
Updating DL-Lite Ontologies through
First-Order Queries

Giuseppe De Giacomo1, Xavier Oriol2,
Riccardo Rosati1, Domenico Fabio Savo1

1 Sapienza Università di Roma, Rome, Italy
lastname @dis.uniroma1.it

2 Universitat Politècnica de Catalunya, Barcelona, Spain
xoriol@essi.upc.edu

Abstract. In this paper we study instance-level update in DL-LiteA,
the description logic underlying the owl 2 ql standard. In particular
we focus on formula-based approaches to ABox insertion and deletion.
We show that DL-LiteA, which is well-known for enjoying first-order
rewritability of query answering, enjoys a first-order rewritability prop-
erty also for updates. That is, every update can be reformulated into
a set of insertion and deletion instructions computable through a non-
recursive datalog program. Such a program is readily translatable into
a first-order query over the ABox considered as a database, and hence
into sql. By exploiting this result, we implement an update component
for DL-LiteA-based systems and perform some experiments showing that
the approach works in practice.

1 Introduction

In this paper we study effective techniques to perform updates over DL-Lite on-
tologies. In particular, we focus on DL-LiteA, which is the most expressive mem-
ber of the DL-Lite family of Description Logics (DLs) [4,5]. DL-LiteA includes
virtually all constructs of the owl 2 ql profile of the W3C owl 2 standard. In
addition, it includes the most typical cardinality restrictions on the participation
in roles of UML class diagrams, i.e., any combination of mandatory participation
and functional participation.

The crucial characteristic of DL-LiteA ontologies is that they enable the so-
called ontology-based data access by virtue of first-order rewritability of query
answering, that is, every (union of) conjunctive query over a DL-LiteA ontol-
ogy can be rewritten into a first-order query to be evaluated over the ABox
only (i.e., the individual data) considered as a database. This property, on the
one hand, gives us a very low worst-case computational complexity bound w.r.t.
data, namely AC0 data complexity. On the other hand, it gives us a very effec-
tive practical technique to deal with ontologies that include very large ABoxes
(i.e., a lot of individual data): perform the rewriting; transform the first-order
query into sql, or Sparql, depending on how data are stored; and perform the

resulting query exploiting a data management engine to take advantage of all
optimizations available for these standard languages.

When we come to updates over ontologies, several approaches are available in
the literature [10,20,7,17]. In particular, in this paper we are interested in the so-
called instance-level update: we add and delete (or erase) facts about individuals
only. Namely, we change the ABox, while we keep the TBox unchanged. This
is the most common form of update in practice, since it is essentially concerned
with keeping the intensional part of the ontology fixed, while changing freely the
individual data (indeed, the ABox changes are typically frequent whereas the
TBox typically evolves slowly). Even in this specific kind of updates, there are
sophisticated semantic issues to consider in general. One crucial issue is that,
in practice, we need the result of the update to be still in the same language
as the original ontology, in order to keep using the same system [20]. The most
promising approaches that enjoy this property are the so-called formula-based
approaches [9,13,14,23], in which the update is seen as a change of the ontology
axioms. Again, several forms of formula-based instance-level updates have been
considered [22,6,18,19]. Interestingly, however, for the DLs in the DL-Lite family,
virtually all proposals in the literature reduce to two main approaches: the one
in which we simply act on the ABox assertions explicitly stated in the ontology,
and another one in which we act also on the ABox assertions that are not present
but logically entailed through the use of the TBox. Notice that, while the first
approach is syntax-dependent (i.e., updating logically equivalent ontologies that
are stated through different assertions may give rise to logically different resulting
ABoxes), the second one is not. In both cases, the semantics have been clarified,
their computational tractability established, and ad-hoc algorithms are available.
Though, for both approaches, there are essentially no implemented tools yet.

In this paper we look again at the problem of instance-level formula-based
update in DL-LiteA, and we establish a result that may turn out to be cru-
cial to generate efficient implementations: like query answering, updating an
ontology is first-order rewritable. That is, given an update specification, we can
rewrite it into a set of addition and deletion instructions over the ABox which
can be characterized as the result of a first-order query. This means that (i)
updating a DL-LiteA ontology is AC0 in data complexity, and, (ii) updates can
be processed by widely used data management engines, e.g., based on sql or
Sparql. We proof this by showing that every update can be reformulated into
a datalog program that generates the set of insertion and deletion instructions
to change the ABox while preserving its consistency w.r.t. the TBox. Since the
obtained datalog program is non-recursive, it can be further translated as first-
order queries over the ABox considered as a database. Exploiting this result,
we implement an update component for DL-LiteA-based systems and perform
some experiments over (a DL-LiteA version of) the LUBM ontology [15] with
increasing ABox sizes, showing that the approach works in practice.

As far as we know, this is the first time that the first-order rewritability
property for DL-LiteA ontology updating is defined, proved, and empirically
evaluated. It is important to mention here that some previous work has been

done in the context of RDF triplestores [2,3], but only for the more restricted case
of RDFS (with class disjunctions), which is a proper subset of the expressiveness
of DL-LiteA, the language we deal with in this paper.

2 Preliminaries

In this section, we first present the notion of Description Logic (DL) ontology,
then we provide the definition of the specific DL considered in this work, and
finally we summarize some datalog basic concepts and notation.

2.1 Description Logic Ontologies

Let S be a signature of symbols for individual (object and value) constants, and
atomic elements, i.e., concepts, value-domains, attributes, and roles. If L is a DL,
then an L-ontology O over S is a pair 〈T ,A〉, where T , called TBox, is a finite
set of intensional assertions over S expressed in L, and A, called ABox, is a finite
set of instance assertions, i.e., assertions on individuals, over S expressed in L.
Different DLs allow for different kinds of concept, attribute, and role expressions,
and different kinds of TBox and ABox assertions over such expressions. In this
paper we assume that ABox assertions are always atomic, i.e., they correspond
to ground atoms, and therefore we omit to refer to L when we talk about ABox
assertions.

The semantics of a DL ontology is given in terms of interpretations. An
interpretation is a model of an ontology O = 〈T ,A〉 if it satisfies all assertions
in T ∪A, where the notion of satisfaction depends on the constructs allowed by
the specific DL in which O is expressed. We denote the set of models of O with
Mod(O).

Let T be a TBox in L, and let A be an ABox. We say that A is T -consistent
if 〈T ,A〉 is satisfiable, i.e., if Mod(〈T ,A〉) 6= ∅, T -inconsistent otherwise. The
T -closure of A with respect to T , denoted clT (A), is the set of all atomic ABox
assertions that are formed with individuals in A, and are logically implied by
〈T ,A〉. Note that if 〈T ,A〉 is an L-ontology, then 〈T , clT (A)〉 is an L-ontology as
well, and is logically equivalent to 〈T ,A〉, i.e., Mod(〈T ,A〉) = Mod(〈T , clT (A)〉).
A is said to be T -closed if clT (A) = A.

2.2 The Description Logic DL-LiteA

The DL-Lite family [4] is a family of low-complexity DLs particularly suited
for dealing with ontologies with very large ABoxes. It constitutes the basis of
owl 2 ql, a tractable profile of OWL 2, the official ontology specification lan-
guage of the World Wide Web Consortium (W3C)1.

We now present the DL DL-LiteA, which is one of the most expressive logics in
the family. DL-LiteA distinguishes concepts from value-domains, which denote

1 http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/

http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/

sets of (data) values, and roles from attributes, which denote binary relations
between objects and values. Concepts, roles, attributes, and value-domains in
this DL are formed according to the following syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B T −→ >D | T1 | · · · | Tn

Q −→ P | P− R −→ Q | ¬Q
V −→ U | ¬U

where A, P , and U are symbols in S denoting respectively an atomic concept
name, an atomic role name and an attribute name, T1, . . . , Tn are n pairwise
disjoint unbounded value-domains, >D denotes the union of all domain values.
Furthermore, P− denotes the inverse of P , ∃Q denotes the objects related to by
the role Q, ¬ denotes negation, δ(U) denotes the domain of U , i.e., the set of
objects that U relates to values, and ρ(U) denotes the range of U , i.e., the set
of values related to objects by U .

A DL-LiteA TBox T contains intensional assertions of the form:

B v C (concept inclusion) E v T (value-domain inclusion)
Q v R (role inclusion) U v V (attribute inclusion)
(funct Q) (role functionality) (funct U) (attribute functionality)

A concept inclusion assertion expresses that a (basic) concept B is subsumed
by a (general) concept C. Analogously for the other types of inclusion assertions.
Inclusion assertions that do not contain (resp. contain) the symbols ’¬’ in the
right-hand side are called positive inclusions (resp. negative inclusions). Role and
attribute functionality assertions are used to impose that roles and attributes
are actually functions respectively from objects to objects and from objects to
domain values.

Finally, a DL-Lite TBox T satisfies the following condition: each role (resp.,
attribute) that occurs (in either direct or inverse direction) in a functional as-
sertion, is not specialized in T , i.e., it does not appear in the right-hand side of
assertions of the form Q v Q′ (resp., U v U ′).

A DL-LiteA ABox A is a finite set of assertions of the form A(a), P (a, b),
and U(a, v), where A, P , and U are as above, a and b are object constants in S,
and v is a value constant in S.

We refer to [21] for the semantics of a DL-LiteA ontology. Here, we present
an example of one such ontology.

Example 1. We consider a slightly modified version of the LUBM ontology [15]
about the university domain. We know that a Person can be either a Professor or
a Student, where every Student takes (takesCourse role) at least one Course, and
every Professor can be either a FullProfessor or an AssociateProfessor. Finally, we
know that john is a FullProfessor and that bob is a Student. The corresponding
ontology O is:

T = { Student v Person Professor v Person
FullProfessor v Professor AssociateProfessor v Professor
Student v ¬Professor FullProfessor v ¬AssociateProfessor
Student v ∃takesCourse ∃takesCourse− v Course }

A = { FullProfessor(john), Student(bob) }
ut

A notable characteristic of DL-LiteA is that both satisfiability checking and
conjunctive query answering are First-Order (FO) rewritable. Intuitively, FO-
rewritability of satisfiability (resp., query answering) captures the property that
we can reduce satisfiability checking (resp., query answering) to evaluating a FO
query over the ABox A considered as a relational database. We remark that FO-
rewritability of a reasoning problem that involves the ABox of an ontology (such
as satisfiability or query answering) is tightly related to low data complexity of
the problem. Indeed, since the evaluation of a First-Order Logic query (i.e., an
SQL query without aggregation) over an ABox is in AC0 in data complexity [1],
the FO-rewritability of a problem has as the immediate consequence that the
problem is in AC0 in data complexity.

2.3 Datalog Concepts and Notation

A term T is either a variable or a constant. An atom is formed by a n-ary
predicate p together with n terms, i.e., p(T1, ..., Tn). We may write p(T) for
short. If all the terms T of an atom are constants, we call the atom to be ground.
A literal is either an atom p(T), a negated atom ¬p(T), or an inequality Ti 6= Tj .

A predicate p is said to be derived (or intensional) if the evaluation of an
atom p(T) depends on some derivation rules, otherwise, it is said to be base (or
extensional). A derivation rule is a rule of the form p(Tp)← φ(T), where p(Tp)

is an atom called the head of the rule, and φ(T) is a conjunction of literals called
the body. All derivation rules must be safe, i.e., every variable appearing in the
head or in a negated or inequality literal of the body should also appear in a
positive literal of the body. Additionally, all the predicates must be stratified,
i.e., it should be possible to partition the set of predicates P into several pairwise
disjoint strata P1∪...∪Pm s.t. for each predicate p ∈ Pi, each predicate appearing
in the derivation rules of p should belong to a stratum Pj with j < i, if it appears
in a negated literal, or, j ≤ i, if it only appears in positive literals.

Finally, a datalog program is a set of derivation rules together with a set of
facts, where a fact is a ground atom of a non-derived predicate.

3 Formula-Based Approach for Updating DL Ontologies

In the following, we first present the intuitions on ontology update, then we
define two distinct formula-based update semantics, and we argue that, for the
case of DL-LiteA, these two semantics capture virtually all other formula-based
update semantics proposed so far. Then, we show that the careful semantics,
a different formula-based update semantics proposed in the literature, is not

uniquely defined in the case of DL-LiteA, contradicting a result stated in [6],
which makes this update semantics inappropriate in our approach due to its
inherent nondeterminism.

3.1 Update Semantics for DL-LiteA

In the formula-based approaches to the update, the objects of change are sets
of formulae. That is, the result of the change is explicitly defined in terms of a
formula, by resorting to some minimality criterion with respect to the formula
expressing the original ontology.

Thus, an update is a set U of operations of two types: insertion operations,
denoted by i(α), and deletion operations denoted by d(α), where α is an ABox
assertion. Intuitively, updating a consistent ontology with an insertion operation
i(A(o)), where A(o) is a concept ABox assertion, means changing the extensional
level of the ontology in such a way that the ontology resulting from the update
is still consistent and entails the fact A(o). Conversely, updating a consistent
ontology with a deletion operation d(A(o)), means changing the extensional level
of the ontology in such a way that the ontology resulting from the update is still
consistent and does not entail the fact A(o).

After adding new facts into an ontology, one may find that the revised ontol-
ogy becomes inconsistent. A strategy to overcome such a situation is to remove
part of the original ABox to the aim of preserving consistency. Similarly, if the
goal is to update the ontology by deleting a fact, we might need to retract several
facts from the original ABox that entailed it. When applying these modifications
to the original ABox, one should respect the minimal change principle, a widely
accepted principle of the knowledge base evolution literature [8,11,16]. This prin-
ciple states that the ontology resulting from the update should be as close as
possible to the original one. In updating an ontology at the instance level follow-
ing the formula-based approach, the goal becomes the preservation of the facts
contained in the original ABox. In what follows we formalize this idea.

Given an ontology O = 〈T ,A〉, an update U , and an ABox A′, we say that
A′ accomplishes the update of O with U if it satisfies all the insertions/deletions
in U minimally. To formalize this notion, we first need to introduce the set A+

U ,
which denotes the set of ABox assertions appearing in U in insertion operations,
and the set A−U , which denotes the set of ABox assertions appearing in U in
deletion operations.

Definition 1. Let O = 〈T ,A〉 be an ontology, U an update, and A′ be an ABox.
A′ accomplishes the update of O with U if A′ = A′′ ∪ A+

U for some maximal
subset A′′ of A s.t. A′′ ∪ A+

U is T -consistent and 〈T ,A′〉 6|= β for each β ∈ A−U .

It easy to see that, by definition, if such ABox A′ exists, it also satisfies
〈T ,A′〉 |= α for each α ∈ A+

U since A+
U ⊆ A′. In order to ensure its existence,

note that U has to respect both of the following conditions:

i) Mod(〈T ,A+
U 〉) 6= ∅, which means that the set of facts we are adding is

consistent with the TBox of the ontology.

ii) A−U ∩ clT (A+
U) = ∅, which means that the update is not asking for deleting

and inserting the same knowledge at the same time.

Given a TBox T and an update U , we say that U is coherent with T if U respects
both the above conditions with respect to a TBox T .

Given a consistent ontology O = 〈T ,A〉 and an update U coherent with T ,
there might be more than one ABox accomplishing the update of O with U .
This fact leads to different update semantics, each one addressing this issue by
means of a different criterium, like the Cross Product Approach [9], the When
In Doubt Throw It Out principle [14,23,18,19], allowing the user to choose the
update [22], or even nondeterminism [6]. Fortunately, when the TBox of the on-
tology is expressed in DL-LiteA, the ABox accomplishing the update is uniquely
defined [6]. Hence, the application of all the above approaches leads to the same
result, which can be defined as follows:

Definition 2. Let O = 〈T ,A〉 be a consistent DL-LiteA ontology and U be an
update coherent with T . The result of updating O with U , denoted by O ◦ U , is
the ontology 〈T ,A′〉, where A′ is the ABox accomplishing the update of O with
U .

When dealing with ontology updating, there is a fundamental philosophical
aspect that has to be considered: one has to decide if the formulae explicitly
given in our ontology provide a justification for our knowledge (foundational
semantics) or if they are just used as a finite representation of our knowledge
(coherence semantics) [11,12]. Depending on this point of view, one may or
may not need to preserve a fact that is entailed in the ontology despite not
being explicitly asserted. The choice depends on the particular application and
personal preferences (we refer to [12] for more details).

Clearly, the update semantics given in Definition 2 embraces the founda-
tional theory. Depending on the specific scenario, and the particular application
at hand, this semantics might be considered inappropriate. This motivates the
definition of the following update semantics [6,18] for DL-LiteA ontologies based
on the coherence theory, in which the objects of the update is not the original
ABox, but its deductive closure with respect to the TBox.

Definition 3. Let O = 〈T ,A〉 be a consistent DL-LiteA ontology and let U be
an update coherent with T . The result of updating O with U according to the
coherence semantics, denoted by O • U , is the ontology 〈T ,A′〉, where A′ is the
ABox accomplishing the update of 〈T , clT (A)〉 with U .

3.2 Careful Semantics in DL-LiteA

An alternative formula-based update semantics based on the coherence theory
is the Careful semantics [6] which was proposed with the aim of preventing
unexpected information. Formally, an ontology updated according to the care-
ful semantics should not entail a role constraint φ (i.e., a rule of the form
∃x(R(o, x)) ∧ (x 6= c1) ∧ · · · ∧ (x 6= cn)), unless φ is entailed by the original

ABox, or the update itself. In practice, the careful update semantics encom-
passes deleting more ABox assertions so that the final ontology does not entail
any new role constraint φ. However, although the careful update semantics was
thought to be uniquely defined [6, Theorem 16], it can bring to several solutions
as we show in the following example.

Example 2. Consider the DL-LiteA ontology O = 〈T ,A〉 where:

T = { A v ∃RA, RA v R, ∃R−A v ¬∃R
−
B ,

B v ∃RB , RB v R, ∃R−A v ¬∃R
−
C ,

C v ∃RC , RC v R, ∃R−B v ¬∃R
−
C ,

D v ∃RD, RD v R, ∃R−C v ¬∃R
−
D}

A = { A(o), B(o) }

and the update U = {i(C(o)), i(D(o))}. It is easy to see that the ABox
A′ = A ∪ A+

U is T -consistent and that it accomplishes the update of O with
U . Moreover, 〈T ,A′〉 |= ϕ, where ϕ = ∃x(R(o, x)) ∧ (x 6= c1 ∧ (x 6= c2))) (since
the negative inclusions in T imply that in every model I of 〈T ,A′〉 there are three
distinct individuals da, db, dc such that 〈o, da〉 ∈ RA, 〈o, db〉 ∈ RB , 〈o, dc〉 ∈ RC).
However, since neither 〈T ,A〉 |= ϕ nor 〈T ,A+

U 〉 |= ϕ, we have that A′ does
not accomplish the update of O with U carefully. Conversely, both the ABoxes
{A(o)} ∪ A+

U and {B(o)} ∪ A+
U accomplish the update of O with U carefully.

This is because the only role-constraining formula ∃x(R(o, x)) ∧ (x 6= c1)) that
both entail with T , is also entailed by 〈T ,A+

U 〉. Hence, we have more than one
ABox that accomplishes the update of O with U carefully. ut

4 Foundational-Semantic Updates through Datalog

Now, our intention is, given a DL-LiteA ontology 〈T ,A〉, and some update U ,
to define a datalog program D that permits querying whether U is coherent
with T and, in such a case, allows for generating a set of insertion/deletion
instructions that should be applied to A to accomplish U according to Definition
2 (foundational-semantic updates).

For ease of presentation, from now on we assume that the TBox T does
not contain inclusions involving attributes and value-domains. However, all the
results presented in the next two sections can be easily extended to TBoxes
containing such kinds of axioms.

Formally, the datalog program D contains a derived predicate incoher-
ent update, together with a pair of derived predicates ins a/del a for each con-
cept/role A such that:

− incoherent update() is true iff U is not coherent with T .

and, in case incoherent update() is false,

− ins a(o) is true iff the assertion A(o) was not in A, but A(o) ∈ 〈T ,A〉 ◦ U .
That is, ins a captures the assertions of A that should be inserted into A to
accomplish the (foundational-semantic) update U .

− del a(o) is true iff the assertion A(o) was in A, but A(o) 6∈ 〈T ,A〉 ◦ U .
That is, del a captures the assertions of A that should be deleted from A to
accomplish the (foundational-semantic) update U .

Briefly, the main idea of the translation is to map each ABox assertion in
A, and each operation in U into different datalog facts. Then, we map each
assertion in the closure of T into several datalog derivation rules that define the
incoherent update, ins a(X), del a(X) predicates. In the following, we formally
describe how to obtain such a datalog program D. Then, we prove that the set
of instructions generated in D are sound and complete to obtain 〈T ,A〉 ◦ U .

4.1 Translation Rules

Translation of A and U All the assertions in A and operations in U are
translated as different facts in D. In particular:

Each assertion A(o) ∈ A is translated as the fact a(o).
Each operation i(A(o)) ∈ U is translated as the fact ins a request(o).
Each operation d(A(o)) ∈ U is translated as the fact del a request(o).

Intuitively, ins a request(o)/del a request(o) means that the ontology has
received the request to insert/delete the ABox assertion A(o). Since according
to the Definition 2 all the insertions/deletions requested should be applied, we
define the datalog rules:

ins_a(X) :- ins_a_request(X), not a(X).

del_a(X) :- del_a_request(X), a(X).

incoherent_update () :- ins_a_request(X), del_a_request(X).

for each atomic concept A. Note that incoherent update becomes true in case we
request for the insertion and deletion of the same axiom. Similarly, we define the
rules ins p(X, Y)/del p(X,Y) for each atomic role P .

Translation of cl(T) We translate positive and negative/functional axioms
in the closure of T differently. In particular, for each positive inclusion axiom
B v A in the closure of T , where A is an atomic concept, we define the rules:

del_b(X) :- b(X), del_a_request(X).

incoherent_update () :- ins_b_request(X), del_a_request(X).

Intuitively, when we request for deleting A(o), we have to delete any other
ABox assertion B(o) that entails A(o). Note that it cannot be accomplished if
there is a request for inserting B(o), so, this case makes incoherent update true.
We define similar rules when the left-hand side of the axiom is of the form ∃P ,
and also for role inclusion axioms.

Note that we translate the closure of T , instead of T itself, to be able to
capture deletions that are propagated along the concept/role hierarchy. E.g. if
in our example we have U = d(Person(john)), the translated datalog program
D generates the deletion of FullProfessor(john) because of the translation of the
assertion FullProfessor v Person appearing in cl(T):

del_fullprof(X) :- fullprof(X), del_person_request(X).

Differently, for each negative inclusion axiom B v ¬A in cl(T), we define the
rules:

del_b(X) :- b(X), ins_a_request(X).

del_a(X) :- ins_b_request(X), a(X).

incoherent_update () :- ins_a_request(X), ins_b_request(X).

Intuitively, if we insert A(o) when we have B(o) in the ABox, we have to
delete B(o). In the case where the requested update tries to insert both things,
we reach a contradiction and thus, incoherent update becomes true. We define
similar rules for role negative inclusions, negative inclusions involving the ∃ con-
structor, and functional axioms. In this last case, we require using the inequality
built-in predicate to check whether the requested role assertion insertion is going
to violate the functional axiom. E.g., given a functional axiom defined over R,
we define:

del_r(X,Y) :- r(X,Y), ins_r_request(X,Z), Y<>Z.

incoherent_update () :- ins_r_request(X,Y),ins_r_request(X,Z),

Y<>Z.

Again, note that since we translate the closure of T , the rules are able to
capture deletions due to inconsistencies generated by propagation. E.g. if in
our previous example we have the update U = i(AssociateProfessor(bob)), D
generates the deletion of Student(bob) because of the first rule obtained when
translating the assertion Student v ¬AssociateProfessor appearing in cl(T):

del_student(X) :- student(X), ins_assocprof_request(X).

del_assocprof(X) :- assocprof(X), ins_student_request(X).

4.2 Datalog Program Soundness and Completeness

The update generated by the datalog program D is sound in the sense that, for
every axiom A(o) that should be inserted/deleted according to D, A(o) should be
truly inserted/deleted according to the foundational-semantic update. Formally:

Theorem 1. Given a consistent ontology 〈T ,A〉, and an update U , the datalog
program D obtained through the translation defined in Section 4.1, satisfies that:
if incoherent update() is true in D, U is incoherent with T , otherwise, for each
concept/role A, if ins a(o) is true in D, then, A(o) ∈ 〈T ,A〉 ◦ U \ A, and if
del a(o) is true in D, then, A(o) ∈ A \ 〈T ,A〉 ◦ U .

Proof. (Sketch) If incoherent update() is true, it can only be because of a rule
generated when translating the update U , the positive axioms of cl(T), or the
negative/functional axioms of cl(T). The rules generated in the first two cases
are true only if A−U ∩ A

+
U 6= ∅ and A−U ∩ clT (A+

U) 6= ∅, respectively. The rules of
the third case are true only if Mod(〈T ,A+

U 〉) = ∅. Thus, if incoherent update()
is true, U is incoherent with T .

If ins a(o) is true, it is because of a rule generated when translating U , which
can only be true if A(o) 6∈ A, and A(o) ∈ A+

U , thus A(o) ∈ 〈T ,A〉 ◦ U \ A.

If del a(o) is true, it can only be because of (1) a rule generated when
translating U , where in such case we have A(o) ∈ A, and A(o) ∈ A−U , thus
A(o) ∈ A\ 〈T ,A〉 ◦U ; or (2) a rule generated when translating a positive axiom
in T , where in such case we have that A(o) ∈ A and that for some B(o) ∈ A−U ,
A(o) |=T B(o), thus, A(o) ∈ A \ 〈T ,A〉 ◦ U ; or (3) a rule generated when trans-
lating a negative/functional axiom in cl(T) where in such case we have A(o) ∈ A
and Mod(〈T ,A+

U ∪ {A(o)}〉) = ∅, and thus, A(o) ∈ A \ 〈T ,A〉 ◦ U . ut

Conversely, D is also complete in the sense that any axiom insertion/deletion
of A(o) that should be applied according to the foundational-semantic update is
also generated in D. Formally:

Theorem 2. Given a consistent ontology 〈T ,A〉, and an update U , the datalog
program D obtained through the translation defined in Section 4.1, satisfies that:
if U is incoherent with T , then, incoherent update() is true in D, otherwise, for
each concept/role A, if A(o) ∈ 〈T ,A〉 ◦ U \A, then, ins a(o) is true in D, and if
A(o) ∈ A \ 〈T ,A〉 ◦ U , then, del a(o) is true in D.

Proof. (Sketch) First, if U is incoherent with T , it is immediate to verify that
then, incoherent update() is true in D. So, from now on we assume that U is
coherent with T . Moreover, since U is coherent with T , 〈T ,A〉◦U \A = A+

U \A,
and by definition of D, it easily follows that, for each concept/role A, if A(o) ∈
A+
U \ A, ins a(o) is true in D. Finally, we prove that for every assertion deleted

from A there is a corresponding deletion instruction in D. To this aim, we define
the following algorithm:

Algorithm ComputeDeletedAssertions(T ,A,U)
Input: DL-LiteA TBox T , ABox A, update U coherent with T
Output: ABox Ad = A \ 〈T ,A〉 ◦ U
begin
Ad = ∅;
for each C(a) ∈ A+

U do begin
for each D(a) ∈ A such that T |= C v ¬D do Ad = Ad ∪ {D(a)};
for each R(a, x) ∈ A such that T |= C v ¬∃R do Ad = Ad ∪ {R(a, x)};
for each R(x, a) ∈ A such that T |= C v ¬∃R− do Ad = Ad ∪ {R(x, a)}

end;
for each R(a, b) ∈ A+

U do begin
for each S(a, b) ∈ A such that T |= R v ¬S do Ad = Ad ∪ {S(a, b)};
for each S(b, a) ∈ A such that T |= R v ¬S− do Ad = Ad ∪ {S(b, a)};
for each C(a) ∈ A such that T |= ∃R v ¬C do Ad = Ad ∪ {C(a)};
for each C(b) ∈ A such that T |= ∃R− v ¬C do Ad = Ad ∪ {C(b)};
for each S(a, x) ∈ A such that T |= ∃R v ¬∃S do Ad = Ad ∪ {S(a, x)};
for each S(x, a) ∈ A such that T |= ∃R v ¬∃S− do Ad = Ad ∪ {S(x, a)};
for each S(b, x) ∈ A such that T |= ∃R− v ¬∃S do Ad = Ad ∪ {S(b, x)};
for each S(x, b) ∈ A such that T |= ∃R− v ¬∃S− do Ad = Ad ∪ {S(x, b)}

end;
for each C(a) ∈ A−U do begin
for each D(a) ∈ A such that T |= D v C do Ad = Ad ∪ {D(a)};
for each R(a, x) ∈ A such that T |= ∃R v C do Ad = Ad ∪ {R(a, x)};

for each R(x, a) ∈ A such that T |= ∃R− v C do Ad = Ad ∪ {R(x, a)}
end;
for each R(a, b) ∈ A−U do begin
for each S(a, b) ∈ A such that T |= S v R do Ad = Ad ∪ {S(a, b)};
for each S(b, a) ∈ A such that T |= S v R− do Ad = Ad ∪ {S(b, a)}

end;
return Ad

end

It can easily be shown that the ABox returned by such an algorithm is equal
to A \ 〈T ,A〉 ◦ U . Moreover, it is easy to see that, for each concept/role A,
if A(o) belongs to the ABox returned by ComputeDeletedAssertions(T ,A,U),
then del a(o) is true in D. ut

5 Coherent-Semantic Updates through Datalog

The previous datalog program D generates the set of insertions/deletions that
should be applied to an ABox A to accomplish an update U according to the
foundational-semantics. Now, our purpose is to modify this datalog program to
deal with the coherent-semantics as described in Definition 3.

Briefly, to accomplish the coherent-semantics, we need to generate more in-
sertion instructions in D. This is because in the coherent-semantics we need to
keep the updated ABox as close as possible to the T -closure of the original
ABox, instead of the ABox itself. For instance, if in our previous example we
apply the update U = {d(Student(bob))} with coherent-semantics, besides delet-
ing the assertion Student(bob), we also need to apply the insertion Person(bob)
since Person(bob) appears in clT (A).

Thus, in practice, we only need to extend our datalog program D to (1)
additionally capture those assertions A(o) entailed by assertions B(o) that are
requested for deletion, and (2) derive their insertion in case they do not get
in conflict with the assertions in A+

U . Intuitively, we do (1) by considering an
additional derived predicate ins a closure for each concept/role A; then, we use
this new predicate to define new derivation rules for ins a in case they do not
get in conflict with any axiom in A+

U , thus accomplishing (2).
In the following, we first define how we obtain these new derivation rules,

and then we prove that the insertion/deletion instructions generated by this ex-
tended datalog program D are sound and complete with respect to the coherent-
semantics.

5.1 Translation Rules

Capturing Closure Insertions due to Deletions For each positive inclusion
axiom B v A in the closure of T , where A is an atomic concept, let A1, ..., Am

be all the atomic concepts having a positive inclusion axiom of the form A v Ai

in the TBox closure of T , then we define the rules:

ins_a_closure(X) :- del_b(X), not a(X), not ins_a_request(X),

not del_a_request(X), not del_a1_request(X), ..., not

del_am_request(X).

For example, for the assertion FullProfessor v Professor, we define the rules:

ins_prof_closure(X) :- del_fullprof(X), not prof(X), not

ins_prof_request(X), not del_prof_request(X), not

del_person_request(X).

Intuitively, when we delete a FullProfessor(o), we might need to insert
Professor(o) because of the closure of the semantics. However, such closure in-
sertion is not necessary if Professor(o) is already in the ABox, or if there is a
request for its insertion, or if it is requested for deletion (either Professor(o) it-
self or its parent concepts Person(o)). We define similar rules for role positive
inclusion axioms and positive inclusion axioms in which the left-hand side uses
the ∃ constructor.

Defining New Insertions due to Closure Insertions Once we have defined
the predicates ins a closure, we use them for defining new insertions in case they
do not get in conflict with the assertions in A+

U . To do so, for each atomic concept
A, let B1, . . . , Bn be all the concepts having a negative inclusion axiom with A
in the TBox closure of T , then we define the rules:

ins_a(X) :- ins_a_closure(X), not ins_b1_request(X) ... not

ins_bn_request(X).

Following the previous example, we would define:

ins_prof(X):-ins_prof_closure(X), not ins_student_request(X).

Intuitively, any derived closure insertion of Professor(o) should be applied
only if it does not get in conflict with any negative inclusion axiom. Such a
conflict might arise if there is a request to insert some Student(o) because of the
negative inclusion assertion Student v ¬Professor. Similarly, we define the rules
for roles.

5.2 Datalog Program Soundness and Completeness

We finally state that the generated insertion/deletions instructions generated
by the datalog program D is sound and complete with respect to the coherent-
semantics (the proof of the following theorem can be obtained by easily extending
the proofs of Theorem 1 and Theorem 2).

Theorem 3. Given a consistent ontology 〈T ,A〉, and an update U , the datalog
program D obtained through the translation defined in Sections 4.1 and 5.1,
satisfies that: (i) incoherent update() is true in D iff U is incoherent with T ;
(ii) if U is coherent with T , then for each concept/role A, ins a(o) is true in D
iff A(o) ∈ 〈T ,A〉 • U \ A, and del a(o) is true in D iff A(o) ∈ A \ 〈T ,A〉 • U .

6 Implementation and Experiments

To show the feasibility and scalability of our technique, we have developed a Java
program that, given a closed DL-LiteA TBox, builds the datalog program that
generates the insertion/deletion instructions for applying a coherent-semantic
update. Furthermore, the program translates this datalog into standard SQL
queries. Since these queries depend only on the TBox, but not on the ABox nor
the requested update, all of them are created in compilation time and stored
in the database as SQL views. Thus, on runtime, the user can generate the
instructions by means of inserting the operations s/he wants to perform in the
ins a request/del a request tables of the database and querying these views.

We have run the experiments using a DL-LiteA approximation of the LUBM
benchmark, an ontology describing university concepts (e.g., teachers, depart-
ments, etc) with 75 basic concept/roles and 243 assertions. For our purposes, we
have removed those axioms not expressible in DL-LiteA, and added 20 disjoint-
ness/functional assertions to increase the complexity of the updates. Thus, our
final ontology consisted of 195 axioms.

Regarding the data, we have created different ABoxes of increasing size (from
105 to 3.5 ∗ 107 assertions). To do so, we have modified the UBA Data Gener-
ator to create a single university, but with an increasing number of connected
departments, teachers, etc. Due to this increasing number of connected objects,
the updates became more complex when increasing the data size. Then, we have
defined an update request by means of selecting 3 tuples to delete, and 3 tuples
to insert. Such tuples were selected in a way to ensure several interactions with
the TBox assertions, thus, generating several insertions/deletions.

In Figure 1 we summarize the results we have obtained using the MySQL 5.7
DBMS, running on a Windows 8.1 over an Intel Core i7-4710HQ, with 8GB of
RAM 2. In particular, we show the times to generate the instructions (x points
in the first diagram), the time to generate and execute the instructions (+ points
in the first diagram), and the number of instructions generated (x points in the
second diagram). We also depict the different trend lines in the diagrams.

As it can be seen, our method has generated from 139 insertion/deletion
instructions in 12s for the smallest ABox, to 479 instructions in 16s for the
largest. Thus, although there is a constant time penalty of about 12s to generate
the instructions, the time increment in function of the ABox size is small. Adding
this time to the time to execute the instructions, we got a total cost near to
20s. We argue that this low time increment behavior is due to the fact that,
in DL-LiteA, an update request only causes updates locally, i.e., the unique
tuples to insert/delete are a subset of those that are connected to the requested
insertions/deletions. Thus, since ABoxes tends to increase its size by considering
more objects, rather than infinitely augmenting the connectivity between them,
increasing the ABox size barely increases the generated instructions, as can be
seen in the second diagram. Hence, we argue that our approach can be effectively
used in practice with large ABoxes.
2 More experiment details and results at www.essi.upc.edu/~xoriol/dllitea/

www.essi.upc.edu/~xoriol/dllitea/

0 10 20 30 40
0

20

40

60

ABox assertions (millions)

T
im

e
(s

)

0 10 20 30 40
0

200

400

600

800

1,000

ABox assertions (millions)

#
T

u
p
le

s
to

in
s/

d
el

Fig. 1: Experimental Results

7 Conclusions

In this paper we have shown that the DL-Lite family, in particular DL-LiteA,
enjoys the first-order rewritability of instance level updates. Apart from the
theoretical interest, this result gives us a practical and effective technique to
perform updates over DL-Lite ontologies.

Although we have not considered any specific syntax to express the update,
what we proposed here is fully compatible with Sparql update operators studied
in [2]. There, the set of insertions and deletions are defined through unions of
conjunctive queries over the current ontology. We can immediately extend our
approach in the same way, producing update operators that are equivalent to the
ones defined in [2] in the case of RDFS, but that deal with the more expressive
DL-LiteA and owl 2 ql languages.

There are several directions for future work, but maybe the most compelling
one, encouraged by the practical applicability of our results, is to extend our
datalog-based approach blurring the distinction between TBox and ABox asser-
tions, in line with the use of Sparql over owl 2 ql ontologies.

Acknowledgments. This research has been partially supported by the EU un-
der FP7 project Optique (grant n. FP7-318338), by the Ministerio de Economı́a
y Competitividad (project TIN2014-52938-C2-2-R), and by the Sapienza project
“Immersive Cognitive Environments”.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley
Publ. Co., 1995.

2. A. Ahmeti, D. Calvanese, and A. Polleres. Updating RDFS aboxes and tboxes in
SPARQL. In Proc. of ISWC 2014, pages 441–456, 2014.

3. A. Ahmeti, D. Calvanese, A. Polleres, and V. Savenkov. Dealing with inconsisten-
cies due to class disjointness in SPARQL update. In Proc. of DL 2015, volume
1350 of CEUR, 2015.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning, 39(3):385–429, 2007.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. Artificial Intelligence, 195:335–
360, 2013.

6. D. Calvanese, E. Kharlamov, W. Nutt, and D. Zheleznyakov. Evolution of DL-Lite
knowledge bases. In Proc. of ISWC 2010, volume 6496 of LNCS, pages 112–128.
Springer, 2010.

7. G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On instance-level update
and erasure in description logic ontologies. J. of Logic and Computation, Special
Issue on Ontology Dynamics, 19(5):745–770, 2009.

8. T. Eiter and G. Gottlob. On the complexity of propositional knowledge base
revision, updates and counterfactuals. Artificial Intelligence, 57:227–270, 1992.

9. R. Fagin, J. D. Ullman, and M. Y. Vardi. On the semantics of updates in databases.
In Proc. of PODS 1983, pages 352–365, 1983.

10. G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis, and G. Antoniou.
Ontology change: Classification and survey. Knowledge Engineering Review,
23(2):117–152, 2008.

11. G. Flouris and D. Plexousakis. Handling ontology change: Survey and proposal
for a future research direction. Technical report TR-362 FORTH-ICS, Institute of
Computer Science, Forth. Greece, 2005.

12. P. Gärdenfors. Propositional logic based on the dynamics of belief. J. Symb. Log.,
50(2):390–394, 1985.

13. M. L. Ginsberg. Counterfactuals. Artificial Intelligence, 30(1):35–79, 1986.
14. M. L. Ginsberg and D. E. Smith. Reasoning about action I: A possible worlds

approach. Technical Report KSL-86-65, Knowledge Systems, AI Laboratory, 1987.
15. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base

systems. J. of Web Semantics, 3(2–3):158–182, 2005.
16. H. Katsuno and A. Mendelzon. On the difference between updating a knowledge

base and revising it. In Proc. of KR 1991, pages 387–394, 1991.
17. E. Kharlamov, D. Zheleznyakov, and D. Calvanese. Capturing model-based ontol-

ogy evolution at the instance level: The case of dl-lite. J. of Computer and System
Sciences, 79(6):835–872, 2013.

18. M. Lenzerini and D. F. Savo. On the evolution of the instance level of DL-Lite
knowledge bases. In Proc. of DL 2011, volume 745 of CEUR, ceur-ws.org, 2011.

19. M. Lenzerini and D. F. Savo. Updating inconsistent Description Logic knowledge
bases. In Proc. of ECAI 2012, 2012.

20. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic ABoxes. In
Proc. of KR 2006, pages 46–56, 2006.

21. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. J. on Data Semantics, X:133–173, 2008.

22. L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-driven ontology
evolution management. In In Proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management, pages 133–140, 2002.

23. M. Winslett. Updating Logical Databases. Cambridge University Press, 1990.

ceur-ws.org

	Updating DL-Lite Ontologies through First-Order Queries
	Giuseppe De Giacomo, Xavier Oriol, Riccardo Rosati, Domenico Fabio Savo
	Introduction
	Preliminaries
	Description Logic Ontologies
	The Description Logic DL-LiteA
	Datalog Concepts and Notation

	Formula-Based Approach for Updating DL Ontologies
	Update Semantics for DL-LiteA
	Careful Semantics in DL-LiteA

	Foundational-Semantic Updates through Datalog
	Translation Rules
	Translation of A and U
	Translation of cl(T)

	Datalog Program Soundness and Completeness

	Coherent-Semantic Updates through Datalog
	Translation Rules
	Capturing Closure Insertions due to Deletions
	Defining New Insertions due to Closure Insertions

	Datalog Program Soundness and Completeness

	Implementation and Experiments
	Conclusions

