
Towards Mapping Analysis
in Ontology-based Data Access

Domenico Lembo1, Jose Mora1, Riccardo Rosati1,
Domenico Fabio Savo1, Evgenij Thorstensen2

1 Sapienza Università di Roma
lastname @dis.uniroma1.it

2 University of Oslo
evgenit@ifi.uio.no

Abstract. In this paper we study mapping analysis in ontology-based
data access (OBDA), providing an initial set of foundational results for
this problem. We start by defining general, language-independent no-
tions of mapping inconsistency, mapping subsumption, and mapping re-
dundancy in OBDA. Then, we focus on specific mapping languages for
OBDA and illustrate techniques for verifying the above properties of
mappings.

1 Introduction

Ontology-based data access (OBDA) is a data integration paradigm that relies on
a three-level architecture, constituted by the ontology, the data sources, and the
mapping between the two [18]. The ontology is the specification of a conceptual
view of the domain, and it is the system interface towards the user, whereas the
mapping relates the elements of the ontology with the data at the sources.

In the past years, studies on OBDA have mainly concentrated on query
answering, and various algorithms for it have been devised, as well as tools im-
plementing them [6, 20, 7, 16, 4, 27, 22]. Intensional reasoning has been instead
so far limited to the ontology level only. This means that currenlty available
services of this kind in OBDA are exactly as for stand-alone ontologies (e.g.,
concept/role subsumption, classification, logical implication, etc.). As a conse-
quence, in the specification of an OBDA system, a designer can rely only on
classical off-the-shelf ontology reasoners (e.g., [26, 25, 24, 12]), but she cannot
find tools supporting the modeling of the other crucial component of the OBDA
architecture, i.e., the mapping.

Both industrial and research OBDA projects (see, e.g., [13, 1]) have expe-
rienced that mapping specification is a very complex activity, which requires
a profound understanding of both the ontology and the data sources. Indeed,
data sources are in general autonomous and pre-existing the OBDA application,
and thus the way in which they are structured typically does not reflect the
ontology, which is instead an independent representation of the domain of in-
terest, rather than of the underlying data sources. To reconcile this “cognitive
distance” between the sources and the ontology, the mapping usually assumes a
complex form, and it is expressed in terms of assertions that relate queries over
the ontology to queries over the data sources.

This form of mappings has been widely studied in data integration and data
exchange [17, 9, 2]. In these contexts, the research on mappings has been mainly
focused on mapping composition or inversion, whereas very few efforts have
been made towards the analysis of the specification, to verify, e.g., whether it is
redundant or inconsistent per se (i.e., independently from the source data). In
fact, in data integration and exchange, the integrated (a.k.a. global or target)
schema is in general not as expressive as an ontology, and thus analysis checks
are to some extent easier or less crucial than in OBDA.

In this paper we study mapping analysis in OBDA, with the aim of providing
the designer with services that are useful to devise a well-founded OBDA speci-
fication. We introduce our novel definitions that formalize properties of interest
for the mapping. In particular, we define when a mapping M is inconsistent
w.r.t. an ontology O and a source schema S, which intuitively means that re-
trieving data through all the assertions in M always leads to an inconsistent
OBDA specification composed by O, M and S, whatever non-empty source in-
stance is assigned to S. Also, we define when a mappingM subsumes a mapping
M′ under O and S, which intuitively means that the systems composed by O,
S, and either M or M∪M′ are equivalent (and thus M′ is redundant in the
specification). We point out that verifying such properties is indeed of crucial
importance in real-life OBDA projects, when hundreds of mapping assertions
are usually needed, and it is very likely that mappings are redundant or even
inconsistent in the sense we have described above.

After defining the mapping analysis tasks we are interested in, we discuss
techniques for verifying consistency, redundancy, and subsumption for (some
generalizations of) the so-called GAV mapping [17], when some specific languages
for querying the sources and the ontology are used in mapping assertions.

We organize our paper as follows. In Section 2 we give some preliminary
definitions on OBDA and mapping languages. In Section 3 we provide our notions
of consistency, subsumption, and redundancy for mappings. In Section 4 we
study decidability of verification tasks for some mapping languages under the
GAV paradigm. In Section 5 we add some preliminary discussions on mappings
that go beyond GAV, and in Section 6 we conclude the paper.

2 Definitions

OBDA specifications. An OBDA specification is a triple J = 〈O,S,M〉 where
O is an ontology, S is a source schema, and M is a mapping between the two.
O typically (although not necessarily) represents intensional knowledge and is
specified in a language LO, whereas S is specified in a language LS . We denote
with ΣO and ΣS the signature of O and S, respectively, and we assume that
both LO and LS are (fragments of) first-order logic (FOL). For instance, in
a typical OBDA setting, O is a Description Logic TBox and S is a relational
schema, possibly with integrity constraints [20]. Finally, the mappingM is a set
of assertions of the form

φ(x) ψ(x) (1)

where φ(x) is a query over ΣS and ψ(x) is a query over ΣO, both with free
variables x, which are called the frontier variables. The number of variables in x
is the arity of the mapping assertion. Given a mapping assertion m of the form
(1), we also use FR(m) do denote the frontier variables x, head(m) to denote
the query ψ(x), and body(m) to denote the query φ(x), and we assume that
both such queries are specified in (some fragment of) FOL.

Example 1. We give here an example of OBDA specification that we will use as
ongoing example throughout the paper. We refer to a setting in which the source
schema is relational and the ontology is expressed in a basic Description Logic
language [3], which actually corresponds to DL-Litecore [6]. Since S is relational,
queries in the body of mapping assertions are encoded in SQL.

Then, consider the following schema S of the database used in a zoo for
handling information about the animals and the area of the zoo they live. In the
schema, the underlined attributes represent the keys of the tables, and we also
assume that a foreing key is specified between the attribute AREA of ANM TAB
and the table AREA TAB.

ANM TAB(ANM CODE,NAME,BREED,AREA)
AREA TAB(AREA CODE,SIZE)

An ontology O modeling a very small portion of the zoo domain is as follow.

O = { Lion v Animal,Monkey v Animal, Lion v ¬Monkey,Animal v ∃name,
Animal v ∃locatedIn,∃locatedIn− v Area,Area v ∃size}

In words, O specifies that both lions (Lion) and monkeys (Monkey) are animals
(Animal), a lion cannot be a monkey, and every animal has a name (name) and
is located in (locatedIn) an area (Area). Moreover, every area has a size (size).

An example of mapping M between O and S is as follows:

m1 : SELECT ANM CODE AS X, NAME AS Y Animal(X) ∧ name(X,Y)
FROM ANM TAB

m2 : SELECT ANM CODE AS X, AREA AS Y Lion(X) ∧ locatedIn(X,Y)
FROM ANM TAB WHERE BREED = ’Lion’

m3 : SELECT ANM CODE AS X, AREA AS Y Monkey(X) ∧ locatedIn(X,Y)
FROM ANM TAB WHERE BREED = ’Monkey’

m4 : SELECT ANM CODE AS X, AREA AS Y locatedIn(X,Y)
FROM ANM TAB

m5 : SELECT AREA CODE AS X, SIZE AS Y Area(X) ∧ size(X,Y)
FROM AREA TAB

The semantics of an OBDA specification J is defined with respect to a source
instance that is legal for S. More precisely, a source instance D is a set of facts
over ΣS . Given such a D, we denote by ID the interpretation over ΣS that is
isomorphic to D. Then, we say that D is legal for S if ID |= S. For example, if

S is relational, we consider as legal only the instances that satisfy the integrity
constraints on S. We assume that for each S a legal instance always exists. Then,
for each mapping assertion m ∈M we denote with π(m) the FOL formula

∀x.φ(x)→ ∃z.ψ(y, z)

where z denotes the existential variables in head(m), and we pose π(M) =
{π(m) | m ∈ M}. Then, the models of J w.r.t. D are the models of the FOL
theory O ∪ π(M) ∪ D that are isomorphic to D on the interpretation of the
predicates in S. We denote with Models(J , D) the set of models of J w.r.t. D.

Mapping languages. In this paper we study specific cases of OBDA specifi-
cations where we fix the fragment of FOL adopted for the queries in the head
and in the body of mapping assertions. In particular, we mainly focus on the
following mapping languages:

– FO2DCQ , where, for each m ∈ M, body(m) is a FOL query over S and
head(m) is a conjunctive query over O without existential variables;

– CQ2DCQ , where, for each m ∈ M, body(m) is a conjunctive query over S
and head(m) is a conjunctive query over O without existential variables.

Obviously, FO2DCQ subsumes CQ2DCQ , and thus all defintions we give in
the following for FO2DCQ mappings also apply to CQ2DCQ mappings.

Both languages above are extended forms of the so-called GAV mapping,
which, differently from the LAV mapping, does not allow for non-free variables
in the head of assertions [17, 9]. On the other-hand, GAV is the only kind of
mapping that has been used in practical OBDA and data integration applica-
tions [13, 1]. An example of CQ2DCQ language is given in Example 1.

We notice that classical GAV mapping only allows for single atom queries in
the head of assertions (instead of conjunctions of atoms). However, it is easy to
see that each FO2DCQ assertion can be rephrased into a logically equivalent set
of classic GAV assertions. More precisely, let

m : ∃w.φ(x,w) ψ(x)

be one such assertion, where we have explicited the existential variables in the
body query, then, we can rephrase m into the following set of mapping assertions

{∃xi,w.φ(xi,xi,w) ψi(xi) | for each atom ψi(xi) in body(m)}

where xi denotes the free variables of x that do not occur in xi. Given a
FO2DCQ mapping M, we denote with Split(M) the above set of mappings.

Example 2. Consider the m1 mapping assertion of Example 1. The set Split(m1)
contains the following mapping assertions:

m1′ : SELECT ANM CODE AS X FROM ANM TAB Animal(X)
m1′′ : SELECT ANM CODE AS X, NAME AS Y FROM ANM TAB name(X,Y)

Let m be a FO2DCQ mapping assertion of arity n and let t be an n-tuple
of constants. We denote by m(t) the mapping assertion obtained from m by
replacing the frontier variables of m with the constants in t. Then, let D be a
source instance, we define the facts retrieved by m on D, denoted by Retr(m,D),
as the set of ground atoms

{α | t is a tuple of constants and ID |= body(m(t)) and α occurs in head(m(t))}

Moreover, given a FO2DCQ mappingM and a source instance D, we define the
facts retrieved by M on D, denoted by Retr(M, D), as the set of ground atoms⋃

m∈M
Retr(m,D)

Finally, given an ontology predicate A, we define the extension of A retrieved by
M on D, denoted by Retr(A,M, D), as the set {t | A(t) ∈ Retr(M, D)}.

From now on, without loss of generality we assume that different mapping
assertions use different sets of variable symbols.

3 Mapping Analysis Tasks

In this section we provide the formal definitions that constitute the basis of the
mapping analysis functionalities that will be studied in Section 4. We first deal
with mapping consistency, then we turn our attention to mapping redundancy
and subsumption. If not otherwise specified, definitions and properties given in
this section apply to mappings that contain general assertions of the form (1).

3.1 Consistency

We start by providing some notions of inconsistency relative to a single mapping
assertion. Informally, with such notions we characterize the anomalous situa-
tions in which either the query in the head of an assertion has certainly an
empty evaluation in every model for the ontology O (we call this situation head-
inconsistency), or the query in the body of an assertion has certainly an empty
evaluation in every model for the source schema S (we call this situation body-
inconsistency).

Definition 1. (mapping head-inconsistency) Let 〈O,S,M〉 be an OBDA spec-
ification and m : φ(x) ψ(x) be a mapping assertion in M. We say that m is
head-inconsistent for 〈O,S〉 if O |= ∀x.(¬ψ(x)).

Example 3. Let 〈O,S,M〉 be an OBDA specification where O and S are as in
Example 1. Suppose that the mapping M contains the following assertion:

m : SELECT ANM CODE AS X Lion(X) ∧Monkey(X)
FROM ANM TAB

Then, m is head-inconsistent for 〈O,S〉, since we have that O |= Lion v
¬Monkey.

Definition 2. (mapping body-inconsistency) Let 〈O,S,M〉 be an OBDA speci-
fication and m : φ(x) ψ(x) be a mapping assertion in M. We say that m is
body-inconsistent for 〈O,S〉 if S |= ∀x.(¬φ(x)).

Example 4. Let 〈O,S,M〉 be an OBDA specification where O and S are as
in Example 1. Suppose that the mapping M contains the following mapping
assertion:

m : SELECT ANM CODE AS X Animal(X)
FROM ANM TAB

WHERE BREED = ’Lion’ AND

BREED = ’Monkey’

Since, obviously, for every tuple in ANM TAB the attribute BREED can assume only
a single value, we can easily conclude that m is body-inconsistent for 〈O,S〉.

We compose the above two notions into the following notion of inconsistency
of a single mapping assertion.

Definition 3. (mapping inconsistency) Let 〈O,S,M〉 be an OBDA specification
and m be a mapping assertion in M. We say that m is inconsistent for 〈O,S〉
if m is head-inconsistent or body-inconsistent for 〈O,S〉.

Then, we provide a “global” notion of inconsistency, that is, inconsistency
relative to a whole mapping specification. To this aim, we first need to define
when a mapping is active on a source instance.

We say that a mapping M is active on a source instance D if, for every
mapping assertion m : φ(x) ψ(x) in M, ID |= ∃x.φ(x) (in other words,
every mapping assertion is “activated” by D and retrieves at least one tuple
from D).

Definition 4. (global mapping inconsistency) Let J = 〈O,S,M〉 be an OBDA
specification. We say that M is globally inconsistent for 〈O,S〉 if there does
not exist a source instance D legal for S such that M is active on D and
Models(J , D) 6= ∅.

Intuitively, if a mapping is globally inconsistent, then it is not possible to
simultaneously activate all its mapping assertions without causing inconsistency
of the whole specification. This is certainly an anomalous situation, as shown by
the following example.

Example 5. Let 〈O,S,M〉 be an OBDA specification where O and S are as in
Example 1. Suppose that M contains the following mapping assertions:

m1 : SELECT ANM CODE AS X FROM ANM TAB Lion(X)
m2 : SELECT ANM CODE AS X FROM ANM TAB Monkey(X)

It is easy to see that M is globally inconsistent for 〈O,S〉.

The following property relates the two notions of mapping inconsistency and
global mapping inconsistency.

Proposition 1. Let 〈O,S, {m}〉 be a OBDA specification. If the mapping as-
sertion m is inconsistent for 〈O,S〉, then every mapping M that contains m is
globally inconsistent for 〈O,S〉.

Note that a mapping M that is globally inconsistent for some 〈O,S〉 may
not contain any mapping assertion m that is inconsistent for 〈O,S〉, which is
actually the case shown in Example 5. In other terms, inconsistency of a mapping
assertion is a sufficient but not necessary condition for global inconsistency.

3.2 Redundancy and Subsumption

We now deal with mapping redundancy and subsumption. First, given an ODBA
specification J = 〈O,S,M〉 where M = {m}, we consider a mapping assertion
m′ to be redundant for m, if adding m′ toM produces a specification equivalent
to J . This is formalized below.

Definition 5. (mapping redundancy) Let O be an ontology, let S be a source
schema, and let m,m′ be mapping assertions of the same arity. We say that m′

is redundant for m under 〈O,S〉 if, for every source instance D that is legal for
S, Models(〈O,S, {m}〉, D) = Models(〈O,S, {m,m′}〉, D).

Our aim now is to characterize the above notion of redundancy in terms of
composition of separate entailment checks on the source schema level and the
ontology level of the OBDA specification. We thus define the notions of head-
subsumption and body-subsumption for a pair of mapping assertions.

Definition 6. (mapping body-subsumption, mapping head-subsumption) Let S
be a source schema, let m1,m2 be mapping assertions of the same arity, let
FR(m2) = {x1, . . . , xn}, and let µ be a bijective mapping from FR(m1) to
FR(m2). We say that m1 body-subsumes m2 under S and µ if the schema
S entails the sentence ∀x1, . . . , xn(body(m2)→ µ(body(m1))). Moreover, we say
that m1 head-subsumes m2 under O and µ if the ontology O entails the sentence
∀x1, . . . , xn(head(m2)→ µ(head(m1))).

Informally, body-subsumption characterizes the case when the body of the
mapping assertion m2 entails the body of m1 under the schema S and under a
mapping µ of the frontier variables of m1 and m2. Head-subsumption is defined
in an analogous way.

Example 6. Consider again the ontology O and the schema S of Example 1 and
the following mapping assertions:

m1 : SELECT AREA CODE AS X, SIZE AS Y size(X,Y)
FROM AREA TAB

m2 : SELECT AREA CODE AS X, SIZE AS Y Area(X) ∧ size(X,Y)
FROM AREA TAB WHERE SIZE > 10

m3 : SELECT ANM CODE AS X Animal(X) ∧ name(X,Y)
FROM ANM TAB WHERE BREED = ’Monkey’

m4 : SELECT ANM CODE AS X, NAME AS Y Lion(X) ∧ name(X,Y)
FROM ANM TAB WHERE BREED = ’Lion’

It is easy to see that m1 body-subsumes m2. Moreover, since the ontology O
entails that a lion is an animal, we have that m3 head-subsumes m4.

The relationship between the notion of redundancy and the notions of head-
and body-subsumption is stated by the following proposition.

Proposition 2. Let O be an ontology, let S be a source schema, and let m,m′

be mapping assertions of the same arity. Then, m′ is redundant for m under
〈O,S〉 iff there exists a bijective mapping µ : FR(m) → FR(m′) such that m
body-subsumes m′ under S and µ and m′ head-subsumes m under O and µ.

Notice that, for m′ to be redundant for m, we require that (under the same
bijective mapping of the frontier variables) m body-subsumes m′, whereas m′

head-subsumes m. This indeed reflects the “semantic flow” of the data: m′ is
redundant since it retrieves from the sources less data than m, and at the same
time the instantiation of ontology predicates that m′ realizes with these data is
less specific than the instantiation due to m, but implies it under O.

Example 7. Let O and S be respectively the ontology and the source schema of
Example 1. Consider the following mapping assertions:

m1 : SELECT ANM CODE AS X, NAME AS Y name(X,Y)
FROM ANM TAB WHERE BREED = ’Monkey’

m2 : SELECT ANM CODE AS X, NAME AS Y Animal(X) ∧ name(X,Y)
FROM ANM TAB

We have that m1 is redundant for m2 under 〈O,S〉. Indeed, it easy to see that
m2 body-subsumes m1 under S and that m1 head-subsumes m2 under O. Notice
that, if we add the atom Monkey(X) in the head of m1, the redundancy does no
longer hold, since in that case m2 head-subsumes m1.

Then, we define a more general, global notion of mapping redundancy which
is relative to a whole mapping specification.

Definition 7. (global mapping redundancy) Let O be an ontology, let S be a
source schema, and let M,M′ be mappings. We say that M′ is globally redun-
dant for M under 〈O,S〉 if, for every source instance D that is legal for S,
Models(〈O,S,M〉, D) = Models(〈O,S,M∪M′〉, D).

Notice that global redundancy of a mapping M′ for a mapping M under
〈O,S〉 does not imply that there exists an assertion m′ in M′ and an assertion
m in M such that m′ is redundant for m under 〈O,S〉, as shown below.

Example 8. Consider the ontology O = {A1 v A,B1 v B}, the source schema
composed by the only unary predicate Q, and the following mapping assertions:

m1 : Q(X) A1(X)
m2 : Q(X) B1(X)
m3 : Q(X) A(X) ∧B(X)

Then, M′ = {m3} is globally redundant for M = {m1,m2} under 〈O,S〉, but
m3 is not redundant under 〈O,S〉 for any mapping assertion in M.

Conversely, it is easy to see the if a mapping M′ contains only assertions
that, taken one by one, are redundant under 〈O,S〉 for some assertion contained
in a mapping M, then M′ is globally redundant for M under 〈O,S〉.

Finally, we define extensional predicate subsumption, a mapping-based no-
tion of subsumption between ontology predicates. Differently from all the other
definitions and propositions given in this section, such notion applies only to
GAV mappings, and thus we give it for FO2DCQ mappings, which subsume all
GAV mappings considered in this paper.

Definition 8. (extensional predicate subsumption and emptiness) Let S be a
source schema, let M be a FO2DCQ mapping, and let A,A′ be ontology pred-
icates having the same arity. We say that A extensionally subsumes A′ under
〈S,M〉 if, for every source instance D that is legal for S, Retr(A,M, D) ⊇
Retr(A′,M, D). Moreover, given a predicate A, we say that A is extension-
ally empty under 〈S,M〉 if, for every source instance D that is legal for S,
Retr(A,M, D) = ∅.

Informally, the above notion of extensional predicate subsumption checks
containment of the instances of the predicates retrieved by the mapping on
every legal source instance.

4 Verification

In this section we study the problem of decidability of the verification of the
formal properties of mappings defined in Section 3. It can be immediately ob-
served that verification for mappings expressed in the language FO2DCQ poses
a serious decidability issue independently of the ontology language LO and the
source schema language LS , since arbitrary FOL expressions can appear in the
body of such mapping assertions. Therefore, our first analysis focuses on identi-
fying sufficient conditions for the decidability of the verification of the properties
under examination.

For ease of exposition, in the rest of this section we assume that the ontology
language LO has a predefined empty predicate ⊥. More precisely, we assume the
existence of an ontology predicate⊥ of arity 0 that is false in every interpretation.

4.1 Head-Subsumption and Head-Inconsistency

Let us consider mapping head-subsumption. In the following, letm1,m2 be either
FO2DCQ or CQ2DCQ mapping assertions of the same arity, let µ be a bijective
mapping from FR(m1) to FR(m2), and let q1 = head(m1), q2 = head(m2).
The following algorithm checks whether m2 head-subsumes m1 under S and µ:

1. freeze query µ(q1), i.e., generate a source instance (set of ground atoms)
Dµ(q1) from q1 by replacing every occurrence of a variable x with a constant
symbol cx;

2. let q′2 be the formula obtained from q2 by replacing every occurrence of a
variable x with a constant symbol cx. Notice that q′2 is a conjunction of
ground atoms;

3. if, for every ground atom α in q′2, O ∪Dµ(q1) |= α (ground atom entailment
problem in LO), then return true, otherwise return false.

It can be shown that the above algorithm is correct. This implies that map-
ping head-subsumption is decidable as soon as ground atom entailment in LO
is decidable. Conversely, undecidability of head-subsumption when ground atom
entailment in LO is undecidable can be shown by an easy reduction of ground
atom entailment in LO to mapping head-subsumption. Consequently, the follow-
ing property holds.

Theorem 1. For both FO2DCQ mappings and CQ2DCQ mappings, mapping
head-subsumption is decidable iff ground atom entailment in LO is decidable.

Mapping head-inconsistency can be immediately reduced to mapping head-
subsumption, since LO allows for the empty predicate ⊥. Then, m is head-
inconsistent for 〈O,S〉 iff m is head-subsumed by m′ under 〈O,S〉 and µ, where
m′ is the mapping obtained from m by adding the atom ⊥ in the head of m,
and µ is the identity mapping on FR(m).

Moreover, it can be shown that ground atom entailment can be reduced to
mapping head-inconsistency, under some assumptions on the ontology language
LO. In particular, we say that LO allows for binary denial formulas if, for every
pair of predicate names p, p′ in ΣO of the same arity, the formula ∀x (p(x) ∧
p′(x) → ⊥) belongs to LO. The above assumption is a sufficient condition for
reducing ground atom entailment to head-inconsistency.

Theorem 2. For both FO2DCQ mappings and CQ2DCQ mappings, mapping
head-inconsistency is decidable if ground atom entailment in LO is decidable.
Moreover, if LO allows for binary denial formulas, then ground atom entailment
in LO is decidable if mapping head-inconsistency is decidable.

4.2 Body-Subsumption and Body-Inconsistency

Body-subsumption and body-inconsistency are undecidable for FO2DCQ map-
pings (due to the undecidability of the validity problem in FOL).

Concerning CQ2DCQ mappings, the following property immediately follows
from the definitions of mapping body-subsumption.

Theorem 3. For CQ2DCQ mappings, mapping body-subsumption is decidable
iff conjunctive query containment is decidable in LS .

Notice that several schema languages are known to satisfy the hypothesis
of the above theorem. E.g., conjunctive query containment is decidable in the
language of non-key-conflicting keys and inclusion dependencies studied in [5],
as well as in several classes of TGDs [4, 15].

For mapping body-inconsistency, a similar property holds under some suffi-
cient assumptions on the language LS . In particular, we say that LS allows for
CQ-denial formulas if, for every conjunctive query q(x) over ΣS , the formula
∀x(q(x)→ ⊥) belongs to LS .

Theorem 4. For CQ2DCQ mappings, mapping body-inconsistency is decidable
iff conjunctive query containment is decidable in LS . Moreover, if LS allows for
CQ-denial formulas, then conjunctive query containment in LS is decidable if
mapping body-inconsistency is decidable.

4.3 Redundancy and Inconsistency

Given the above undecidability results for head- and body-subsumption, it ob-
viously follows that both redundancy and inconsistency of mapping assertions
are undecidable properties for FO2DCQ mappings.

However, the situation is different for CQ2DCQ mappings, In fact, it is im-
mediate to see that Proposition 2, Definition 3, Theorem 1, and Theorem 3,
imply the following properties.

Theorem 5. For CQ2DCQ mappings, mapping redundancy is decidable iff
ground atom entailment is decidable in LO and conjunctive query containment
is decidable in LS .

Theorem 6. For CQ2DCQ mappings, mapping inconsistency is decidable if
ground atom entailment is decidable in LO and conjunctive query containment
is decidable in LS . Moreover, if LS allows for CQ-denial formulas and LO allows
for binary denial formulas, then ground atom entailment is decidable in LO and
conjunctive query containment is decidable in LS if mapping inconsistency is
decidable.

4.4 Extensional Subsumption and Emptiness

We start by relating the notion of extensional predicate subsumption with the
notion of global mapping redundancy.

Let M be a mapping and let A be a predicate name. We define MA as the
mapping obtained from Split(M) by considering only the mapping assertions in
which A occurs in the head. Moreover, given such a mappingMA and a predicate
name B of the same arity as A, we defineMA(B) as the mapping obtained from
MA by replacing every occurrence of the predicate A with B.

The relationship between global mapping redundancy and extensional pred-
icate subsumption is stated by the following property.

Theorem 7. Let A,A′ be ontology predicates of the same arity. Then, A ex-
tensionally subsumes A′ under 〈S,M〉 iff MA′(A) is redundant for MA under
〈∅,S〉.

From the above theorem, it can be easily verified that extensional predicate
subsumption is a generalization of the the notion of concept (and role) inclu-
sion in extensional constraints (also known as ABox dependencies) studied in
Description Logics [21, 23, 8].

As shown by the previous theorem, extensional predicate subsumption re-
duces to a special case of global mapping redundancy, in which the ontology
is empty. Under this simplification, it can be easily verified that this task can
be reduced to a containment check between two unions of conjunctive queries
(UCQs) in the language LS . Consequently, the following property holds.

Theorem 8. For CQ2DCQ mappings, extensional subsumption is decidable iff
UCQ containment is decidable in LS .

Furthermore, it is immediate to verify that, for FO2DCQ mappings, exten-
sional subsumption (as well as extensional emptiness) is undecidable.

4.5 Global Mapping Inconsistency

Given the above undecidability results, it immediately follows that, for FO2DCQ
mappings, verifying global mapping inconsistency is undecidable.

For CQ2DCQ mappings, we present a technique that is able to decide global
inconsistency in the case when the source schema S is empty.

Let M be a CQ2DCQ mapping and let CM be any set of constant symbols
whose arity is the same as the number of variable symbols occurring in the bodies
of the mapping assertions inM. We call grounding of M over CM any mapping
obtained fromM by replacing, in every mapping assertion, every variable symbol
with a constant from CM.

Given such a grounding MG of M, let D(MG) be the source instance con-
taining all the ground atoms that occur in the bodies of the mapping assertions
of MG.

Theorem 9. Given an OBDA specification 〈O, ∅,M〉 where M is a CQ2DCQ
mapping, M is globally inconsistent for 〈O, ∅〉 iff there exists no grounding MG

of M over CM such that O ∪ {Retr(M, D(MG))} is satisfiable.

Notice that checking satisfiability of O∪{Retr(M, D(MG))} can be reduced
to ground atom entailment, in particular, entailment of the ground atom ⊥ with
respect to the theory O ∪ {Retr(M, D(MG))}. Therefore, from Theorem 9 it
follows that decidability of global inconsistency is implied by decidability of
ground atom entailment in LO. For the other direction, the proof easily follows
from Theorem 6 and from the fact that mapping inconsistency can be obviously
reduced to global mapping inconsistency.

LS ∈ UCQ-dec, arbitrary LS , LS ∈ UCQ-dec,
arbitrary LO LO ∈ GAE-dec LO ∈ GAE-dec

head-subsumption/inconsistency U D D

body-subsumption/inconsistency U U U

redundancy/inconsistency U U U

ext. subsumption/emptiness U U U

global inconsistency U U U

Results for FO2DCQ mappings (D=decidable, U=undecidable).

LS ∈ UCQ-dec, arbitrary LS , LS ∈ UCQ-dec,
arbitrary LO LO ∈ GAE-dec LO ∈ GAE-dec

head-subsumption/inconsistency U D D

body-subsumption/inconsistency D U D

redundancy/inconsistency U U D

ext. subsumption D U D

global inconsistency∗ U D D

Results for CQ2DCQ mappings
(D=decidable, U=undecidable, ∗=The result holds only when S is empty).

Fig. 1. Summary of decidability/undecidabilty results.

Theorem 10. For CQ2DCQ mappings and empty source schemas, global map-
ping inconsistency is decidable if ground atom entailment is decidable in LO.
Moreover, if LS allows for CQ-denial formulas and LO allows for binary denial
formulas, then ground atom entailment is decidable in LO and conjunctive query
containment is decidable in LS if global mapping inconsistency is decidable.

The results shown in this section are summarized in Figure 1. The figure
reports two tables: the first one is relative to the FO2DCQ mappping language,
while the second one is relative to the CQ2DCQ mapping language. In the two
tables, we denote by UCQ-dec the class of FO languages for which UCQ con-
tainment is decidable, and denote by GAE-dec the class of FO languages for
which entailment of ground atoms is decidable. We remark that the undecid-
ability results for head-inconsistency hold under the assumption that LO allows
for binary denial formulas (Theorem 2); moreover, for CQ2DCQ mappings, the
undecidability results for body-inconsistency hold under the assumption that
LS allows for CQ-denial formulas (Theorem 4), and the undecidability results
for mapping inconsistency and global mapping inconsistency hold under the as-
sumption that LO allows for binary denial formulas and LS allows for CQ-denial
formulas (Theorem 6 and Theorem 9).

5 Beyond GAV Mappings

In this section we draw some initial considerations on extending our analysis
towards mapping languages beyond GAV. As we have seen, GAV-like mappings
enjoy useful properties when it comes to mappings analysis. However, there are
cases in OBDA systems where GAV-like mappings are insufficient. For example,
consider the simple case of relating the answers of a database query Q to the
existential restriction of a role R in a Description Logic ontology. With GAV
mappings, the only way to do so is to map Q to a new concept A in the ontology,
and add to the ontology the concept inclusion axiom A v ∃R. This may not be
desirable, as it clutters the ontology with concepts that may have little relation
to the domain being described.

In this section, we therefore consider the languages obtained from CQ2DCQ
and FO2DCQ by allowing existential variables to occur in the heads of map-
ping assertions. Doing so without restriction gives us the languages FO2CQ and
CQ2CQ, that is, the head of a mapping assertion is simply a conjunctive query
over O.

Unfortunately, such an increased expressiveness causes computational com-
plications: for instance, for these two mapping languages the task of query un-
folding is equivalent to query answering using views [17], which is much harder
than unfolding with GAV-like mappings [14]. Furthermore, given such a mapping
M, it cannot be rephrased into a set of mapping assertions with single atoms in
the head, as existentially quantified variables may occur in multiple atoms. Thus,
Split(M) does not yield an equivalent mapping. To address these issues, we con-
sider the languages FO2CQE and CQ2CQE, where for each m ∈ M, head(m)
is a conjunctive query over O, and every existential variable in head(m) occurs
in exactly one atom. These languages allow us to map queries to existential re-
strictions of roles, but avoid the difficulties discussed. For example, it is easy to
verify that for a mappingM in either of these two languages, Split(M) produces
an equivalent mapping.

For all four languages, all the definitions of inconsistency, subsumption and
redundancy (with the exception of extensional predicate subsumption) provided
by Section 3 apply, as well as Proposition 1 and Proposition 2. For FO2CQ and
CQ2CQ, we have the following analogue of Theorem 1.

Theorem 11. For both FO2CQ and CQ2CQ mappings, mapping head-
subsumption is decidable iff conjunctive query containment is decidable in LO.

For FO2CQE and CQ2CQE we can do better. Since Split(M) produces an
equivalent mapping in these languages, checking head-subsumption can be done
atom by atom. As such, for these languages mapping head-subsumption is de-
cidable iff containment of positive single-atom queries is decidable.

By a similar argument, it is possible to show that, in order to check global
mapping inconsistency for these languages over empty source schemas, we like-
wise need entailment of ground atoms in LO.

6 Conclusions

In this paper we have formally defined some properties of interest for the
mapping component of an OBDA specification, and we have provided several
(un)decidability results concerning the task of verifying such properties for some
typical mapping languages.

Our study is still in its initial stage, and several further issues need to be
investigated. In particular, we left as future work the study of global redundancy
and of global inconsistency for OBDA specifications with a non-empty source
schema. Furthermore, we intend to extend our analysis to forms of mapping that
go beyond the GAV setting (e.g., consider LAV and GLAV [17]), for which we
have only provided some preliminary discussion and results in Section 5. Also,
we want to study verification of the various forms of subsumption, redundancy,
and inconsistency introduced in this paper for concrete instantiations of both
the LO and the LS languages, and characterize its computational complexity.

Finally, we notice that the analysis conducted in this work is based on a ”clas-
sical” notion of equivalence and subsumption, i.e., equality/containment between
the sets of models of two specifications. Recent work in the data exchange area
[10, 11, 19] has studied alternative notions of equivalence for schema mappings.
One possible extension of the present work is applying these alternative semantic
approaches to the case of OBDA mappings.

Acknowledgments. We thank the anonymous reviewers for precious sugges-
tions. This research has been partially supported by the EU under FP7 project
Optique (grant n. FP7-318338).

References

1. N. Antonioli, F. Castanò, C. Civili, S. Coletta, S. Grossi, D. Lembo, M. Lenzerini,
A. Poggi, D. F. Savo, and E. Virardi. Ontology-based data access: the experience
at the Italian Department of Treasury. In Proc. of the Industrial Track of CAiSE,
volume 1017 of CEUR, ceur-ws.org, pages 9–16, 2013.

2. M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations of Data Exchange.
Cambridge University Press, 2014.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2nd edition, 2007.

4. A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general Datalog-based framework for
tractable query answering over ontologies. J. of Web Semantics, 14:57–83, 2012.

5. A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity of query
answering over inconsistent and incomplete databases. In Proc. of PODS, pages
260–271, 2003.

6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
JAR, 39(3):385–429, 2007.

7. C. Civili, M. Console, G. De Giacomo, D. Lembo, M. Lenzerini, L. Lepore,
R. Mancini, A. Poggi, R. Rosati, M. Ruzzi, V. Santarelli, and D. F. Savo. MASTRO
STUDIO: Managing ontology-based data access applications. PVLDB, 6:1314–
1317, 2013.

8. M. Console, M. Lenzerini, R. Mancini, R. Rosati, and M. Ruzzi. Synthesizing
extensional constraints in Ontology-Based Data Access. In Proc. of DL, volume
1014 of CEUR, ceur-ws.org, pages 628–639, 2013.

9. A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan
Kaufmann, 2012.

10. R. Fagin, P. G. Kolaitis, A. Nash, and L. Popa. Towards a theory of schema-
mapping optimization. In Proc. of PODS, pages 33–42, 2008.

11. G. Gottlob, R. Pichler, and V. Savenkov. Normalization and optimization of
schema mappings. VLDBJ, 20(2):277–302, 2011.

12. V. Haarslev, K. Hidde, R. Möller, and M. Wessel. The RacerPro knowledge rep-
resentation and reasoning system. Semantic Web J., 3(3):267–277, 2012.

13. P. Haase, I. Horrocks, D. Hovland, T. Hubauer, E. Jiménez-Ruiz, E. Kharlamov,
J. W. Klüwer, C. Pinkel, R. Rosati, V. Santarelli, A. Soylu, and D. Zheleznyakov.
Optique system: Towards ontology and mapping management in OBDA solutions.
In Proc. of WoDOOM, pages 21–32, 2013.

14. A. Y. Halevy. Answering queries using views: A survey. VLDBJ, 10(4):270–294,
2001.

15. M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. On the exploration of the
query rewriting space with existential rules. In Proc. of RR, pages 123–137, 2013.

16. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The com-
bined approach to ontology-based data access. In Proc. of IJCAI, pages 2656–2661,
2011.

17. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS, pages
233–246, 2002.

18. M. Lenzerini. Ontology-based data management. In Proc. of CIKM, pages 5–6,
2011.

19. R. Pichler, E. Sallinger, and V. Savenkov. Relaxed notions of schema mapping
equivalence revisited. Theory of Computing Systems, 52(3):483–541, 2013.

20. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. J. on Data Semantics, X:133–173, 2008.

21. M. Rodriguez-Muro and D. Calvanese. High performance query answering over
DL-Lite ontologies. In Proc. of KR, pages 308–318, 2012.

22. M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. Ontology-based data
access: Ontop of databases. In Proc. of ISWC, volume 8218 of LNCS, pages 558–
573. Springer, 2013.

23. R. Rosati. Prexto: Query rewriting under extensional constraints in DL-Lite. In
Proc. of ESWC, volume 7295 of LNCS, pages 360–374. Springer, 2012.

24. R. Shearer, B. Motik, and I. Horrocks. HermiT: A highly-efficient OWL reasoner.
In Proc. of OWLED, volume 432 of CEUR, ceur-ws.org, 2008.

25. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. J. of Web Semantics, 5(2):51–53, 2007.

26. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In Proc. of IJCAR, pages 292–297, 2006.

27. T. Venetis, G. Stoilos, and G. B. Stamou. Query extensions and incremental query
rewriting for OWL 2 QL ontologies. J. on Data Semantics, 3(1):1–23, 2014.

