
Controlled Query Evaluation in
Ontology-based Data Access?

Gianluca Cima1[0000−0003−1783−5605], Domenico Lembo1[0000−0002−0628−242X],
Lorenzo Marconi1, Riccardo Rosati1[0000−0002−7697−4958], and

Domenico Fabio Savo2[0000−0002−8391−8049]

1 Sapienza Università di Roma
{cima,lembo,marconi,rosati}@diag.uniroma1.it

2 Università degli Studi di Bergamo
domenicofabio.savo@unibg.it

Abstract. In this paper we study the problem of information disclosure in
ontology-based data access (OBDA). Following previous work on Controlled
Query Evaluation, we introduce the framework of Policy-Protected OBDA
(PPOBDA), which extends OBDA with data protection policies specified over
the ontology and enforced through a censor, i.e., a function that alters answers
to users’ queries to avoid the disclosure of protected data. We consider PPOBDA
systems in which the ontology is expressed in OWL 2 QL and the policies are de-
nial constraints, and show that query answering under censors in such a setting
can be reduced to standard query answering in OBDA (without data protection
policies). The basic idea of our approach is to compile the policies of a PPOBDA
system into the mapping of a standard OBDA system. To this aim, we analyze
some notions of censor proposed in the literature, show that they are not suited
for the above-mentioned compilation, and provide a new definition of censor that
enables the effective realization of our idea. We have implemented our technique
and evaluated it over the NPD benchmark for OBDA. Our results are very promis-
ing and show that controlled query evaluation in OBDA can be realized in the
practice by using off-the-shelf OBDA engines.

Keywords: Ontology-based Data Access · Information Disclosure · Data Pro-
tection · First-Order Rewritability

1 Introduction

Controlled Query Evaluation (CQE) is an approach to privacy-preserving query answer-
ing that recently has gained attention in the context of ontologies [7,13,14,20]. In this
paper, we consider the more general Ontology-based Data Access (OBDA) framework,
where an ontology is coupled to external data sources via a declarative mapping [23,26],

? This work was partly supported by the EU within the H2020 Programme under the grant
agreement 834228 (ERC WhiteMec) and the grant agreement 825333 (MOSAICrOWN), by
Regione Lombardia within the Call Hub Ricerca e Innovazione under the grant agreement
1175328 (WATCHMAN), and by the Italian MUR (Ministero dell’Università e della Ricerca)
through the PRIN project HOPE (prot. 2017MMJJRE).

2 G. Cima et al.

and extend OBDA with CQE features. In this new framework, which we call Policy-
Protected Ontology-based Data Access (PPOBDA), a data protection policy is specified
over the ontology of an OBDA system in terms of logical statements declaring confi-
dential information that must not be revealed to the users. As an example, consider the
following formula:

∀x, y.OilComp(x) ∧ IssuesLic(x, y) ∧ Comp(y)→ ⊥

which says that the existence of an oil company issuing a license to another company
(to operate over its properties) is a private information.

More formally, we define a PPOBDA specification E as a quadruple 〈T ,S,M,P〉,
where T is a Description Logic (DL) TBox [2], formalizing intensional domain knowl-
edge, S is the relational schema at the sources, M is the mapping between the two,
i.e., a set of logical assertions defining the semantic correspondence between T and S,
and P is the data protection policy expressed over T . The components T , S, andM
are exactly as in OBDA specifications, and, as in standard OBDA, a user can only ask
queries over the TBox T . Then, query answering is filtered through a censor, i.e., a
function that alters the answers to queries, in such a way that no data are returned that
may lead a malicious user to infer knowledge declared confidential by the policy, even
in case he/she accumulates the answers he/she gets over time. Among possible censors,
optimal ones are preferred, i.e., those altering query answers in a minimal way.

Within this framework, we initially consider two different notions of censor, called
censor in CQ and censor in GA, previously defined for CQE over DL ontolo-
gies [14,20], and which can be naturally extended to PPOBDA. More precisely, given a
PPOBDA specification E = 〈T ,S,M,P〉, an optimal censor in CQ (resp., GA) for E
is a function that, taken as input a database instance D for the source schema S, returns
a maximal subset C of the set of Boolean conjunctive queries (resp., ground atoms)
inferred by 〈T ,S,M〉 and D, such that C ∪ T does not entail information protected
by the policy. Since in general, for such notions of censor, several of these maximal
sets (incomparable to each other) exist, for both cases we define query answering under
optimal censors in PPOBDA as a form of skeptical reasoning over all such sets, in the
same spirit of [20].

Our basic idea to solve query answering under censors is to transform a PPOBDA
specification E into a classical OBDA specification J (i.e., without policies), in such
a way that, whatever database D instantiates the source schema S, query answering
under censors in E over D is equivalent to standard query answering in J over D.
In this transformation, we require that J has the same TBox of E , so that this reduc-
tion is transparent to the user, who can continue asking to J exactly the same queries
he/she could ask to E . We also impose that J maintains the same source schema as
E , since, as typical in OBDA, the data sources to be accessed are autonomous, and
cannot be modified for OBDA purposes. Moreover, we aim at a transformation that is
independent from the underlying data and from the user queries, so that it can be com-
puted only once, at design-time. This enables us to use off-the-shelf OBDA engines,
like MASTRO3 or Ontop4 to realize CQE in OBDA. The problem we study can be thus

3 http://obdasystems.com/mastro
4 https://ontop-vkg.org/

http://obdasystems.com/mastro
https://ontop-vkg.org/

Controlled Query Evaluation in Ontology-based Data Access 3

summarized as follows: Given a PPOBDA specification E = 〈T ,M,S,P〉, construct
an OBDA specification J = 〈T ,S,M′〉 such that, for any database D for S, conjunc-
tive query answering under censors in E over D is equivalent to standard conjunctive
query answering in J over D.

We investigate the above problem for the relevant case in which the TBox is ex-
pressed in DL-LiteR, the DL underpinning OWL 2 QL [21], the standard profile of
OWL 2 designed for ontology-based data management and prominently used in OBDA,
and the policy is a set of denial assertions, i.e., conjunctive queries for which an empty
answer is imposed due to confidential reasons (as in our initial example). Our contribu-
tions are as follows.

– We show that the above problem has in general no solution when censors in either
CQ or GA are considered. We in fact prove this result for an empty TBox, and
thus it holds for TBoxes in any DL, and not only for OWL 2 QL ones.

– To overcome this issue, we propose a further, semantically well-founded approxi-
mated notion of censor, which we call IGA censor. Intuitively, an IGA censor for
a PPOBDA specification E is a function that, for any database D instantiating the
source schema S of E , returns the intersection of the sets of ground atoms computed
by the optimal censors in GA for E applied to D.

– We provide an algorithm that solves our problem for OWL 2 QL PPOBDA specifi-
cations under IGA censors.

– We provide an experimental evaluation of our approach. We have implemented
our algorithm in Java, and tested it over the OBDA NPD benchmark [18], whose
TBox has been suitably approximated from OWL 2 to OWL 2 QL. We have compared
query answering in the case in which no data protection policy is specified (i.e.,
in standard OBDA) with query answering under IGA censors for an increasing
number of policy assertions. We have used MASTRO as OBDA engine. Our results
show that the cost of the off-line transformation performed by our tool is negligible,
and answering queries in the presence of a data protection policy in our approach
does not cause a significant overhead with respect to the case without policy.

We remark that our main objective was to devise a practical, though theoretically
well-founded, approach to policy-protected query answering in OBDA, allowing for the
exploitation of existing OBDA engines. We believe that the pipeline we have realized
and the experimental results we have obtained show the achievement of our goal.

The rest of the paper is organized as follows. In Section 2 we discuss some related
work. In Section 3 we provide preliminaries. In Section 4 we present our framework for
PPOBDA. In Section 5 we show that query answering under censors in both CQ and
GA cannot be reduced to standard query answering in OBDA. In Section 6 we give
the notion of IGA censor and provide our algorithm for reducing conjunctive query
answering under IGA censors to query answering in OBDA. In Section 7 we describe
our experiments, and in Section 8 we conclude the paper.

2 Related Work

Existing OBDA solutions do not provide any explicit support to the protection of confi-
dential data, and the research has so far produced only initial theoretical contributions in

4 G. Cima et al.

this direction. In [4], the authors study the problem of determining whether information
that is declared confidential at the sources through a protection policy, as in CQE, can
be inferred by a user on the basis of the answers to the queries posed over the OBDA
system, assuming that he/she is knowledgeable about the OBDA specification. Both [4]
and the present paper focus on the role of the mapping in filtering data coming from the
sources with respect to a declarative data protection policy. However, we consider the
policy expressed over the TBox of the OBDA specification and look at the mapping as
a means to enforce data protection, whereas in [4] the policy is declared at the source
level and the mapping is seen as a potential cause for secret disclosure. Possible dis-
closure of confidential source-level information has also been studied in [3,22,9], in the
context of data integration or exchange, possibly in the presence of integrity constraints
at the sources. In these works, the integrated target schema is a flat relational one, thus
not an expressive TBox, as in OBDA, and secrets are specified in terms of queries over
the sources, thus not policies over the target schema, as in our framework. Also, the
focus is on disclosure analysis and not confidentiality enforcement.

Initially, CQE has been studied in the context of propositional theories under closed
world assumption (see, e.g., [24,5]), thus in a framework substantially different from
ours. The more recent works on CQE over DL ontologies are instead closer to our re-
search. In [7], the authors propose a method for computing secure knowledge views
over DL ontologies in the presence of user background knowledge and investigate the
computational complexity of the approach for ontologies and policies specified in var-
ious expressive DLs. In [13], the authors generalize the CQE paradigm for incomplete
databases proposed in [6], and study CQE for OWL 2 RL ontologies and policies repre-
sented by a set of ground atoms. The same authors continued their investigation in [14],
for ontologies and policies specified in Datalog or in one of the OWL 2 profiles [21],
mainly focusing on the problem of the existence of a censor under two incomparable
different notions of censors. In [20], the authors revisited CQE as the problem of com-
puting the answers to a query that are returned by all optimal censors, which is also the
approach we adopt in this paper. However, like all the above mentioned papers on CQE
over ontologies, [20] does not consider OBDA mappings to external data sources.

We finally point out that forms of privacy-preserving query answering over DL on-
tologies have been studied also, e.g., in [12,25], but not according to the CQE approach,
or in an OBDA context.

3 Preliminaries

We use standard notions of function-free first-order (FO) logic and relational databases.
We assume to have the pairwise disjoint countably infinite sets ΣR, ΣT , ΣC , and ΣV

for relational database predicates, ontology predicates, constants (a.k.a. individuals),
and variables, respectively. Given a symbol p ∈ ΣR ∪ ΣT , with p/n we denote that p
has arity n, i.e., n is the number of arguments of r.
Ontologies. With FO we indicate the language of all FO sentences over ΣT , ΣC , and
ΣV . An FO ontology O is a finite set of FO sentences, i.e., O ⊆ FO. With Mod(O)
we denote the set of the models of O, i.e., the FO interpretations I such that φI (i.e.,
the interpretation of φ in I) evaluates to true, for each sentence φ ∈ O. We say that O

Controlled Query Evaluation in Ontology-based Data Access 5

is consistent if Mod(O) 6= ∅, inconsistent otherwise, and thatO entails an FO sentence
φ, denotedO |= φ, if φI is true in every I ∈ Mod(O). The set of logical consequences
of an ontology O in a language L ⊆ FO, denoted clL(O), is the set of sentences in L
entailed by O.

Queries. A query q is a (possibly open) FO formula φ(x), where x are the free variables
of q. The number of variables in x is the arity of q. We consider queries over either
relational databases or ontologies. Given a query q of arity n over a database D, we use
Eval(q,D) to denote the evaluation of q over D, i.e., the set of tuples t ∈ Σn

C such that
D |= φ(t), where φ(t) is the sentence obtained by substituting x with t in q.

A conjunctive query (CQ) q is an FO formula of the form ∃y.α1(x,y) ∧ . . . ∧
αn(x,y), where n ≥ 1, x is the sequence of free variables, y is the sequence of ex-
istential variables, and each αi(x,y) is an atom (possibly containing constants) with
predicate αi and variables in x ∪ y. Each variable in x ∪ y occurs in at least one atom
of q. Boolean CQs (BCQs) are queries whose arity is zero (i.e., BCQs are sentences).
The length of a CQ q is the number of its atoms. The set of certain answers to a CQ q
of arity n over an ontologyO is the set cert(q,O) of tuples c ∈ Σn

C such thatO entails
the sentence ∃y.α1(c,y)∧ . . .∧αn(c,y). As usual [1], when a BCQ q is entailed byO,
i.e.,O |= q, we may also say cert(q,O) = {〈〉}, i.e., the set of certain answers contains
only the empty tuple, cert(q,O) = ∅, otherwise.

For ease of exposition, in our technical development we will focus on the entailment
of BCQs from DL ontologies. However, our results can be straightforwardly extended
to non-Boolean CQs through a standard encoding of open formulas into closed ones.

In the following, we denote by CQ the languages of BCQs, and by GA the lan-
guage of ground atoms, i.e., BCQs with only one atom and no variables, both specified
over ΣT , ΣC , and ΣV .

OWL 2 QL and DL-LiteR. We consider ontologies expressed in DL-LiteR [8], i.e.,
the DL that provides the logical underpinning of OWL 2 QL [21]. DLs are decidable FO
languages using only unary and binary predicates, called concepts and roles, respec-
tively [2]. Concepts denote sets of objects, whereas roles denote binary relationships
between objects. A DL ontology O is a set T ∪ A, where T is the TBox and A is the
ABox, specifying intensional and extensional knowledge, respectively.

A TBox T in DL-LiteR is a finite set of axioms of the form: B1 v B2, B1 v ¬B2,
R1 v R2, and R1 v ¬R2, where each Ri, with i ∈ {1, 2} is an atomic role Q (i.e,
Q/2 ∈ ΣT), or its inverse Q−; each Bi, with i ∈ {1, 2} is an atomic concept A
(i.e., A/1 ∈ ΣT), or a concept of the form ∃Q or ∃Q−, i.e., unqualified existential
restrictions, which denote the set of objects occurring as first or second argument of
Q, respectively. Assertions of the form B1 v B2 and R1 v R2 indicate subsumption
between predicates, those of the form B1 v ¬B2 and R1 v ¬R2 indicate disjointness
between predicates.

An ABoxA is a finite set of ground atoms, i.e., assertions of the formA(a),Q(a, b),
where A/1, Q/2 ∈ ΣT , and a, b ∈ ΣC . The semantics of a DL-LiteR ontology O is
given in terms of FO models over the signature of O in the standard way [8].

OBDA. An OBDA specification is a triple J = 〈T ,S,M〉, where T is a DL TBox
over the alphabet ΣT , S, called source schema, is a relational schema over the alphabet
ΣR, andM is a mapping between S and T .

6 G. Cima et al.

The mappingM is a finite set of mapping assertions from S to T . Each of these
assertions m has the form φ(x) ; ψ(x), where φ(x), called the body of m, and ψ(x),
called the head of m, are queries over (the signature of) S and T , respectively, both
with free variables x. We consider the case in which φ(x) is an FO query, and ψ(x) is
a single-atom query without constants and existential variables (i.e., each m is a GAV
mapping assertion [17]). This is the form of mapping commonly adopted in OBDA, and
a special case of the W3C standard R2RML [15].

In the above definition, for ease of exposition, we have assumed that the source
database directly stores the identifiers (e.g., the URIs) of the instances of the ontology
predicates. However, all our results hold also when such identifiers are constructed in
the mapping using the database values, as usual in OBDA [23] and in R2RML.

The semantics of J is given with respect to a database instance for S, called source
database for J . Given one such database D, the retrieved ABox for J w.r.t. D, denoted
ret(J , D), is the ABox that contains all and only the facts ψ(t) such that ψ(x) occurs
in the head of some mapping assertion m ∈ M, and t is a tuple of constants such that
t ∈ Eval(φ(x), D), where φ(x) is the body of m. Then, a model for J w.r.t. D is a
model of the ontology T ∪ ret(J , D). The set of models of J w.r.t. D is denoted by
Mod(J , D). Also, we call (J , D) an OBDA setting and say that (J , D) is inconsistent
if Mod(J , D) = ∅, and denote by (J , D) |= α the entailment of a sentence α by
(J , D), i.e., the fact that αI is true in every I ∈ Mod(J , D).

4 Framework

We start by introducing the formal notion of policy-protected OBDA specification. Our
framework is a generalization to the OBDA context of the CQE framework for DL
ontologies provided in [10,20].

First thing, we define a denial assertion (or simply a denial) as an FO sentence of
the form ∀x.φ(x)→ ⊥, such that ∃x.φ(x) is a BCQ. Given one such denial δ and a DL
ontologyO, thenO∪{δ} is a consistent FO theory ifO 6|= ∃x.φ(x), and is inconsistent
otherwise. We then give the following definition.

Definition 1 (PPOBDA specification). A policy-protected ontology-based data access
(PPOBDA) specification is a quadruple E = 〈T ,S,M,P〉 such that 〈T ,S,M〉 is an
OBDA specification, and P is a policy, i.e., a set of denial assertions over the signature
of T , such that T ∪ P is a consistent FO theory.

Example 1. Consider the following PPOBDA specification E = 〈T ,S,M,P〉, where

T = { OilComp v Comp, ∃IssuesLic− v Comp,
∃PipeOp v Pipeline, ∃PipeOp− v Comp }

S = { company/2, license/2, operator/2 }
M= {m1: ∃y.company(x, y) ; Comp(x),

m2: company(x,‘oil’) ; OilComp(x),
m3: license(x, y) ; IssuesLic(x, y),
m4: operator(x, y) ; PipeOp(x, y) }

P = { d1: ∀x, y.OilComp(x) ∧ IssuesLic(x, y) ∧ Comp(y)→ ⊥,
d2: ∀x, y.PipeOp(x, y) ∧OilComp(y)→ ⊥}

Controlled Query Evaluation in Ontology-based Data Access 7

In words, the TBox T specifies that oil companies (concept OilComp) are a spe-
cial kind of companies (conceptComp), individuals (e.g., companies) can issue licenses
(role IssuesLic) to companies (over the properties of the issuer), and companies can be
operators (role PipeOp) of pipelines (concept Pipeline). The schema S has three ta-
bles: company, which contains data about companies and their type, license, which con-
tains data about license issuance, and operator, which contains operators of pipelines.
The policy P specifies as confidential the fact that an oil company issues a license to a
company, and the fact that an oil company is the operator of a pipeline. ut

The semantics of a PPOBDA specification E = 〈T ,S,M,P〉 coincides with that of
the OBDA specification 〈T ,S,M〉, and thus we naturally extend to PPOBDA the no-
tion of source database D, retrieved ABox (denoted ret(E , D)), set of models (denoted
Mod(E , D)), and setting (denoted (E , D)).

We now give a notion of censor in PPOBDA that is parametric with respect to the
language L used for enforcing the policy (similarly to [20]). In the following, given a
TBox T , with L(T) we denote the subset of L containing all and only the sentences
specified only over the predicates occurring in T and the constants in ΣC . For instance,
with FO(T) we denote the set of FO sentences having the above mentioned character-
istics. Moreover, given a database D, with LD we denote the formulas in L mentioning
only constants in D.

Definition 2 (censor in L). Given a PPOBDA specification E = 〈T ,S,M,P〉 and a
language L ⊆ FO(T), a censor for E in L is a function cens(·) such that, for each
source database D for E , returns a set cens(D) ⊆ LD such that:

(i) (〈T ,S,M〉, D) |= φ, for each φ ∈ cens(D), and
(ii) T ∪ P ∪ cens(D) is a consistent FO theory.
We call L the censor language.

Given two censors cens(·) and cens′(·) for E in L, we say that cens′(·) is more
informative than cens(·) if:
(i) for every database instance D for E , cens(D) ⊆ cens′(D), and
(ii) there exists a database instance D′ for E such that cens(D′) ⊂ cens′(D′).
Then, a censor cens(·) for E in L is optimal if there does not exist a censor cens′(·) for
E in L such that cens′(·) is more informative than cens(·). The set of all optimal censors
in L for a PPOBDA specification E is denoted by L-OptCensE .

In this paper we consider censors in the languages CQ(T) and GA(T), i.e., we
instantiate L in Definition 2 to either the language of Boolean conjunctive queries or the
language of ground atoms, respectively, both over the predicates occurring in T . These
are the censor languages studied in [20] over DL ontologies. In the following, when T
is clear from the context, we simply denote them as CQ and GA, respectively.

Example 2. Consider the PPOBDA specification E of Example 1, and let cens1 be the
function such that, given a source databaseD for E , cens1(D) is the set of ground atoms
clGA(T ∪A1), whereA1 is the ABox obtained from ret(E , D) by adding the assertion
Comp(c) and removing the assertion OilComp(c), for each individual c such that T ∪
ret(E , D) |= (OilComp(c)∧∃x.IssuesLic(c, x)∧Comp(x))∨ (∃x.PipeOp(x, c)∧

8 G. Cima et al.

OilComp(c)). It is easy to verify that cens1 is an optimal censor for E in GA, i.e.
cens1 ∈ GA-OptCensE . ut

In answering users’ queries, one might choose to select a single optimal censor.
However, as already pointed out in [10,20], in the lack of further meta-information
about the application domain, picking up just one optimal censor may end up in arbi-
trary behaviour. Thus, following the approach studied in [10,20], we prefer to reason
about all the optimal censors. In particular, for the censor languages CQ and GA, we
define the following entailment problems.

Definition 3. Given a PPOBDA specification E = 〈T ,S,M,P〉, a database instance
D for S, and a BCQ q, we consider the following decision problems:

(CQ-Cens-Entailment): decide whether T ∪ cens(D) |= q for every cens ∈ CQ-
OptCensE . If this is the case, we write (E , D) |=cqe

CQ q.
(GA-Cens-Entailment): decide whether T ∪ cens(D) |= q for every cens ∈ GA-
OptCensE . If this is the case, we write (E , D) |=cqe

GA q.

Our ultimate goal is to solve the above problems by reducing them to classical
entailment of BCQs in OBDA. To this aim, we define below the notion of query equiv-
alence under censor between PPOBDA and OBDA specifications.

Definition 4 (query equivalence). Given a PPOBDA specification E = 〈T ,S,M,P〉
and an OBDA specification J = 〈T ,S,M′〉, we say that E and J are query-equivalent
under censors in CQ (resp. GA) if for every database instanceD for S and every BCQ
q, (E , D) |=cqe

CQ q (resp. (E , D) |=cqe
GA q) iff (J , D) |= q.

Based on the above definition, we can decide CQ-cens-entailment of a BCQ q from
a PPOBDA E coupled with a source database D for S by constructing an OBDA spec-
ification J such that E and J are query-equivalent under censors in CQ and checking
whether (J , D) |= q (analogously for GA-cens-entailment). We remark that, besides
the policy, the mapping is the only component in which E and J differ (see also Sec-
tion 1). Intuitively,M′ in J implements a censor (in either CQ or GA) for E .

5 Inexpressibility results

In this section, we start investigating how to reduce query entailment in PPOBDA to
query entailment in OBDA, based on the query equivalence definition given in the pre-
vious section.

Before proceeding further, we notice that, given a PPOBDA specification E =
〈T ,S,M,P〉, a natural question is whether the OBDA specification J = 〈T ,S,M〉,
i.e., obtained by simply eliminating the policy P from E , is query-equivalent to E under
censors in either CQ or GA. In other terms, one might wonder whether the mapping
M is already realizing a filter on the data such that denials inP are never violated by the
underlying data retrieved throughM, whatever source database for J is considered5. If

5 Note that this is not the problem studied in [4] (see also the discussion in Section 2).

Controlled Query Evaluation in Ontology-based Data Access 9

this would be the case, the entailment problems we are studying would become trivial.
However, since the bodies of mapping assertions are FO queries, to answer the above
question we should decide entailment in FO, which is an undecidable problem.

The following result says that, under censors in CQ, constructing an OBDA spec-
ification query-equivalent to E is in general not possible, already for the case of an
empty TBox, i.e., a TBox that does not contain axioms. As a consequence, entailment
of BCQs under censors in CQ cannot be solved through transformation in a query-
equivalent OBDA specification, whatever logic is used for the TBox.

Theorem 1. There exists a PPOBDA specification E = 〈T ,S,M,P〉 with T = ∅ for
which there does not exist an OBDA specification J such that E and J are query-
equivalent under censors in CQ.

Proof. Consider the PPOBDA specification E = 〈T ,S,M,P〉 such that T = ∅, S
contains the relation T/2, where T ∈ ΣR,M = {T (x, y) ; Q(x, y)}, where Q/2 ∈
ΣT , and P is as follows:

P = {∀x .Q(a, x)→ ⊥, ∀x .Q(x, a)→ ⊥},
where a belongs toΣC . Assume that J is an OBDA specification such that E and J are
query-equivalent under censors in CQ, and letM′ be the mapping of J . Consider now
the case when the source database D consists of the fact T (a, a). First, it is immediate
to see that, given the policy P , no BCQ mentioning the individual a can belong to any
censor cens(·) in CQ-OptCensE . Then, since a is the only individual appearing in D,
it follows that no BCQ mentioning any individual can belong to any censor cens(·) in
CQ-OptCensE . This implies that the mapping M′ of J cannot retrieve any instance
from D, i.e., ret(J , D) is empty, and therefore no BCQ is entailed by (J , D). On
the other hand, the OBDA setting (〈T ,S,M〉, D) infers purely existential BCQs. For
instance, all the BCQs expressing existential cycles of any length over the role Q, that
is all the queries of the form

∃x0, . . . , xn .Q(x0, x1) ∧Q(x1, x2) ∧ . . . ∧Q(xn, x0)

where n ∈ N. All such queries can be positively answered by the PPOBDA setting
(E , D) without revealing a secret: so, all such queries belong to every censor cens(·) in
CQ-OptCensE . Since they are not entailed by (J , D), this contradicts the hypothesis
that E and J are query-equivalent under censors in CQ, thus proving the theorem. ut

Hereinafter, we focus on DL-LiteR PPOBDA specifications, i.e., whose TBox is
expressed in the logic DL-LiteR. The following theorem states that the same issue of
Theorem 1 arises also under censors in GA.

Theorem 2. There exists a DL-LiteR PPOBDA specification E for which there does not
exist an OBDA specification J such that E and J are query-equivalent under censors
in GA.

Proof. From Theorem 6 in [20], it follows that, for DL-LiteR PPOBDA specifications,
GA-Cens-Entailment is coNP-hard in data complexity. Instead, standard conjunctive
query entailment for OBDA specifications with a DL-LiteR TBox is in AC0 in data
complexity [23]. This clearly shows the thesis. ut

10 G. Cima et al.

6 Embedding a policy into the mapping

Towards the identification of a notion of censor that allows us to always transform a
PPOBDA specification E into a query-equivalent OBDA one, we define below a new
notion of censor that suitably approximates censors for E in GA.

Definition 5 (Intersection GA censor). Given a PPOBDA specification E =
〈T ,S,M,P〉, the intersection GA (IGA) censor for E is the function censIGA(·) such
that, for every database instance D for S, censIGA(D) =

⋂
cens∈GA-OptCensE

cens(D).

Example 3. Let E be the PPOBDA specification of Example 1, and let
D = {company(c1, ‘oil’), company(c2, ‘oil’), company(c3, ‘oil’), license(c1, c4),
operator(p1, c2)} be a source database for E . One can verify that censIGA(D) =
{Comp(c1), Comp(c2), Comp(c3), OilComp(c3), Comp(c4), P ipeline(p1)}. ut

Notice that, differently from the previous notions of censors, the IGA censor is
unique. Then, given a source database instance D for E and a BCQ q, IGA-Cens-
Entailment is the problem of deciding whether T ∪ censIGA(D) |= q. If this is the
case, we write (E , D) |=cqe

IGA q.
The following proposition, whose proof is straightforward, says that IGA-Cens-

Entailment is a sound approximation of GA-Cens-Entailment.

Proposition 1. Given a PPOBDA specification E , a source database D for E and a
BCQ q, if (E , D) |=cqe

IGA q then (E , D) |=cqe
GA q.

We now naturally extend Definition 4 to IGA censors. Given a PPOBDA specifica-
tion E = 〈T ,S,M,P〉 and an OBDA specification J = 〈T ,M′,S〉, we say that E
and J are query-equivalent under IGA censor if for every source database D for E and
every BCQ q, (E , D) |=cqe

IGA q iff (J , D) |= q.
We point out that we could in principle consider a counterpart of Definition 5 also

for censors in CQ. However, BCQ entailment under a censor that for every source
database D returns the intersection of all the sets of BCQs returned by censors in
CQ applied to D coincides with CQ-Cens-Entailment, and thus Theorem 1 says that a
query-equivalent PPOBDA to OBDA transformation is not possible in this case.

In the rest of this section, we prove that every DL-LiteR PPOBDA specification
E admits an OBDA specification J that is query-equivalent under IGA censor to E ,
and provide an algorithm to build J . The intuition behind our algorithm is as follows.
For any source database D, we want that ret(J , D) does not contain all those facts of
ret(E , D) that together with the TBox T lead to the violation of the policy P . At the
same time, we want this elimination of facts to be done in a minimal way, according
to our definition of IGA censor. Thus only “really dangerous” facts have to be dropped
from ret(E , D). These facts actually belong to at least one minimal (w.r.t. set contain-
ment) ABoxA such that T ∪A∪P is inconsistent. Note that in this case, for each fact
α ∈ A there is at least a censor cens(·) ∈ GA-OptCensE such that cens(D) does not
contain α. Therefore α does not belong to the set censIGA(D), where censIGA(·) is the
IGA censor for E .

Identifying such facts is easier if we can reason on each denial in isolation. For this
to be possible, the policy P must enjoy the following property: for every denial δ ∈ P ,

Controlled Query Evaluation in Ontology-based Data Access 11

every minimal (w.r.t. set containment) ABoxA such that {δ}∪T ∪A is inconsistent is
also a minimal ABox such that P ∪ T ∪A is inconsistent. This is, however, not always
the case. Consider, e.g., the policy P = {∀x.A(x) ∧ B(x) → ⊥;∀x.A(x) → ⊥}. The
ABox {A(d), B(d)} is a minimal ABox violating the first denial, but is not a minimal
ABox violating P , since {A(d)} violates the second denial (in this example T = ∅).
We thus first transform P into a policy P ′ enjoying the above property.

To this aim we introduce the notion of extended denial assertion (or simply extended
denial), which is a formula of the form ∀x.φ(x) ∧ ¬π(x) → ⊥ such that ∃x.φ(x) is
a BCQ and π(x) is a (possibly empty) disjunction of conjunctions of equality atoms
of the form t1 = t2, where t1 and t2 are either variables in x or constants in ΣC . An
extended policy is a finite set of extended denials.

Definition 6. Given a policy P and an extended policy P ′. We say that P ′ is a non-
redundant representation of P if the following conditions hold: (i) for every ABox A,
P∪A is inconsistent iffP ′∪A is inconsistent; (ii) for every extended denial δ′ occurring
in P ′, every minimal ABoxA such that {δ′}∪A is inconsistent is also a minimal ABox
such that P ∪ A is inconsistent.

One might think that computing a non-redundant representation of P means simply
eliminating from P each denial δ such that P \ {δ} ∪ T |= δ. In fact, only eliminating
denials that are (fully) logically inferred by other denials (and the TBox) is not suffi-
cient, since some redundancies can occur for specific instantiations of the denials. For
example, δ1 = ∀x, y.Q(x, y) ∧ C(y) → ⊥ is not inferred by δ2 = ∀x.Q(x, x) → ⊥,
but it becomes inferred when x = y. This implies that a minimal violation of δ1 where
the two arguments of Q are the same (e.g., {Q(a, a), C(a)}) is not a minimal violation
of {δ1, δ2} (sinceQ(a, a) alone is already a violation of δ2). A non-redundant represen-
tation of this policy would be {δ′1, δ2}, where δ′1 = ∀x, y.Q(x, y)∧C(y)∧¬(x = y)→
⊥. Our algorithm to compute a non-redundant policy P ′, called policyRefine, takes into
account also this situation, applying a variant of the saturate method used in [19] to
solve a similar problem in the context of consistent query answering over ontologies.

Hereinafter, we assume that P has been expanded w.r.t. T , that is, P contains every
denial δ such thatP∪T |= δ. In this way, to establish non-redundancy we can look only
at P , getting rid of T . To expand the policy, we use the rewriting algorithm perfectRef
of [8] to reformulate (the premise of) denials in P with respect to the assertions in T .

Example 4. Consider the same PPOBDA specification E of Example 1. By rewriting
each denial in P w.r.t. T through perfectRef6, we obtain the following set of denials.

d1: ∀x, y.OilComp(x) ∧ IssuesLic(x, y) ∧ Comp(y)→ ⊥
d2: ∀x, y.PipeOp(x, y) ∧OilComp(y)→ ⊥
d3: ∀x, y.OilComp(x) ∧ IssuesLic(x, y) ∧OilComp(y)→ ⊥
d4: ∀x, y.OilComp(x) ∧ IssuesLic(x, y)→ ⊥
d5: ∀x, y, z.OilComp(x) ∧ IssuesLic(x, y) ∧ PipeOp(z, y)→ ⊥

Intuitively, perfectRef adds to the original denials d1 and d2 the new denials d3,
d4 and d5, obtained by rewriting the atom Comp(y) in d1 according to the inclusions
OilComp v Comp, ∃IssuesLic− v Comp, and ∃PipeOp− v Comp, respectively

6 For details on perfectRef, we refer the reader to [8].

12 G. Cima et al.

Algorithm 1: PolicyEmbed

input: a DL-LiteR TBox T , a mappingM, a policy P;
output: a mappingM′;
1) let P̂ be the expansion of the policy P w.r.t T ;
2) P ′ → policyRefine(P̂);
3) M′ ← ∅;
4) for each atomic concept C do
5) ψ ← addPolicyConditions(C(x),P ′);
6) φp ← expand(C(x), T);
7) φn ← expand(ψ, T);
8) M′ ←M′ ∪ {unfold(φp ∧ ¬φn,M) ; C(x)}
9) for each atomic role Q do
10) ψ ← addPolicyConditions(Q(x, y),P ′);
11) φp ← expand(Q(x, y), T);
12) φn ← expand(ψ, T);
13) M′ ←M′ ∪ {unfold(φp ∧ ¬φn,M)) ; Q(x, y)}
14) returnM′;

(for d4, perfectRef also unifies two atoms having IssuesLic as predicate). It is easy
then to verify that d1, d3 and d5 are implied by d4, and thus must be discarded. So the
non-redundant policy P ′ in this case contains only d2 and d4. ut

We recall that the only means we have to avoid retrieving the “dangerous facts” is
to embed suitable conditions in the mapping assertions ofM′. Algorithm 1 shows our
overall procedure, called PolicyEmbed.

Step 1 expands the input policy P into the policy P̂ by using perfectRef(P, T).
Step 2 produces the non-redundant policy P ′ by means of policyRefine(P̂). Then, the
algorithm constructs one mapping assertion for each ontology predicate. We discuss
steps 4-8 for concepts (steps 9-13 for roles are analogous).

The algorithm addPolicyConditions(C(x),P ′) constructs an FO query ψ express-
ing the disjunction of all CQs corresponding to the premise of a denial δ ∈ P ′ such that
C(x) unifies with an atom of δ. For instance, if P ′ contains ∀x.C(x) ∧ D(x) → ⊥
and ∀x, y.C(x) ∧ Q(x, y) ∧ E(y) → ⊥, addPolicyConditions(C(x),P ′) returns
((C(x) ∧ D(x)) ∨ (∃y.C(x) ∧ Q(x, y) ∧ E(y))). This is actually the union of all the
conditions that lead to the generation of dangerous facts for C.

Then, the algorithm expand(ϕ, T) rewrites every positive atom α occurring in the
formula ϕ according to the TBox T . More precisely, the expansion expand(C(x), T)
of a positive concept atom is the disjunction of the atoms of the form A(x) (resp.
∃y.Q(x, y), ∃y.Q(y, x)), where A is an atomic concept (resp. Q is an atomic role),
such that T |= A v C (resp. T |= ∃Q v C, T |= ∃Q− v C). For example, if T infers
A v C and ∃Q v C, then expand(C(x), T) returns C(x) ∨ A(x) ∨ ∃y.Q(x, y). The
expansion expand(Q(x, y), T) of a role atom is defined analogously. Finally, the expan-
sion expand(ϕ, T) of an arbitrary formula ϕ is obtained by replacing each occurrence
of a positive atom α in ϕ with the formula expand(α, T).

Controlled Query Evaluation in Ontology-based Data Access 13

At step 8, the mapping is incremented with the mapping assertion for C. The func-
tion unfold realizes a typical unfolding for GAV mapping [26], i.e., it substitutes each
atom awith the union of the body of all mapping assertions having a in their heads. The
presence of (the expansion of) the subformula ψ in ¬φn guarantees that no fact causing
a violation of a denial involving C is retrieved.

Example 5. In our ongoing example, PolicyEmbed(T ,M,P) returns

M′ = { m′1: ∃y.company(x, y) ∨ company(x,‘oil’) ∨ ∃y.license(y, x) ∨
∃y.operator(y, x) ; Comp(x),

m′2: company(x,‘oil’) ∧ ¬((∃y.company(x,‘oil’) ∧ license(x, y))∨
(∃z.operator(z, x) ∧ company(x,‘oil’))) ; OilComp(x),

m′3: license(x, y) ∧ ¬(license(x, y) ∧ company(x,‘oil’)) ; IssuesLic(x, y)
m′4: operator(x, y) ∧ ¬(operator(x, y) ∧ company(x,‘oil’)) ; PipeOp(x, y)
m′5: ∃y.operator(x, y) ; Pipeline(x) }

For the database instance D for S provided in Example 3, one can verify that
censIGA(D) = ret(〈T ,S,M′〉, D). ut

PolicyEmbed can be used to realize a PPOBDA-OBDA transformation, as stated below.

Theorem 3. Let E = 〈T ,S,M,P〉 be a DL-LiteR PPOBDA specification, and let
J be the OBDA specification 〈T ,S,M′〉, where M′ is the mapping returned by
PolicyEmbed(T ,M,P). Then, J is query-equivalent to E under IGA censor.

Proof. Let D be a source database for S. We prove the theorem by showing that
ret(J , D) is equal to censIGA(D), where censIGA(·) is the IGA censor for E .

We start by showing a lemma that is crucial for this proof. From now on, we denote
by A the ABox ret(〈T ,S,M〉, D), i.e., the ABox retrieved from D through the initial
mappingM. Moreover, we denote by A′′ the ABox ret(〈T ,S,M′′〉, D), whereM′′
is the mapping obtained from the algorithm by discarding the formulas φn, i.e., when
unfold(φp∧¬φn,M) is replaced with unfold(φp,M) in steps 8 and 13 of the algorithm.

The next lemma follows immediately from the definition of the algorithm expand:

Lemma 1. A′′ = clGA(T ∪ A).

Informally, the lemma states that the “positive” part of the mapping computed by
the algorithm retrieves from D exactly the set of ground atoms derivable by the TBox
T from the ABox A retrieved from D through the initial mappingM.

In the following, we prove that every concept assertion C(a) belongs to ret(J , D)
iff C(a) belongs to censIGA(D) (the proof for role assertions is analogous). From now
on, let φp be the formula computed for C(x) at step 6 of the algorithm, and let φn be
the formula computed for C(x) at step 7 of the algorithm.

First, assume that the concept assertion C(a) belongs to ret(J , D) but does not
belong to censIGA(D). Then, there exists a censor cens′(·) in GA for E such that
C(a) 6∈ cens′(D). Now, there are two possible cases:

(i) C(a) 6∈ clGA(T ∪ A). In this case, by Lemma 1 it follows that C(a) 6∈ A′′, hence
unfold(φp,M) (that is, the positive part of the mapping for the concept C inM′)
is false in D for x = a, and therefore C(a) does not belong to ret(J , D);

14 G. Cima et al.

(ii) C(a) belongs to a minimal violation of P in clGA(T ∪ A): then, from Definition
6 it follows that there exists a denial δ in P ′ such that C(a) belongs to a minimal
violation of δ in clGA(T ∪A). Consequently, from the definition of the algorithms
addPolicyConditions and expand it follows that unfold(φn,M) (that is, the neg-
ative part of the mapping for the concept C in M′) is true in D for x = a, and
therefore C(a) does not belong to ret(J , D).

Conversely, assume that the concept assertion C(a) belongs to censIGA(D) but
does not belong to ret(J , D). Then, the mapping for the concept C inM′ is false for
x = a. Now, there are two possible cases:

(i) unfold(φp,M) is false in D for x = a. This immediately implies by Lemma 1 that
C(a) 6∈ clGA(T ∪A): hence, in every censor cens′ in GA for E ,C(a) 6∈ cens′(D),
and therefore C(a) 6∈ censIGA(D);

(ii) unfold(φn,M) is true in D for x = a. From the definition of the algorithms
addPolicyConditions and expand, this immediately implies that there exists δ ∈ P ′
such thatC(a) belongs to a minimal violation of δ in clGA(T ∪A): then, from Def-
inition 6 it follows that C(a) belongs to a minimal violation of P in clGA(T ∪A).
Consequently, there exists a censor cens′ in GA for E such that C(a) 6∈ cens′(D),
and therefore C(a) 6∈ censIGA(D). ut

7 Experiments

In this section, we report the results of the experimentation we carried out using the
NPD benchmark for OBDA [18]. The benchmark is based on real data coming from
the oil industry: the Norwegian Petroleum Directorate (NPD) FactPages. It provides
an OWL 2 ontology, the NPD database, the mapping between the ontology and the
database, an RDF file specifying the instances of the ontology predicates, i.e., the re-
trieved ABox of the OBDA setting, and a set of 31 SPARQL queries. We remark that
we tested non-Boolean CQs adapted from this set (details later on).

For our experimentation, we produced an approximation [11] in OWL 2 QL of the
OWL 2 benchmark ontology. Moreover, we made use of the benchmark RDF file con-
taining the retrieved ABox to populate a relational database constituted by unary and
binary tables (a unary table for each concept of the ontology and a binary table for each
role and each attribute). Finally, we specified a mapping between the ontology and this
database. In this case, the mapping in simply a set of one-to-one mapping assertions,
i.e., every ontology predicate is mapped to the database table containing its instances.
This kind of OBDA specification, with the simplest possible form of mapping asser-
tions, allowed us to verify the feasibility of our technique for data protection, leaving
aside the impact of more complex queries in the mapping.

In the resulting OBDA setting, the TBox comprises 1377 axioms over 321 atomic
concepts, 135 roles, and 233 attributes. There are in total 2 millions of instances circa,
which are stored in a MySQL database of 689 tables.

For the experiments, we specified a policy P constituted by the following denials:

d1: ∀d, l.DevelopmentWellbore(d) ∧ developmentWellboreForLicence(d, l)∧

Controlled Query Evaluation in Ontology-based Data Access 15

ProductionLicence(l)→ ⊥
d2: ∀d, t, w, b, q, f.Discovery(d) ∧ dateIncludedInField(d, t) ∧ containsWellbore(b, w)∧

wellboreForDiscovery(w, d) ∧ ExplorationWellbore(w) ∧ quadrantLocation(b, q)∧
explorationWellboreForField(w, f)→ ⊥

d3: ∀c, w.WellboreCore(c) ∧ coreForWellbore(c, w) ∧DevelopmentWellbore(w)→ ⊥
d4: ∀c, f, d.Company(c) ∧ currentFieldOperator(f, c) ∧ Field(f)∧

includedInField(d, f) ∧Discovery(d)→ ⊥
d5: ∀w, e, f, l.belongsToWell(w, e) ∧ wellboreAgeHc(w, l) ∧ drillingFacility(w, f)∧

ExplorationWellbore(w)→ ⊥
d6: ∀f, p, l.Field(f) ∧ currentFieldOwner(f, p) ∧ ProductionLicence(p)
∧licenseeForLicence(l, p)→ ⊥.

As queries, we considered nine (non-Boolean) CQs from the ones provided with
the NPD benchmark. Strictly speaking, some of these queries in the benchmark are
not CQs, since they use aggregation operators, but we have extracted from them their
conjunctive subqueries. The resulting queries are reported below.

q3 : ∃li.ProductionLicence(li) ∧ name(li, ln) ∧ dateLicenceGranted(li, d)∧
isActive(li, a) ∧ licensingActivityName(li, an)

q4 : ∃li, w.ProductionLicence(li) ∧ name(li, n)explorationWellboreForLicence(w, li)∧
dateWellboreEntry(w, e)

q5 : ∃le, li, c.licenseeForLicence(le, li) ∧ ProductionLicence(li) ∧ name(li, ln)∧
licenceLicensee(le, c) ∧ name(c, n) ∧ dateLicenseeValidFrom(le, d)

q9 : ∃li, w.ProductionLicence(li) ∧ name(li, n) ∧ belongsToWell(w,we)∧
explorationWellboreForLicence(w, li) ∧ name(we,wn)

q12 : ∃w, lu, c.wellboreStratumTopDepth(w, st) ∧ wellboreStratumBottomDepth(w, sb)∧
stratumForWellbore(w, u) ∧ name(u, n) ∧ inLithostratigraphicUnit(w, lu)∧
name(lu, un) ∧WellboreCore(c) ∧ coreForWellbore(c, u) ∧ coreIntervalTop(c, ct)∧
coreIntervalBottom(c, cb)

q13 : ∃wc,we, c.WellboreCore(wc) ∧ coreForWellbore(wc,we) ∧ name(we,wn)∧
Wellbore(we) ∧ wellboreCompletionYear(we, y) ∧ drillingOperatorCompany(we, c)∧
name(c, cn)

q14 : ∃we, c.Wellbore(we) ∧ name(we, n) ∧ wellboreCompletionYear(we, y)∧
drillingOperatorCompany(we, c) ∧ name(c, cn)

q18 : ∃p,m, f, op.productionYear(p, ‘2010’) ∧ productionMonth(p,m)∧
producedGas(p, g) ∧ producedOil(p, o) ∧ productionForField(p, f) ∧ name(f, fn)∧
currentFieldOperator(f, op) ∧ Field(f) ∧ shortName(op, ‘statoil petroleum as’)

q44 : ∃y, f, c.wellboreAgeTD(w, a) ∧ explorationWellboreForField(w, f)∧
wellboreEntryYear(w, y) ∧ Field(f) ∧ name(f, fn) ∧ coreForWellbore(c, w)

We executed each query in seven different settings, in each of which we consid-
ered an incremental number of denials in the policy among those given above. For each
setting, we computed a new mapping through a Java implementation of the algorithm
illustrated in Section 6. So, in the first setting, we used the mapping computed by con-
sidering the empty policyP∅; in the second one, we considered the policyP1 containing
only the denial d1; in the third one, we considered the policy P2 containing the denials
d1 and d2; and so on. For each query, we report in Table 1 the size of the result and the
query evaluation time, columns “res” and columns ”time” in the table, respectively. The
number in square brackets near each query name indicates the length of the query.

16 G. Cima et al.

q3 [5] q4 [4] q5 [6] q9 [5] q12 [10] q13 [7] q14 [5] q18 [9] q44 [6]
Policy res time res time res time res time res time res time res time res time res time
P∅ 910 4789 1558 4625 17254 4545 1566 4648 96671 7368 22541 6410 141439 20150 339 6933 5078 4179
P1 910 3871 1558 4111 17254 4782 1566 4401 96671 7133 22541 6886 130341 15544 339 6128 5078 4078
P2 910 4154 880 4078 17254 4628 888 4204 96671 6852 22541 5007 126679 16566 339 5887 12 4413
P3 910 4080 880 4189 17254 4902 888 3953 96641 7746 15340 5623 124248 16807 339 5873 12 4653
P4 910 4419 880 4089 17254 5015 888 4487 96641 7836 15340 6011 124248 17393 339 6893 12 4318
P5 910 5548 880 4373 17254 6224 888 4422 96641 8683 15340 6499 123816 20116 339 7201 12 4491
P6 910 4309 880 4029 14797 5189 888 4785 96641 8297 15340 6796 123816 17513 339 6176 12 4475

Table 1: CQE test results. The “res” columns contain the size of the results while the “time”
columns contain the query evaluation times in milliseconds.

For our experiments, we used the OBDA MASTRO system [16], and a standard
laptop with Intel i5 @1.6Ghz processor and 8Gb of RAM.

Values in Table 1 show the effect of the policy on the size of the result of the queries.
Specifically, we have that the queries q0, q3, and q18 are not censored in any of the con-
sidered settings. The answers to the queries q4, q9, and q44 are affected by the introduc-
tion of the denial d2 in the policy, while the denial d3 alters the answers of the queries
q12 and q13. Some answers to the query q5 are cut away by the introduction of the denial
d6 in the policy. Moreover, the query q14 is affected by the denials d1, d2, d3, and d5.
Finally, the denial d4 alters no queries. Notably, although the policy alters the query
results, one can see that the execution time is only slightly affected. This suggests that
our proposed technique can be effectively used for protecting data in OBDA setting.

8 Conclusions

Our current research is mainly focused on modifying the user model formalized in our
framework in order to capture richer data protection scenarios. In particular, the user
model we adopted (which we inherited from previous works on CQE over ontologies)
assumes that an attacker has only the ability of making standard inference reasoning on
the ontology and the query answers. Under these assumptions, data declared as confi-
dential are certainly protected in our framework.

We are also investigating more expressive forms of policy to improve the abilities
of our framework in the enforcement of confidentiality. Finally, while our experimen-
tal evaluation clearly shows the practical feasibility of our approach, we still have to
consider the issue of optimization of our algorithms and implementation.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley Publ. Co.,
1995.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2nd edition, 2007.

3. M. Benedikt, P. Bourhis, L. Jachiet, and M. Thomazo. Reasoning about disclosure in data
integration in the presence of source constraints. In Proc. of IJCAI, pages 1551–1557, 2019.

Controlled Query Evaluation in Ontology-based Data Access 17

4. M. Benedikt, B. Cuenca Grau, and E. V. Kostylev. Logical foundations of information dis-
closure in ontology-based data integration. AIJ, 262:52–95, 2018.

5. J. Biskup and P. A. Bonatti. Controlled query evaluation for known policies by combining
lying and refusal. AMAI, 40(1-2):37–62, 2004.

6. J. Biskup and T. Weibert. Keeping secrets in incomplete databases. Int. J. of Information
Security, 7(3):199–217, 2008.

7. P. A. Bonatti and L. Sauro. A confidentiality model for ontologies. In Proc. of ISWC, volume
8218 of LNCS, pages 17–32, 2013.

8. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

9. R. Chirkova and T. Yu. Exact detection of information leakage: Decidability and complexity.
Trans. Large Scale Data Knowl. Centered Syst., 32:1–23, 2017.

10. G. Cima, D. Lembo, R. Rosati, and D. F. Savo. Controlled query evaluation in description
logics through instance indistinguishability. In Proc. of IJCAI, pages 1791–1797, 2020.

11. M. Console, J. Mora, R. Rosati, V. Santarelli, and D. F. Savo. Effective computation of
maximal sound approximations of description logic ontologies. In Proc. of ISWC, pages
164–179, 2014.

12. B. Cuenca Grau and I. Horrocks. Privacy-preserving query answering in logic-based infor-
mation systems. In Proc. of ECAI, pages 40–44, 2008.

13. B. Cuenca Grau, E. Kharlamov, E. V. Kostylev, and D. Zheleznyakov. Controlled query
evaluation over OWL 2 RL ontologies. In Proc. of ISWC, pages 49–65, 2013.

14. B. Cuenca Grau, E. Kharlamov, E. V. Kostylev, and D. Zheleznyakov. Controlled query
evaluation for datalog and OWL 2 profile ontologies. In Proc. of IJCAI, pages 2883–2889,
2015.

15. S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF mapping language. W3C
Recommendation, W3C, Sept. 2012. Available at http://www.w3.org/TR/r2rml/.

16. G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, M. Ruzzi, and D. F. Savo.
MASTRO: A reasoner for effective Ontology-Based Data Access. In Proc. of ORE, 2012.

17. A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann,
2012.

18. D. Lanti, M. Rezk, G. Xiao, and D. Calvanese. The NPD benchmark: Reality check for
OBDA systems. In Proc. of EDBT, pages 617–628, 2015.

19. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-tolerant query
answering in ontology-based data access. J. of Web Semantics, 33:3–29, 2015.

20. D. Lembo, R. Rosati, and D. F. Savo. Revisiting controlled query evaluation in description
logics. In Proc. of IJCAI, pages 1786–1792, 2019.

21. B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web
Ontology Language profiles (second edition). W3C Recommendation, W3C, Dec. 2012.
Available at http://www.w3.org/TR/owl2-profiles/.

22. A. Nash and A. Deutsch. Privacy in GLAV information integration. In Proc. of ICDT, pages
89–103, 2007.

23. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

24. G. L. Sicherman, W. de Jonge, and R. P. van de Riet. Answering queries without revealing
secrets. ACM Trans. Database Syst., 8(1):41–59, 1983.

25. P. Stouppa and T. Studer. Data privacy for ALC knowledge bases. In Proc. of LFCS, pages
409–421, 2009.

26. G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and M. Za-
kharyaschev. Ontology-based data access: A survey. In Proc. of IJCAI, pages 5511–5519,
2018.

http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/owl2-profiles/

	Controlled Query Evaluation in Ontology-based Data Access

