
Easy OWL Drawing with the Graphol Visual Ontology Language

Domenico Lembo, Daniele Pantaleone, Valerio Santarelli, Domenico Fabio Savo

Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”
Sapienza Università di Roma
〈lastname〉@dis.uniroma1.it

Abstract

GRAPHOL is a visual language designed to help non-experts
to understand and specify ontologies. Our language builds
on the Entity-Relationship model, but has a formal seman-
tics and higher expressiveness. Notably, OWL 2 can be com-
pletely encoded in GRAPHOL. Thanks to the novel open-
source Eddy ontology editor, designers can easily draw
GRAPHOL diagrams corresponding to OWL ontologies and
export them into standard OWL 2 format. Both GRAPHOL
and Eddy have been used in several successful industrial
projects and are currently under active development. This pa-
per reports on our more recent progresses.

Introduction

Ontologies are conceptual representation schemes suited to
share domain knowledge in a structured form. By virtue
of these characteristics, they have become quite popular
during the years in several areas, and have recently at-
tracted the attention of various companies and organizations,
even from the industrial world (Guarino and Musen 2015;
Antonioli et al. 2014; Giese et al. 2015). A recurring ma-
jor issue in these contexts concerns handling communication
between ontologists and domain experts, who rarely pos-
sess the skills to interpret formalisms in which ontologies
are usually expressed by the former.

In recent years, we have directly experienced the above
problem in various projects carried out in collaboration with
industrial partners or public organizations (see, e.g, (Anto-
nioli et al. 2014; Savo et al. 2010)). In these projects we
have conducted an extensive ontology modeling activity and
we have developed significantly large and complex ontolo-
gies. In doing so we were always supported by domain ex-
perts, who, in many cases, were experiencing ontologies
and languages like OWL for the first time, and had little
or no skills in formal languages or in logic. Not surpris-
ingly, to carry on the modeling we initially resorted to the
use of some graphical representations for the ontology given
through Entity-Relationship (ER) schemas or UML class di-
agrams. Indeed, these notations are well-known in industrial
contexts for their intensive use in database and software de-
sign, and have a well-understood correspondence with for-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mal languages like Description Logics (DLs) (Berardi, Cal-
vanese, and De Giacomo 2005). At the same time, they are
quite easy to understand, at least in broad terms, even by
people without technical skills, and they are well-suited to
provide a general outline of the representation.

ER schemas and UML class diagrams, however, are not
able in general to capture all the representation needs, which
may require the use of very expressive languages like OWL
2.1 In our first experiences we therefore used diagrams
only to provide some views of the ontology, which we in-
stead specified in terms of OWL formulas, with the support
of tools like Protégé.2 However, maintaining the diagrams
aligned with the ontology turned out to be impractical as
soon as the size of the ontology grew. Furthermore, the use
of two kinds of representations was confusing for domain
experts, which wanted to also understand those axioms that
were not expressible in diagrams, to be able to take over the
ontology development in the middle/long run.

To overcome the above problems, we defined and started
to use GRAPHOL, a new graphical language for ontology
specification. GRAPHOL is designed to offer a completely
visual representation of the ontology, and so it does not make
use of textual formulas to complement the graphical model.
To provide the users with constructs they are familiar with,
we took the basic components of GRAPHOL from the ER
model. In particular, we designed our language so that sim-
ple ontologies that can be captured by ER diagrams have in
GRAPHOL a representation that is specular to the ER one.
The structure of graphical assertions in GRAPHOL traces
that of typical DL axioms, so that our language has a natural
encoding in DL syntax. Through such encoding, we assign a
clear and formal semantics to GRAPHOL, and we show that
it captures SROIQ(D), the logical underpinning of OWL
2. Thus, our language can be readily seen as a graphical syn-
tax for it.

Besides its important practical implications, our work
contributes to a long-standing line of research in com-
puter science, aimed at devising graphic notations for rep-
resenting knowledge (Sowa 1984). Among many proposals,
the closest to our approach are the UML-inspired graph-
ical languages and tools for the representation of OWL

1https://www.w3.org/TR/owl2-syntax/
2http://protege.stanford.edu/

Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

573

Symbol Name Symbol Name Symbol Name Symbol Name

Concept node Role node Attribute
node

Value-domain
node

Individual/
Value node

Restriction type
Domain

restriction
node

Restriction type
Range

restriction
node

Inclusion
edge

Intersection
node Union node Complement

node Input edge

Inverse node One-of node Role chain
node

Figure 1: GRAPHOL predicate nodes, constructor nodes, and edges.

ontologies (Brockmans et al. 2004; Djuric et al. 2004;
Guizzardi 2005; Fillottrani, Franconi, and Tessaris 2012;
Liepins, Grasmanis, and Bojars 2014). Differently from
GRAPHOL, none of them is completely graphical, and typi-
cally use anonymous UML classes associated with formulas
to encode complex OWL expressions. Other proposals that
are not based on standard conceptual modeling languages,
like (Krivov, Williams, and Villa 2007; Stapleton et al. 2013;
Falco et al. 2014), use structures such as graphs or con-
cept diagrams to model ontologies. These proposals how-
ever have either been discontinued or are not able to com-
pletely capture OWL 2. Furthermore, the notation used in
some of these approaches is quite distant in nature from lan-
guages like ER or UML class diagrams, and this may pose
some difficulties in its understanding, especially in the en-
terprise context.

In the following, we first describe the GRAPHOL lan-
guage, and then introduce Eddy, a new tool for the design of
GRAPHOL ontologies. We then briefly discuss future work
and conclude the paper.

The Graphol language

In GRAPHOL, as in DLs, an ontology is composed by inclu-
sion assertions between expressions, whose representation is
completely visual and is given in terms of a graph. Each ex-
pression is a weakly-connected acyclic directed (sub-)graph
with exactly one node with no outgoing edges, called sink.
Each such graph contains only nodes of the forms showed in
Figure 1, connected with dashed directed edges terminating
with a small diamond, called input edges. An inclusion is
drawn with a solid directed arrow, called inclusion edge, go-
ing from the (sink node of the) subsumed expression to the
(sink node of the) subsuming one. Expressions are of four
types: concept, role, attribute, and value-domain. Inclusions
are allowed only between expressions of the same type.

Legal GRAPHOL expressions are defined inductively.
Base expressions are labeled rectangles, diamonds, circles,
and rounded rectangles, which represent the atomic con-
cepts, roles, attributes, and value-domains of the ontology,
respectively. These are called predicate nodes. In this case,
the only node in the expression is also its sink. Complex
expressions are obtained through constructor nodes taking
as input other expressions, which means that an input edge
is traced from the sink node of each expression to the con-
structor node. There are various types of constructor nodes,

defined with only two graphical labeled shapes: box (which
can be either blank or solid) and hexagon. Labels on boxes
(Restriction type in Figure 1) can have one of the follow-
ing values: “exists”, for existential restriction, “forall”, for
value restriction, “self”, for self restriction, and “(x,−)” and
“(−, y)”, with x and y positive integers, for min and max
cardinality restrictions (Baader et al. 2007). The above re-
strictions can be specified over a role (resp. an attribute)
by using a blank box that takes as input the role (resp. at-
tribute) expression and a concept expression (missing for
self-labeled boxes, and possibly missing for existential and
cardinality restrictions). In this case we are constructing a
concept expression. For example, to specify in GRAPHOL
the DL min cardinality restriction ≥ 1hasPassed.Exam,
denoting all individuals that have passed at least an exam,
we use a blank box labeled with (1,−) taking as input the
role hasPassed and the concept Exam. Analogously, with
solid boxes we specify concept expressions that are restric-
tions over role inverses, as well as value-domain expressions
corresponding to attribute ranges.

Hexagons can be labeled as indicated in Figure 1. These
are used to represent the intersection or union of concepts or
value-domains (and and or), the complement of a predicate
(not), the inverse of a role (inv), the chain of roles (chain),
or an enumerated concept or value-domain (oneOf). In this
last case, the operator takes as input only individual or value
nodes, represented by lebeled octagons (cf. Figure 1). The
inverse and chain operators take as input only role expres-
sions and construct other role expressions (for the chain op-
erator, input edges are labeled with positive integers that in-
dicate the order of the input expression in the chain). All the
remaining constructor nodes define expressions of different
kind, depending on the input they take. For example, the in-
tersection node taking as input two (or more) concept ex-
pressions returns a concept expression. We refer the reader
to (Console et al. 2014) for more details.

We notice that the GRAPHOL syntax reflects that of DLs,
and thus it is not difficult to transform each GRAPHOL as-
sertion into a DL inclusion axiom. This allows us to as-
sign GRAPHOL with a formal semantics, borrowed from
DLs (Console et al. 2014). Notably, we can also express in
GRAPHOL any SROIQ(D) (and thus OWL 2) TBox (Hor-
rocks, Kutz, and Sattler 2006). Indeed, any such TBox can
be expressed in terms of SROIQ(D) inclusion axioms
only, and then straightforwardly translated in GRAPHOL.

574

Male � Female ≡ Person
Male � ¬Female
∃hasChild � Person
∃hasChild− � Person
hasChild ≡ hasParent−

Person � ≥ 2hasParent
Person � ≤ 1hasParent.Male
Person � ≤ 1hasParent.Female
Person � ≤ 1name
Person � ≥ 1name
∃name− � xsd:string

Figure 2: Example of a GRAPHOL ontology and its representation in DL.

An example of a GRAPHOL ontology is given in Figure 2,
where we also provide its specification in terms of DL for-
mulas. For simplicity, inclusion edges between the same ex-
pressions and with inverse directions are denoted with a sin-
gle solid edge with an arrow on both ends, and exact cardi-
nalities are specified through a single box. In words, the on-
tology says that a person is either a Male or Female and that
each person as exactly one name, which is a string. Only per-
sons can have children, which are in turn persons, and each
person has one parent that is Male and one that is a Female.
Furthermore, hasParent is the inverse of hasChild.

We notice that the ontology in the figure resembles an
ER diagram, thanks to the choice of using for concepts,
roles, and attributes the same symbols used in ER. At the
same time, however, we are able here to visually represent
knowledge that cannot be expressed in ER (for example that
hasParent is the inverse of hasChild), but that can be
specified in ontology languages.

Introducing Eddy

Eddy is a novel graphical editor specifically developed to
support the design of GRAPHOL ontologies through ad-hoc
functionalities.3 In the design environment it offers, drawing
features allow designers to comfortably edit ontologies in a
central viewport area, while two lateral docking areas con-
tain specifically-tailored widgets for editing, navigation, and
inspection of the diagram, as shown in Figure 3.

The GRAPHOL palette in the left-hand side docking area
provides all GRAPHOL nodes and edges. Users can select a
node and insert it into the diagram through a point-and-click
mechanism, or choose an edge and anchor it between two
nodes by drag and drop. To improve the layout of the dia-
gram, Eddy allows to bend edges by adding breakpoints, to
resize predicates nodes, and to move the labels of predicate

3Eddy is distributed under the GPL v3 license at http://www.
dis.uniroma1.it/∼graphol/download.html.

nodes from their default central position inside the node.
More advanced drawing functionalities, available through
contextual menu and keyboard shortcuts, provide support
for rapid creation of commonly recurring GRAPHOL expres-
sions, e.g., restrictions on roles or attributes through domain
or range restriction nodes, and for easily specifying proper-
ties on roles, such as symmetry, reflexivity, transitivity.

Our tool is also equipped with refactoring functionalities
for predicate renaming. Indeed, in order to ease the task of
ontology design and reading, we allow to use multiple pred-
icate nodes with the same label, obviously all representing
the same atomic predicate. Eddy thus offers the possibility
of automatically applying the renaming of a predicate to all
the nodes representing such predicate in the ontology.

In Eddy, syntactic validation functionalities do not allow
to build expressions and assertions outside the GRAPHOL
syntax. We envision to extend these features by allowing the
user to restrict the expressiveness of her ontology to a lan-
guage subsumed by OWL 2, for example to one of its pro-
files.4

GRAPHOL ontologies designed in Eddy can be automati-
cally exported into OWL 2 ontologies expressed in the stan-
dard functional-style syntax.

Future Work and Conclusion

GRAPHOL and Eddy have been and are currently being used
in various industrial and academic projects by teams of on-
tology designers for the specification and maintenance of
domain ontologies (see, e.g., (Antonioli et al. 2014)). As al-
ready discussed, these projects have actually been a source
of inspiration for GRAPHOL and have provided useful in-
sights for the development of our tool. At the same time,
they have shown GRAPHOL’s validity as a language for on-
tology design, as it has played a crucial role in their success-
ful accomplishment.

4https://www.w3.org/TR/owl2-profiles/

575

Figure 3: Eddy viewport and docking areas.

We also point out that many of the choices we adopted for
both GRAPHOL and Eddy are based on the feedback deriv-
ing from usability tests conducted on the language and on
various versions of the tool (Console et al. 2014).

Our current work is mainly focused on the tool Eddy, for
which there are various major upgrades in the pipeline.

The first is to equip Eddy with semantic reasoning ca-
pabilities through integration of external OWL 2 reason-
ers. This will allow to validate the ontology, for instance
by checking its consistency, identifying unsatisfiable pred-
icates, and retrieving explanations of such malformations,
possibly in a graphical form. Support to highlight GRAPHOL
axioms that are logically implied by other portions of the on-
tology will be also provided. This is, for instance, useful to
identify redundancies in the specification.

A further issue we intend to face is the import of ontolo-
gies expressed in OWL 2 into Eddy. In this case the problem
is devising effective techniques for the automatic positioning
of the elements of the ontology starting from a representa-
tion composed merely by a collection of formulas without
any information regarding size and placement. Achieving
this result is particularly challenging because the difficulty
is not only in coming up with a placement without overlap-
ping elements, but also with a visualization that reflects the
semantic connections between them.

We also plan to equip the tool with more advanced func-
tions for ontology inspection. In particular, we would like to
have mechanisms that allow the user to access the ontology
at various levels of detail, and to extract and visualize only
partial views of the ontology. These features are particularly
complex to achieve, since they require investigation on both
logical and visualization aspects.

Acknowledgments. This research has been partially sup-
ported by the EU under FP7 project Optique (n. FP7-
318338). We also wish to thank Maurizio Lenzerini and
Giuseppe De Giacomo for many helpful suggestions.

References

Antonioli, N.; Castanò, F.; Coletta, S.; Grossi, S.; Lembo,
D.; Lenzerini, M.; Poggi, A.; Virardi, E.; and Castracane,

P. 2014. Ontology-based data management for the italian
public debt. In Proc. of FOIS, 372–385.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2007. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, 2nd edition.
Berardi, D.; Calvanese, D.; and De Giacomo, G. 2005. Rea-
soning on UML class diagrams. AIJ 168(1–2):70–118.
Brockmans, S.; Volz, R.; Eberhart, A.; and Löffler, P. 2004.
Visual modeling of OWL DL ontologies using UML. In
Proc. of ISWC, volume 3298 of LNCS, 198–213. Springer.
Console, M.; Lembo, D.; Santarelli, V.; and Savo, D. F.
2014. Graphol: Ontology representation through diagrams.
In Proc. of DL, volume 1193 of CEUR, ceur-ws.org, 483–
495.
Djuric, D.; Gasevic, D.; Devedzic, V.; and Damjanovic, V.
2004. A UML profile for OWL ontologies. In Revised Se-
lected Papers of the European Workshop on Model Driven
Architecture, 204–219.
Falco, R.; Gangemi, A.; Peroni, S.; Shotton, D.; and Vitali,
F. 2014. Modelling OWL ontologies with Graffoo. In ESWC
2014 Satellite Events, volume 8798 of LNCS, 320–325.
Fillottrani, P. R.; Franconi, E.; and Tessaris, S. 2012.
The ICOM 3.0 intelligent conceptual modelling tool and
methodology. Semantic Web 3(3):293–306.
Giese, M.; Soylu, A.; Vega-Gorgojo, G.; Waaler, A.; Haase,
P.; Jiménez-Ruiz, E.; Lanti, D.; Rezk, M.; Xiao, G.; Özçep,
Ö. L.; and Rosati, R. 2015. Optique: Zooming in on Big
Data. IEEE Computer 48(3):60–67.
Guarino, N., and Musen, M. A. 2015. Applied Ontology:
The next decade begins. Applied Ontology 10(1):1–4.
Guizzardi, G. 2005. Ontological Foundations for Struc-
tural Conceptual Models. Ph.D. Dissertation, University of
Twente, The Netherlands.
Horrocks, I.; Kutz, O.; and Sattler, U. 2006. The even more
irresistible SROIQ. In Proc. of KR, 57–67.
Krivov, S.; Williams, R.; and Villa, F. 2007. GrOWL: A tool
for visualization and editing of OWL ontologies. J. of Web
Semantics 5(2):54–57.
Liepins, R.; Grasmanis, M.; and Bojars, U. 2014. OWLGrEd
ontology visualizer. In ISWC Developers Workshop 2014,
volume 1268 of CEUR, ceur-ws.org, 37–42.
Savo, D. F.; Lembo, D.; Lenzerini, M.; Poggi, A.;
Rodrı́guez-Muro, M.; Romagnoli, V.; Ruzzi, M.; and Stella,
G. 2010. MASTRO at work: Experiences on ontology-
based data access. In Proc. of DL, volume 573 of CEUR,
ceur-ws.org, 20–31.
Sowa, J. F. 1984. Conceptual Structures: Information Pro-
cessing in Mind and Machine. Addison Wesley Publ. Co.
Stapleton, G.; Howse, J.; Taylor, K.; Delaney, A.; Burton,
J.; and Chapman, P. 2013. Towards diagrammatic ontology
patterns. In Proc. of WOP.

576

