio Savo

Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”,
Via Ariosto 25, 00185 Roma, Italy
lastname@dis.uniroma1.it

Abstract. We address the problem of dealing with inconsistencies in Description
Logic (DL) knowledge bases. Our general goal is both to study DL semantical
frameworks which are inconsistency-tolerant, and to devise techniques for an-
swering unions of conjunctive queries posed to DL knowledge bases under such
inconsistency-tolerant semantics. Our work is inspired by the approaches to con-
sistent query answering in databases, which are based on the idea of living with
inconsistencies in the database, but trying to obtain only consistent information
during query answering, by relying on the notion of database repair. We show
that, if we use the notion of repair studied in databases, inconsistency-tolerant
query answering is intractable, even for the simplest form of queries. Therefore,
we study different variants of the repair-based semantics, with the goal of reach-
ing a good compromise between expressive power of the semantics and compu-
tational complexity of inconsistency-tolerant query answering.

1 Introduction

It is well-known that inconsistency causes severe problems in classical logic. In particu-
lar, since an inconsistent logical theory has no model, it logically implies every formula,
and, therefore, query answering on an inconsistent knowledge base becomes meaning-
less. In this paper, we address the problem of dealing with inconsistencies in Description
Logic (DL) knowledge bases. Our general goal is both to study DL semantical frame-
works which are inconsistency-tolerant, and to devise techniques for answering unions
of conjunctive queries posed to DL knowledge bases under such inconsistency-tolerant
semantics.

A DL knowledge base is constituted by two components, called the TBox and the
ABox, respectively [1]. Intuitively, the TBox includes axioms sanctioning general prop-
erties of concepts and relations (such as Dog isa Animal), whereas the ABox contains
axioms asserting properties of instances of concepts and relations (such as Bob is an
instance of Dog). The various DLs differ in the language (set of constructs) used to
express such axioms. We are particularly interested in using DLs for the so-called
“ontology-based data access” [13] (ODBA), where a DL TBox acts as an ontology
used to access a set of data sources. Since it is often the case that, in this setting, the
size of the data at the sources largely exceeds the size of the ontology, DLs where query



answering is tractable with respect to the size of the ABox have been studied recently. In
this paper, we will consider DLs specifically tailored towards ODBA, in particular DLs
of the DL-Lite family [4], where query answering can be done efficiently with respect
to the size of the ABox.

Depending on the expressive power of the underlying language, the TBox alone
might be inconsistent, or the TBox might be consistent, but the axioms in the ABox
might contradict the axioms in the TBox. Since in ODBA the ontology is usually repre-
sented as a consistent TBox, whereas the data at the sources do not necessarily conform
to the ontology, the latter situation is the one commonly occurring in practice. There-
fore, our study is carried out under the assumption that the TBox is consistent, and
inconsistency may arise between the ABox and the TBox (inconsistencies in the TBox
are considered, e.g., in [12, 9, 8, 14, 11]).

There are many approaches for devising inconsistency-tolerant inference sys-
tems [2], originated in different areas, including Logic, Artificial Intelligence, and
Databases. Our work is especially inspired by the approaches to consistent query an-
swering in databases [5], which are based on the idea of living with inconsistencies (i.e.,
data that do not satisfy the integrity constraints) in the database, but trying to obtain
only consistent information during query answering. But how can one obtain consis-
tent information from an inconsistent database? The main tool used for this purpose
is the notion of database repair: a repair of a database contradicting a set of integrity
constraints is a database obtained by applying a minimal set of changes which restore
consistency. In general, there are many possible repairs for a database D, and, there-
fore, the approach sanctions that what is consistently true in D is simply what is true
in all possible repairs of D. Thus, inconsistency-tolerant query answering amounts to
compute the tuples that are answers to the query in all possible repairs.

In [10], a semantics for inconsistent knowledge bases expressed in DL-Lite has
been proposed, based on the notion of repair. More specifically, an ABox A′ is a repair
of the knowledge base K = 〈T ,A〉, where T is the TBox and A is the ABox, if
it is consistent with T , and there exists no ABox consistent with T that is “closer”
to A, where an ABox A′′ is closer to A than A′ if A ∩ A′′ is a proper superset of
A ∩ A′. In this paper, we call such semantics the ABox Repair (AR) semantics, and
we show that for the DLs of the DL-Lite family, inconsistency-tolerant query answering
under such a semantics is coNP-complete even for ground atomic queries, thus showing
that inconsistency-tolerant instance checking is already intractable. For this reason, we
propose a variant of the AR-semantics, based on the idea that inconsistency-tolerant
query answering should be done by evaluating the query over the intersection of all
AR-repairs. The new semantics, called the Intersection ABox Repair (IAR) semantics,
is an approximation of the AR-semantics, and it enjoys a desirable property, namely
that inconsistency-tolerant query answering is polynomially tractable.

Both the AR-semantics and the IAR-semantics suffer from a drawback. Suppose
that K′ = 〈T ,A′〉 differs from the inconsistent knowledge base K = 〈T ,A〉, sim-
ply because A′ includes assertions that logically follow, using T , from a consistent
subset of A. This implies that K′ is also inconsistent, and one would expect that the
repairs of K′ and the repairs of K coincide. On the contrary, since the AR-semantics
is not independent from the form of the knowledge base, one can show that, in gen-

2



eral, inconsistency-tolerant query answering in the two knowledge bases yields differ-
ent results. To overcome this drawback, we propose a new variant of the AR-semantics,
called the Closed ABox Repair (CAR) semantics, that essentially considers only repairs
that are “closed” with respect to the knowledge represented by the TBox. We show that,
while inconsistency-tolerant instance checking is tractable under this new semantics,
query answering is coNP-complete for unions of conjunctive queries. For this reason,
we also study the “intersection-based” version of the CAR-semantics, called the In-
tersection Closed ABox Repair (ICAR) semantics, showing that it is an approximation
of the CAR-semantics, and that inconsistency-tolerant query answering under this new
semantics is again polynomially tractable.

The paper is organized as follows. In Section 2 we briefly describe the DL we use
in our work. In Section 3 we present the various inconsistency-tolerant semantics we
have studied in our investigation. In Section 4 we present the complexity results about
such semantics, in terms of both lower bounds and upper bounds. Finally, Section 5
concludes the paper.

2 Preliminaries

Description Logics (DLs) [1] are logics that represent the domain of interest in terms of
concepts, denoting sets of objects, value-domains, denoting sets of values, attributes,
denoting binary relations between objects and values, and roles, denoting binary rela-
tions over objects. DL expressions are built starting from an alphabet Γ of symbols
for atomic concepts, atomic value-domains, atomic attributes, atomic roles, and object
and value constants. We denote by ΓO the set of object constants, and by ΓV the set of
value constants. Complex expressions are constructed starting from atomic elements,
and applying suitable constructs. Different DLs allow for different constructs.

A DL knowledge base (KB) is constituted by two main components: a TBox
(i.e.,“Terminological Box”), which contains a set of universally quantified assertions
stating general properties of concepts and roles, thus representing intensional knowl-
edge of the domain, and an ABox (i.e.,“Assertional Box”), which is constituted by as-
sertions on individual objects, thus specifying extensional knowledge. Again, different
DLs allow for different kinds of TBox and/or ABox assertions.

Formally, if L is a DL, then an L-knowledge base K is a pair 〈T ,A〉, where T is a
TBox expressed inL andA is a ABox. In this paper we assume that the ABox assertions
are atomic, i.e., they involve only atomic concepts, attributes and roles. The alphabet of
K, denoted by ΓK, is the set of symbols from Γ occurring in T and A. The semantics
of a DL knowledge base is given in terms of first-order (FOL) interpretations (cf. [1]).
We denote with Mod(K) the set of models of K, i.e., the set of FOL interpretations
that satisfy all the assertions in T and A, where the definition of satisfaction depends
on the kind of expressions and assertions in the specific DL language in which K is
specified. As usual, a KB K is said to be satisfiable if it admits at least one model, i.e.,
if Mod(K) 6= ∅, and K is said to entail a First-Order Logic (FOL) sentence φ, denoted
K |= φ, if φI = true for all I ∈ Mod(K).

We now provide some details about the DL DL-LiteA, a member of the DL-Lite
family [4]. This is a family of tractable DLs particularly suited for dealing with KBs

3



with very large ABoxes, and is at the basis of OWL 2 QL, one of the profiles of OWL 2,
the official ontology language of the World Wide Web Consortium (W3C). In DL-LiteA,
the alphabet Γ is partitioned into 6 subsets, for object constants, value constants, and
atomic concept, value-domain, attribute, role symbols, respectively. Concept, role, at-
tribute, and value-domain expressions are formed according to the following syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→>D | T1 | · · · | Tn
Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

where A, P , and U are symbols in Γ denoting an atomic concept, an atomic role and
an atomic attribute respectively, >D is the universal value-domain, and T1, . . . , Tn are
symbols in Γ for atomic value-domains. The expression P− denotes the inverse of an
atomic role, δ(U) denotes the domain of U , i.e., the set of objects that U relates to
values, ρ(U) denotes the range of U , i.e., the set of values that U relates to objects.

A DL-LiteA KB is a pair K = 〈T ,A〉, where T is the TBox and A the ABox. The
TBox T is a finite set of assertions of the form

B v C Q v R E v F U v V (funct Q) (funct U)

From left to right, the first four assertions denote inclusions between concepts, roles,
value-domains, and attributes, respectively. The last two assertions denote functionality
on roles and on attributes. DL-LiteA TBoxes are subject to the restriction that roles and
attributes occurring in functionality assertions cannot be specialized (i.e., they cannot
occur in the right-hand side of inclusions).

A DL-LiteA ABox A is a finite set of assertions of the form A(a), P (a, b), and
U(a, v), where A, P , and U are as above, a and b are object constants from ΓO, and v
is a value constant from ΓV .

Example 1. We consider a simple DL-LiteA knowledge base K = 〈T ,A〉 describing
the “Formula One Teams” domain, where the TBox T is constituted by the following
assertions:

Mechanic v TeamMember Driver v TeamMember Driver v ¬Mechanic

∃drives v Driver ∃drives− v Car (funct drives)

In words, T specifies that drivers and mechanics are team members, but drivers
are not mechanics (note that Driver v ¬Mechanic is called a disjointness
assertion, because it states that the two concepts Driver and Mechanic are
dosjoint). Moreover, the role drives has Driver as domain and Car as range,
and it is also functional, i.e., every driver can drive at most one car. The ABox
A = {Driver(felipe),TeamMember(felipe),drives(felipe, ferrari)} asserts that
felipe is both a driver and a team member, and that he drives the car ferrari.

The semantics of a DL-LiteA KB is given in terms of FOL interpretations I =
(∆I , ·I) where ∆I is the interpretation domain and ·I is the interpretation function.
In particular, ∆I is a non-empty set partitioned into ∆V and ∆IO, where ∆IO is the

4



subset of ∆ used to interpret object constants in ΓO, and ∆V is the subset of ∆ used to
interpret data values. In other words, for every c ∈ ΓO, cI ∈ ∆O and for every f ∈ ΓV ,
fI ∈ ∆V . The interpretation function ·I is defined as follows.

– For every c ∈ ΓO, cI ∈ ∆O, and for every f ∈ ΓV , fI ∈ ∆V .
– For all d1, d2 ∈ ΓO ∪ ΓV , dI1 6= dI2 (i.e., interpretations for DL-Lite follow the

unique name assumption).
– For all 1 ≤ i ≤ n, Ti is an unbound set of values.
– The following equations are satisfied by ·I :

AI ⊆ ∆IO P I ⊆ ∆IO ×∆IO
(δ(U))I = { o | ∃v. (o, v) ∈ UI } (P−)I = { (o, o′) | (o′, o) ∈ P I }
(∃Q)I = { o | ∃o′. (o, o′) ∈ QI } (¬Q)I = (∆IO ×∆IO) \QI
(¬B)I = ∆IO \BI UI ⊆ ∆IO ×∆V

(ρ(U))I = { v | ∃o. (o, v) ∈ UI } (¬U)I = (∆IO ×∆V ) \ UI
T Ii ⊆ >ID = ∆V (1 ≤ i ≤ n) Ti ∩ Tj = ∅ (1 ≤ i, j ≤ n)

An interpretation I satisfies a concept (resp., role) inclusion assertionB v C (resp.,
Q v R) if BI ⊆ CI (resp., QI ⊆ RI), and satisfies a role functionality assertion
(funct Q) if, for each o, o′, o′′ ∈ ∆IO, we have that (o, o′) ∈ QI and (o, o′′) ∈ QI

implies o′ = o′′. The semantics for attribute and value-domain inclusion assertions,
and for functionality assertions over attributes can be defined analogously. Finally, I
satisfies ABox assertions A(a), P (a, b) and U(a, v) if aI ∈ AI , (aI , bI) ∈ P I and
(aI , vI) ∈ UI respectively.

In the following, we are interested in particular in the problem of answering queries
posed to a DL-LiteA-KB. More specifically, we deal with the problem of establish-
ing whether a DL-LiteA KB entails a boolean union of conjunctive queries (UCQ),
i.e., a first order sentence of the form ∃y1.conj 1(y1) ∨ · · · ∨ ∃yn.conjn(yn), where
y1, . . . ,yn are terms (i.e., constants or variables), and each conj i(yi) is a conjunction
of atoms of the form A(z), P (z, z′) and U(z, z′) where A is an atomic concept, P is
an atomic role and U is an attribute name, and z, z′ are terms. Notice that all the results
we achieve about this reasoning task can be easily extended in the standard way to the
presence of free variables in queries (see e.g. [7]).

In the rest of this paper we will focus on the data complexity of query answering,
i.e., we will measure the computational complexity only with respect to the size of the
ABox (which is usually much larger than the TBox and the queries). It follows from
the results in [4, 13] that query answering in DL-LiteA is inACo, which is a complexity
class contained in PTIME, and therefore is tractable in data complexity.

3 Inconsistency-tolerant semantics

In this section we present our inconsistency-tolerant semantics for DL knowledge bases.
As we said in the introduction, we assume that for a knowledge base K = 〈T ,A〉,
T is satisfiable, whereas A may be inconsistent with T , i.e., the set of models of K
may be empty. The challenge is to provide semantic characterizations for K, which
are inconsistency-tolerant, i.e., they allow K to be interpreted with a non-empty set of
models even in the case where it is unsatisfiable under the classical first-order semantics.

5



The inconsistency-tolerant semantics we give below are based on the notion of re-
pair. Intuitively, given a DL KB K = 〈T ,A〉, a repair AR for K is an ABox such that
the KB 〈T ,AR〉 is satisfiable under the first-order semantics, and AR “minimally” dif-
fers from A. Notice that in general not a single, but several repairs may exist, depend-
ing on the particular minimality criteria adopted. We consider here different notions
of “minimality”, which give rise to different inconsistency-tolerant semantics. In all
cases, such semantics coincide with the classical first-order semantics when inconsis-
tency does not come into play, i.e., when the KB is satisfiable under standard first-order
semantics.

The first notion of repair that we consider can be phrased as follows: a repairAR of
a KB K = 〈T ,A〉 is a maximal subset of A such that 〈T ,AR〉 is satisfiable under the
first-order semantics, i.e., there does not exist another subset of A that strictly contains
AR and that is consistent with T . Intuitively, each such repair is obtained by throwing
away from A a minimal set of assertions to make it consistent with T . In other words,
adding to AR another assertion of A would make the repair inconsistent with T . The
formal definition is given below.

Definition 1. Let K = 〈T ,A〉 be a DL KB. An ABox Repair (AR) of K is a set A′of
membership assertions such that:

1. A′ ⊆ A,
2. Mod(〈T ,A′〉) 6= ∅,
3. there exist no A′′ such that A′ ⊂ A′′ ⊆ A and Mod(〈T ,A′′〉) 6= ∅.

The set of AR-repairs for K is denoted by AR-Rep(K).

Based on the above notion of repair, we can now give the definition of ABox repair
model.

Definition 2. Let K = 〈T ,A〉 be a DL KB. An interpretation I is an ABox repair
model, or simply an AR-model, of K if there exists A′ ∈ AR-Rep(K) such that I |=
〈T ,A′〉. The set of ABox repair models of K is denoted by AR-Mod(K).

The following notion of consistent entailment is the natural generalization of clas-
sical entailment to the ABox repair semantics.

Definition 3. Let K be a DL KB, and let φ be a first-order sentence. We say that φ is
AR-consistently entailed, or simply AR-entailed, by K, written K |=AR φ, if I |= φ
for every I ∈ AR-Mod(K).

Example 2. Consider the DL-LiteA knowledge base K′ = 〈T ,A′〉, where T is the
TBox of the KB presented in the Example 1, and A′ is the ABox constituted by the set
of assertions:

A′ = {Driver(felipe),Mechanic(felipe),TeamMember(felipe),
drives(felipe, ferrari)}.

6



This ABox states that felipe is a team member and that he is both a driver and a
mechanic. Notice that this implies that felipe drives ferrari and that ferrari is a car.
It is easy to see that K is unsatisfiable, since felipe violates the disjointness between
driver and mechanic.

The set AR-Rep(K′) is constituted by the set of T -consistent ABoxes:

AR-rep1= {Driver(felipe),drives(felipe, ferrari),TeamMember(felipe)};
AR-rep2= {Mechanic(felipe),TeamMember(felipe)}.

Note that to obtain AR-rep1 it is sufficient to remove Mechanic(felipe) from A,
whereas to obtain AR-rep2, we need to remove from A both Driver(felipe), which
is obvious, and Driver(felipe, ferrari), which, together with the TBox assertion
∃drives v Driver, implies Driver(felipe).

The AR-semantics given above in fact coincides with the inconsistency-tolerant se-
mantics for DL KBs presented in [10], and with the loosely-sound semantics studied
in [3] in the context of inconsistent databases. Although this semantics can be consid-
ered to some extent the natural choice for the setting we are considering, since each
ABox repair stays as close as possible to the original ABox, it has the characteristic to
be dependent from the form of the knowledge base. Suppose that K′′ = 〈T ,A′′〉 dif-
fers from the inconsistent knowledge base K′ = 〈T ,A′〉, simply because A′′ includes
assertions that logically follow, using T , from a consistent subset of A (implying that
K′′ is also inconsistent). One could argue that the repairs of K′′ and the repairs of K′
should coincide. Conversely, the next example shows that, in the AR-semantics the two
sets of repairs are generally different.

Example 3. Consider the KB K′′ = 〈T ,A′′〉, where T is the same as in K′ = 〈T ,A′〉
of Example 2, and the ABox A′′ is as follows:

A′′ ={Driver(felipe),Mechanic(felipe),TeamMember(felipe),Car(ferrari),
drives(felipe, ferrari)}.

Notice that A′′ can be obtained by adding Car(ferrari) to A′. Since Car(ferrari) is
entailed by the KB 〈T , {drives(felipe, ferrari)}〉, i.e., a KB constituted by the TBox
T of K′ and a subset of A′ that is consistent with T , one intuitively would expect that
K′ andK′′ have the same repairs under the AR-semantics. This is however not the case,
since we have that AR-Rep(K′′) is formed by:

AR-rep3= {Driver(felipe),drives(felipe, ferrari),TeamMember(felipe),
Car(ferrari)};

AR-rep4= {Mechanic(felipe),TeamMember(felipe),Car(ferrari)}.

Let us finally consider the ground sentence Car(ferrari). It is easy to see that
Car(ferrari) is AR-entailed by the KB K′′ but it is not AR-entailed by the KB K′.

Depending on the particular scenario, and the specific application at hand, the above
behavior might be considered incorrect. This motivates the definition of a new semantics
that does not present such a characteristic. According to this new semantics, that we
call Closed ABox Repair, the repairs take into account not only the assertions explicitly

7



included in the ABox, but also those that are implied, through the TBox, by at least one
subset of the ABox that is consistent with the TBox.

To formalize the above idea, we need some preliminary definitions. Given a DL KB
K = 〈T ,A〉, we denote with HB(K) the Herbrand Base of K, i.e. the set of ABox
assertions that can be built over the alphabet of ΓK. Then we define the consistent
logical consequences of K as the set clc(K) = {α | α ∈ HB(K) and there exists S ⊆
A such that Mod(〈T , S〉) 6= ∅ and 〈T , S〉 |= α}. With the above notions in place we
can now give the definition of Closed ABox Repair.

Definition 4. Let K = 〈T ,A〉 be a DL KB. A Closed ABox Repair (CAR) for K is a
set A′ of membership assertions such that:

1. A′ ⊆ clc(K),
2. Mod(〈T ,A′〉) 6= ∅,
3. there exist no A′′ ⊆ clc(K) such that

(a) Mod(〈T ,A′′〉) 6= ∅, and
(b) it is either A′′ ∩ A ⊃ A′ ∩ A or A′′ ∩ A = A′ ∩ A and A′′ ⊃ A′.

The set of CAR-repairs for K is denoted by CAR-Rep(T ,A).

Intuitively, a CAR-repair is a subset of clc(K) consistent with T that “maximally
preserves” the ABox A. In particular, condition 3 states that we prefer A′ to any other
AR ⊆ clc(K) consistent with T such that AR ∩ A ⊂ A′ ∩ A (i.e., AR maintains
a smaller subset of A with respect to A′). Then, among those AR having the same
intersection with A, we prefer the ones that contain as much assertions of clc(K) as
possible.

The set of CAR-models of a KB K, denoted CAR-Mod(K), is defined analogously
to AR-models (cf. Definition 2). Also, CAR-entailment, denoted |=CAR, is analogous
to AR-entailment (cf. Definition 3).

Example 4. Consider the two KBs K′ and K′′ presented in the Example 2 and Exam-
ple 3. It is easy to see that both CAR-Rep(K′) and CAR-Rep(K′′) are constituted by the
two sets below:

CAR-rep1={Driver(felipe),drives(felipe, ferrari),TeamMember(felipe),
Car(ferrari)};

CAR-rep2={Mechanic(felipe),TeamMember(felipe),Car(ferrari)}.

It follows that both K′ and K′′ CAR-entail the ground sentence Car(ferrari), differ-
ently from what happen under the AR-semantics, as showed in Example 3.

The above example shows also that there are sentences entailed by a KB under
the CAR-semantics that are not entailed under the AR-semantics. Conversely, we can
show that the AR-semantics is a sound approximation of the CAR-semantics, i.e., for
any KB K CAR-Mod(K) ⊆ AR-Mod(K), implying that the logical consequences of
K under the AR-semantics are contained in the logical consequences of K under the
CAR-semantics, as stated by the following theorem.

Theorem 1. Let K be a DL KB, and φ a first-order sentence. Then, K |=AR φ implies
K |=CAR φ.

8



IAR

AR

CAR

ICAR

Fig. 1. Partial order over the inconsistency tolerant semantics

As we will see in the next section, entailment of a union of conjunctive queries from
a KB K is intractable both under the AR-semantics and the CAR-semantics. Since this
can be an obstacle in the practical use of such semantics, we introduce here approxi-
mations of the two semantics, under which we will show in the next section that entail-
ment of unions of conjunctive queries is polynomial. In both cases, the approximation
consists in taking as unique repair the intersection of the AR-repairs and of the CAR-
repairs, respectively. This actually corresponds to follow the WIDTIO (When you are
in doubt throw it out) approach, proposed in the area of belief revision and update [15,
6].

Definition 5. LetK = 〈T ,A〉 be a DL KB. An Intersection ABox Repair (IAR) forK is
the setA′ of membership assertions such thatA′ =

⋂
Ai∈AR-Rep(K)Ai}. The (singleton)

set of IAR-repairs for K is denoted by IAR-Rep(K).

Analogously, we give below the definition of Intersection Closed ABox Repair.

Definition 6. Let K = 〈T ,A〉 be a DL KB. An Intersection Closed ABox Re-
pair (ICAR) for K is the set A′ of membership assertions such that A′ =⋂
Ai∈CAR-Rep(K)Ai}. The (singleton) set of ICAR-repairs for K is denoted by

ICAR-Rep(K).

The sets IAR-Mod(K) and ICAR-Mod(K) of IAR-models and ICAR-models, re-
spectively, and the notions of IAR-entailment and ICAR-entailment are defined as
usual (cf. Definition 2 and Definition 3).

Example 5. Consider the KB K′ = 〈T ,A′〉 presented in Example 2. Then
IAR-Rep(K′) is the singleton formed by the ABox IAR-rep = AR-rep1 ∩ AR-
rep2 = {TeamMember(felipe)}. In turn, referring to Example 4, ICAR-Rep(K′)
is the singleton formed by the ABox ICAR-rep1 = CAR-rep1 ∩ CAR-rep2 =
{TeamMember(felipe),Car(ferrari)}.

It is not difficult to show that the IAR-semantics is a sound approxima-
tion of the AR-semantics, and that the ICAR-semantics is a sound approxi-
mation of the CAR-semantics. It is also easy to see that the converse is not
true in general. For instance, the sentence Driver(felipe) is entailed by K =
〈T , {drives(felipe, ferrari),drives(felipe,mcLaren)}〉, where T is the TBox of
Example 1, under the AR-semantics, but it is not entailed under the IAR-semantics.

Furthermore, an analogous of Theorem 1 holds also for the “intersection” semantics.

9



Theorem 2. Let K be a DL KB, and φ a first-order sentence. Then, K |=IAR α implies
K |=ICAR α.

Also in this case one can easily see that the converse implication does not hold. It is
sufficient to look again at Example 5, where Car(ferrari) is entailed by K′ under the
ICAR-semantics, but it is not entailed under the IAR-semantics.

From all the above results it follows that the AR-, CAR-, IAR-, and ICAR-
semantics form a partial order, where the CAR-semantics is the upper bound, the IAR-
semantics is the lower bound, whereas the ICAR-semantics and the AR-semantics are
incomparable (see Figure 1). In other words, the IAR-semantics is a sound approxima-
tion of all the semantics, while the CAR-semantics is the one which is able to derive the
largest set of conclusions from a KB. It can also easily be shown that the AR-semantics
and the ICAR-semantics are incomparable.

4 Reasoning

In this section we study reasoning in the inconsistency-tolerant semantics introduced in
the previous section. In particular, we analyze the problem of UCQ entailment under
such semantics. We will also consider instance checking, which is a restricted form of
UCQ entailment. As we said before, in our analysis we will focus on data complexity.

We start by considering the AR-semantics. It is known that UCQ entailment is
intractable under this semantics [10]. Here, we strengthen this result, and show that in-
stance checking under the AR-semantics is already coNP-hard in data complexity even
if the KB is expressed in DL-Litecore . We recall that DL-Litecore is the least expres-
sive logic in the DL-Lite family, as it only allows for concept expressions of the form
C ::= A|∃R|∃R−, and for TBox assertions of the form C1 v C2, C1 v ¬C2 (for more
details, see [4]).

Theorem 3. Let K be a DL-Litecore KB and let α be an ABox assertion. Deciding
whether K |=AR α is coNP-complete with respect to data complexity.

Proof. Membership in coNP follows from coNP-completeness of UCQ entailment un-
der AR-semantics [10, Theorem 1].

We prove hardness with respect to coNP by reducing satisfiability of a 3-CNF for-
mula to the complement of instance checking.

Let φ be a 3-CNF, i.e., a formula of the form φ = c1∧. . .∧ck where ci = `i1∨`i2∨`i3
for every i such that 1 ≤ i ≤ k (every `ij is a propositional literal). Let a1, . . . , an be
the propositional variable symbols occurring in φ.

We define the following TBox T (which does not depend on φ):

∃R− v ¬∃LT−1
∃R− v ¬∃LF−1
∃R− v ¬∃LT−2
∃R− v ¬∃LF−2
∃R− v ¬∃LT−3
∃R− v ¬∃LF−3

∃R v Unsat
∃LT 1 v ¬∃LF 1

∃LT 1 v ¬∃LF 2

∃LT 1 v ¬∃LF 3

∃LF 1 v ¬∃LT 2

∃LF 1 v ¬∃LT 3

∃LT 2 v ¬∃LF 2

∃LT 2 v ¬∃LF 3

∃LF 2 v ¬∃LT 3

∃LT 3 v ¬∃LF 3

10



Then, we define the following ABox Aφ (which depends on φ):

{R(a, c1), . . . , R(a, ck)} ∪
⋃k
i=1

⋃3
j=1{Polarity(`ij)(Atom(`ij), ci)}

where: (i) Polarity(`ij) = LT j if `ij is a positive literal, while Polarity(`ij) = LF j if `ij
is a negative literal; (ii) Atom(`ij) denotes the propositional variable symbol occurring
in literal `ij . For instance, if φ = (a1 ∨ ¬a2 ∨ a3) ∧ (¬a3 ∨ a4 ∨ ¬a1), the ABox Aφ is
the following:

{R(a, c1), R(a, c2)} ∪
{LT 1(a1, c1),LF 2(a2, c1),LT 3(a3, c1),LF 1(a3, c2), LT2(a4, c2),LF 3(a1, c2)}

We now prove that 〈T ,Aφ〉 6|=AR Unsat(a) iff φ is satisfiable.
First, suppose φ is satisfiable, and let I be a model for φ. Then, let A′ be the fol-

lowing subset of Aφ:

{LT j(ai, ch) | LT j(ai, ch) ∈ Aφ and I |= ai}∪
{LF j(ai, ch) | LF j(ai, ch) ∈ Aφ and I 6|= ai}

It is immediate to verify that A′ is a maximal T -consistent subset of Aφ: in particular,
since I |= φ, if we add anyR(a, ci) toA′, the resulting ABox is inconsistent. Therefore,
A′ is an AR-repair of 〈T ,Aφ〉. Moreover, since no R(a, ci) belongs to A′, it follows
that 〈T ,A′〉 6|= Unsat(a), which implies that 〈T ,Aφ〉 6|=AR Unsat(a).

Conversely, suppose 〈T ,Aφ〉 6|=AR Unsat(a). Then, there exists an AR-repair A′
of 〈T ,Aφ〉 such that 〈T ,A′〉 6|= Unsat(a). Of course, no R(a, ci) belongs to A′. Now,
let I be the propositional interpretation defined as follows: for every ai, if there exists
a fact of the form LT j(ai, ch) ∈ A′, then I |= ai, otherwise I 6|= ai. It is easy to see
that, since no R(a, ch) belongs to A′, for every ch either there exists a fact of the form
LT j(ai, ch) inA′ or there exists a fact of the form LF j(ai, ch) inA′. In both cases, we
get I |= ch. Consequently, I |= φ.

Theorem 3 corrects a wrong result presented in [10, Theorem 6], which asserts
tractability of AR-entailment of ABox assertions from KBs specified in DL-LiteF , a su-
perset of DL-Litecore . It turns out that, while the algorithm presented in [10] (on which
the above cited Theorem 6 was based) is actually unable to deal with general TBoxes,
such a technique can be adapted to prove that AR-entailment of ABox assertions is
tractable for DL-LiteA KBs without TBox disjointness assertions.

Next, we focus on the CAR-semantics, and show that UCQ entailment under this
semantics is coNP-hard even if the TBox language is restricted to DL-Litecore .

Theorem 4. Let K be a DL-Litecore KB and let Q be a UCQ. Deciding whether
K |=CAR Q is coNP-complete with respect to data complexity.

Proof. The proof of coNP-hardness is obtained by a slight modification of the reduction
from 3-CNF satisfiability in the proof of Theorem 3. To prove membership in coNP, we
first prove that, whenK is a DL-LiteA KB, clc(K) can be computed in polynomial time,
which is an immediate consequence of the fact that

clc(K) = {α | α ∈ HB(K) and αi ∈ A and 〈T , {αi}〉 |= α and 〈T , {αi}〉 satisfiable}

11



Now, membership in coNP follows from the following facts: (i) 〈T ,A〉 |=CAR q iff
〈T , clc(T ,A)〉 |=AR q; (ii) clc(T ,A) can be computed in polynomial time; (iii) Theo-
rem 3.

Notice that, differently from the AR-semantics, the above intractability result for
the CAR-semantics does not hold already for the instance checking problem: we will
show later in this section that instance checking is indeed tractable under the CAR-
semantics.

We now turn our attention to the IAR-semantics, and define the following algorithm
Compute-IAR-Repair for computing the IAR-repair of a DL-LiteA KB K.

Algorithm Compute-IAR-Repair(K)
input: DL-LiteA KB K = 〈T ,A〉
output: DL-LiteA ABox A′
begin

let D = ∅;
for each fact α ∈ A do

if 〈T , {α}〉 unsatisfiable
then let D = D ∪ {α};

for each pair of facts α1, α2 ∈ A−D do
if 〈T , {α1, α2}〉 unsatisfiable
then let D = D ∪ {α1, α2};

return A−D
end

The algorithm is very simple: it computes a set D of ABox assertions in A which
must be eliminated from the IAR-repair of K.

Lemma 1. Let K be a DL-LiteA KB. Then, IAR-Rep(K) =
{Compute-IAR-Repair(K)}.

Proof. (sketch) The proof is based on the following property, not difficult to verify,
which is due to the form of the TBox assertions allowed in DL-LiteA: every ABox
assertion α that does not belong to at least one AR-repair of K satisfies one of the fol-
lowing conditions: (i) α is such that the KB 〈T , {α}〉 is unsatisfiable; (ii) α is such that
there exists another ABox assertion α′ such that the KB 〈T , {α, α′}〉 is unsatisfiable
and α′ does not satisfy the previous condition (i). Therefore, at the end of the execution
of the algorithm, the set D contains every ABox assertion α that does not belong any
AR-repair of K. Hence A−D is the IAR-repair of K.

The following property, based on the correctness of the previous algorithm, estab-
lishes tractability of UCQ entailment under IAR-semantics.

Theorem 5. LetK be a DL-LiteA KB, and letQ be a UCQ. Deciding whetherK |=IAR

Q is in PTIME with respect to data complexity.

12



Proof. By Lemma 1, the ABox returned by Compute-IAR-Repair(K) is the IAR-
repair of K. Then, by definition of IAR-semantics, we have that, for every UCQ Q,
K |=IAR Q iff 〈T ,A′〉 |= Q where A′ is the IAR-repair of K. From the fact that the
algorithm Compute-IAR-Repair(K) runs in polynomial time and from tractability of
UCQ entailment in DL-LiteA [13], the claim follows.

We now turn our attention to the ICAR-semantics and present the algorithm
Compute-ICAR-Repair for computing the ICAR-repair of a DL-LiteA KB K.

Algorithm Compute-ICAR-Repair(K)
input: DL-LiteA KB K = 〈T ,A〉
output: DL-LiteA ABox A′
begin

Compute clc(K);
let D = ∅;
for each pair of facts α1, α2 ∈ clc(K) do

if 〈T , {α1, α2}〉 unsatisfiable
then let D = D ∪ {α1, α2};

return clc(K)−D
end

The algorithm is analogous to the previous algorithm Compute-IAR-Repair. The
main differences are the following: (i) the algorithm Compute-ICAR-Repair returns
(and operates on) a subset of clc(K), while the algorithm Compute-IAR-Repair returns a
subset of the original ABoxA; (ii) differently from the algorithm Compute-IAR-Repair,
the algorithm Compute-ICAR-Repair does not need to eliminate ABox assertions α
such that 〈T , {α}〉 is unsatisfiable, since such facts cannot occur in clc(K).

Again, through the algorithm Compute-ICAR-Repair it is possible to establish the
tractability of UCQ entailment under ICAR-semantics.

Theorem 6. LetK = 〈T ,A〉 be a DL-LiteA KB and letQ be a UCQ. Deciding whether
K |=ICAR Q is in PTIME with respect to data complexity.

Proof. First, we prove that the ABox returned by Compute-ICAR-Repair(K) is the
ICAR-repair of K. This follows from the following property: let α1, α2 ∈ clc(〈T ,A〉)
and let 〈T , {α1, α2}〉 be unsatisfiable. Then, let β1 ∈ A be such that 〈T , {β1}〉 |= α1,
and let β2 ∈ A be such 〈T , {β2}〉 |= α2 (such facts β1, β2 always exist). Now, it
is immediate to verify that 〈T , {β1, β2}〉 is unsatisfiable. Moreover, by definition of
clc(〈T ,A〉) we have that (i) 〈T , {β1}〉 is satisfiable, and (ii) 〈T , {β2}〉 is satisfiable.
Now, (i) immediately implies that there exists a CAR-repair A′ of K that contains β1,
and hence α1 since A′ is deductively closed. Consequently, α2 cannot belong to the A′
(since 〈T ,A′〉 must be satisfiable, and hence α2 does not belong to the intersection of
all the CAR-repairs of K. In the same way, from (ii) we derive that α1 does not belong
to the intersection of all the CAR-repairs of K.

Now, as shown in the proof of Theorem 4, clc(K) can be computed in polyno-
mial time, which implies that the algorithm Compute-ICAR-Repair(K) runs in polyno-
mial time. Moreover, by definition of ICAR-semantics, we have that, for every UCQ

13



AR semantics CAR semantics IAR semantics ICAR semantics
instance checking coNP-complete in PTIME in PTIME in PTIME
UCQ entailment coNP-complete [10] coNP-complete in PTIME in PTIME

Fig. 2. Data complexity of UCQ entailment over DL-LiteA KBs under inconsistency-tolerant
semantics.

Q, K |=ICAR Q iff 〈T ,A′〉 |= Q where A′ is the ICAR-repair of K. Hence, from
tractability of UCQ entailment in DL-LiteA, the thesis follows.

Finally, we consider the instance checking problem under CAR-semantics, and show
that instance checking under CAR-semantics coincides with instance checking under
the ICAR-semantics.

Lemma 2. LetK be a DL-LiteA KB, and let α be an ABox assertion. Then,K |=CAR α
iff K |=ICAR α.

Proof. K |=CAR α if K |=ICAR α follows from the fact that the ICAR-semantics is
a sound approximation of the CAR-semantics. As for the converse, since every CAR-
repair is deductively closed, it follows that K |=CAR α iff α belongs to the intersection
of all the CAR-repairs of 〈T ,A〉, i.e., to the ICAR-repair of K.

The above property and Theorem 6 allow us to establish tractability of instance check-
ing under the CAR-semantics.

Theorem 7. Let K be a DL-LiteA KB, and let α be an ABox assertion. Deciding
whether K |=CAR α is in PTIME with respect to data complexity.

We remark that the analogous of Lemma 2 does not hold for AR, because AR-
repairs are not deductively closed. This is the reason why instance checking under AR-
semantics is harder, as stated by Theorem 3. In Figure 2 we summarize the complexity
results presented in this section.

5 Conclusions

We have presented an investigation on inconsistency-tolerant reasoning in DLs, with
special attention to the DL-Lite family. The techniques we have illustrated assume that
the TBox is consistent, and therefore consider the case of inconsistencies arising be-
tween the TBox and the ABox.

Our approach to inconsistency-tolerance is inspired by the work done on consis-
tent query answering in databases. Indeed, the AR-semantics presented in Section 3
is the direct application of the notion of repair to DL knowledge bases. Motivated by
the intractability of inconsistency-tolerant query answering under such semantics, we
have investigated several variants of the AR-semantics, with the goal of finding a good
compromise between expressive power and complexity of query answering.

14



Our work can proceed along different directions. One notable problem we aim at
addressing is the design of new algorithms for inconsistency-tolerant query answering
both under the IAR-semantics and the ICAR-semantics, based on the idea of rewriting
the query into a FOL query to be evaluated directly over the inconsistent ABox. We
would also like to study reasoning under inconsistency-tolerant semantics in Descrip-
tion Logics outside the DL-lite family.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2003.

2. L. E. Bertossi, A. Hunter, and T. Schaub, editors. Inconsistency Tolerance, volume 3300 of
LNCS. Springer, 2005.

3. A. Calı̀, D. Lembo, and R. Rosati. On the decidability and complexity of query answering
over inconsistent and incomplete databases. In Proc. of PODS 2003, pages 260–271, 2003.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

5. J. Chomicki. Consistent query answering: Five easy pieces. In Proc. of ICDT 2007, volume
4353 of LNCS, pages 1–17. Springer, 2007.

6. T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revision, updates
and counterfactuals. Artificial Intelligence, 57:227–270, 1992.

7. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for the descrip-
tion logic SHIQ. In Proc. of IJCAI 2007, pages 399–404, 2007.

8. P. Haasa, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure. A framework for
handling inconsistency in changing ontologies. In Proc. of ISWC 2005, 2005.

9. Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontologies. In
Proc. of IJCAI 2005, pages 454–459, 2003.

10. D. Lembo and M. Ruzzi. Consistent query answering over description logic ontologies. In
Proc. of RR 2007, 2007.

11. Y. Ma and P. Hitzler. Paraconsistent reasoning for owl 2. In Proc. of RR 2009, pages 197–
211, 2009.

12. B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL ontologies. In Proc. of WWW 2005,
pages 633–640, 2005.

13. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

14. G. Qi and J. Du. Model-based revision operators for terminologies in description logics. In
Proc. of IJCAI 2009, pages 891–897, 2009.

15. M. Winslett. Updating Logical Databases. Cambridge University Press, 1990.

15


