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Abstract. Ontology classification is the reasoning service that com-
putes all subsumption relationships inferred in an ontology between con-
cept, role, and attribute names in the ontology signature. OWL 2 QL is a
tractable profile of OWL 2 for which ontology classification is polynomial
in the size of the ontology TBox. However, to date, no efficient methods
and implementations specifically tailored to OWL 2 QL ontologies have
been developed. In this paper, we provide a new algorithm for ontol-
ogy classification in OWL 2 QL, which is based on the idea of encoding
the ontology TBox into a directed graph and reducing core reasoning to
computation of the transitive closure of the graph. We have implemented
the algorithm in the QuOnto reasoner and extensively evaluated it over
very large ontologies. Our experiments show that QuOnto outperforms
various popular reasoners in classification of OWL 2 QL ontologies.

1 Introduction

Ontology classification is the problem of computing all subsumption relationships
inferred in an ontology between predicate names in the ontology signature, i.e.,
named concepts (a.k.a. classes), roles (a.k.a. object-properties), and attributes
(a.k.a. data-properties). It is considered a core service for ontology reasoning,
which can be exploited for various tasks, at both design-time and run-time,
ranging from ontology navigation and visualization to query answering.

Devising efficient ontology classification methods and implementations is a
challenging issue, since classification is in general a costly operation. Most pop-
ular reasoners for Description Logic (DL) ontologies, i.e., OWL ontologies, such
as Pellet [22], Racer [11], FACT++ [23], and HermiT [9], offer highly optimized
classification services for expressive DLs. Various experimental studies show that
such reasoners have reached very good performances through the years. How-
ever, they are still not able to efficiently classify very large ontologies, such as
the full versions of GALEN [21] or of the FMA ontology [10].

Whereas the above tools use algorithms based on model construction through
tableau (or hyper-tableau [9]), the CB reasoner [14] for the Horn-SHIQ DL is
a consequence-driven reasoner. The use of this technique allows CB to obtain
an impressive gain on very large ontologies, such as full GALEN. However, the



current implementation of the CB reasoner is rather specific for particular frag-
ments of Horn-SHIQ (and incomplete for the general case) [14]. For example,
it does not allow for classification of properties.

Other recently developed tools, such as Snorocket [17], ELK [15], and
JCEL [19], are specifically tailored to intensional reasoning over logics of the
EL family, and show excellent performances in classification of ontologies speci-
fied in such languages, which are the logical underpinning of OWL 2 EL, one of
the tractable profile of OWL 2 [20].

Instead, to the best of our knowledge, ontology classification in the other
OWL 2 profiles has received so far little attention. In particular, classification in
OWL 2 RL has been investigated only in [16], whereas, to date, no techniques
have been developed that are specifically tailored to intensional reasoning in
OWL 2 QL, the “data oriented” profile of OWL 2, nor for any logic of the DL-Lite
family [6], which constitutes the logical underpinning of OWL 2 QL. Our aim
is then to contribute to fill this lack on OWL 2 QL, encouraged also by the
fact that such language, like all logics of the DL-Lite family, allows for tractable
intensional reasoning, and in particular for PTime ontology classification, as it
immediately follows from the results in [6].

In this paper, we thus provide a new method for ontology classification in
the OWL 2 QL profile. In our technique, we encode the ontology terminology
(TBox) into a graph, and compute the transitive closure of the graph to then
obtain the ontology classification. The analogy between simple inference rules
in DLs and graph reachability is indeed very natural: consider, for example, an
ontology containing the subsumptions A1 v A2 and A2 v A3, where A1, A2,
and A3 are class names in the ontology signature. We can then associate to this
ontology a graph having three nodes labeled with A1, A2, and A3, respectively,
an edge from A1 to A2 and an edge from A2 to A3. It is straightforward to see
that A3 is reachable from A1, and therefore an edge from A1 to A3 is contained in
the transitive closure of the graph. This corresponds to the inferred subsumption
A1 v A3. On the other hand, things become soon much more complicated when
complex (OWL) axioms come into play.

In this respect, we will show that for an OWL 2 QL ontology it is possible
to easily construct a graph whose closure constitutes the major sub-task in on-
tology classification, because it allows us to obtain all subsumptions inferred by
the “positive knowledge” specified by the TBox. We will show that the com-
puted classification misses only “trivial” subsumptions inferred by unsatisfiable
predicates, i.e., named classes (resp. properties) that always have an empty in-
terpretation in every model of the ontology, and that are therefore subsumed
by every class (resp. property) in the ontology signature. We therefore provide
an algorithm that, exploiting the transitive closure of the graph, computes all
unsatisfiable predicates, thus allowing us to obtain a complete ontology classi-
fication. We notice that the presence of unsatisfiable predicates in an ontology
is mainly due to errors in the design. However, it is not rare to find such pred-
icates, especially in very large ontologies or in ontologies that are still “under
construction”. In particular, we could find unsatisfiable concepts even in some



benchmark ontologies we used in our experiments (cf. Section 4). Of course, al-
ready debugged ontologies might not present such predicates [13,12]. In this case,
one can avoid executing our algorithm for computing unsatisfiable predicates.

We have implemented our technique in a new module of QuOnto [1], the
reasoner at the base of the Mastro [5,7] system, and have carried out extensive
experimentation, focusing in particular on very large ontologies. We have consid-
ered well-known ontologies, often used as benchmark for ontology classification,
and we have suitably approximated them in OWL 2 QL.

QuOnto showed better performances, in some cases corresponding to enor-
mous gains, with respect to tableau-based reasoners (in particular, Pellet,
Fact++, and HermiT). We also obtained comparable or better results with re-
spect to the CB reasoner, for almost all ontologies considered, but, differently
from CB reasoner, we were always able to compute a complete classification. We
finally compared QuOnto with ELK, one of the most performing reasoner for
EL, for those approximated ontologies that turned out to be both in OWL 2 QL
and OWL 2 EL, obtaining similar performances in almost all cases.

We conclude by noticing that, even though we refer here to OWL 2 QL, our
algorithms and implementations can be easily adapted to deal with all logics
of the DL-Lite family mentioned in [6], excluding those allowing for the use
of conjunction in the left-hand side of inclusion assertions or the use of n-ary
relations instead of binary roles.

The rest of the paper is organized as follows. In Section 2, we provide some
preliminaries. In Section 3, we describe our technique for ontology classification
in OWL 2 QL. In Section 4, we describe our experimentation, and finally, in
Section 5, we conclude the paper.

2 Preliminaries

In this section, we present some basic notions on DL ontologies, the formal
underpinning of the OWL 2 language, and on OWL 2 QL. We also recall some
notions of graph theory needed later on.

Description Logic Ontologies. We consider a signature Σ, partitioned in two
disjoint signatures, namely, ΣP , containing symbols for predicates, i.e., atomic
concepts, atomic roles, atomic attributes, and value-domains, andΣC , containing
symbols for individual (object and value) constants. Complex concept, role, and
attribute expressions are constructed starting from predicates of ΣP by applying
suitable constructs, which vary in different DL languages. Given a DL language
L, an L-TBox (or simply a TBox, when L is clear) over Σ contains universally
quantified first-order (FOL) assertions, i.e., axioms specifying general properties
of concepts, roles, and attributes. Again, different DLs allow for different axioms.
An L-ABox (or simply an ABox, when L is clear) is a set of assertions on
individual constants, which specify extensional knowledge. An L-ontology O is
constituted by both an L-TBox T and an L-ABox A, denoted as O = 〈T ,A〉.

The semantics of a DL ontology O is given in terms of FOL interpretations
(cf. [3]). We denote with Mod(O) the set of models of O, i.e., the set of FOL-



interpretations that satisfy all TBox axioms and ABox assertions in O, where
the definition of satisfaction depends on the DL language in which O is specified.
An ontology O is satisfiable if Mod(O) 6= ∅. A FOL-sentence φ is entailed by an
ontology O, denoted O |= φ, if φ is satisfied by every model in Mod(O). All the
above notions naturally apply to a TBox T alone.

Traditional intensional reasoning tasks with respect to a given TBox are
verification of subsumption and satisfiability of concepts, roles, and attributes [3].
More precisely, a concept C1 is subsumed in T by a concept C2, written T |=
C1 v C2, if, in every model I of T , the interpretation of C1, denoted CI

1 , is
contained in the interpretation of C2, denoted CI

2 , i.e., CI
1 ⊆ CI

2 for every I ∈
Mod(T ). Furthermore, a concept C in T is unsatisfiable, which we wrote as
T |= C v ¬C, if the interpretation of C is empty in every model of T , i.e., CI = ∅
for every I ∈ Mod(T ). Analogous definitions hold for roles and attributes.

Strictly related to the previous reasoning tasks is the classification inference
service, which we focus on in this paper. Given a signature ΣP and a TBox
T over ΣP , such a service allows to determine subsumption relationships in T
between concepts, roles, and attributes in ΣP . Therefore, classification allows
to structure the terminology of T in the form of a subsumption hierarchy that
provides useful information on the connection between different terms, and can
be used to speed up other inference services. Here we define it more formally.

Definition 1. Let T be a satisfiable L-TBox over ΣP . We define the T -
classification of ΣP (or simply T -classification when ΣP is clear from the con-
text) as the set of inclusion assertions defined as follows:

Let S1 and S2 be either two concepts, roles, or attributes in ΣP . If
T |= S1 v S2 then S1 v S2 belongs to the T -classification of ΣP .

The OWL 2 QL Language. We now present OWL 2 QL. We use the German
notation for describing its constructs and axioms, and refer the reader to [20]
for the OWL functional style syntax.

Expressions in OWL 2 QL are formed according to the following syntax:

B −→ A | ∃Q | δ(U) R −→ Q | ¬Q E −→ ρ(U)
C −→ B | ¬B | ∃Q.A | δF (U) V −→ U | ¬U F −→ T1 | · · · | Tn

Q −→ P | P−

where: A, P , and U are symbols in ΣP denoting respectively an atomic concept,
an atomic role, and an atomic attribute; P− denotes the inverse of P ; ∃Q, also
called unqualified existential role, denotes the set of objects related to some
object by the role Q; δ(U) denotes the domain of U , i.e., the set of objects that
U relates to values; ρ(U) denotes the range of U , i.e., the set of values related
to objects by U ; T1, . . . , Tn denote n unbounded value-domains (i.e., datatypes);
the concept ∃Q.A, or qualified existential role, denotes the qualified domain of
Q with respect to A, i.e., the set of objects that Q relates to some instance of
A. Similarly, δF (U) denotes the qualified domain of U with respect to a value-
domain F , i.e., the set of objects that U relates to some value in F . In the
following, we call B a basic concept, and Q a basic role.



An OWL 2 QL TBox T is a finite set of axioms of the form:

B v C Q v R U v V E v F

From left to right, the above axioms denote subsumptions between concepts,
roles, attributes, and value-domains, respectively. We call positive inclusions
axioms of the form B1 v B2, B1 v ∃Q.A, B1 v δF (U), Q1 v Q2, and U1 v U2,
value-domain inclusions axioms of the form E v F , and negative inclusions
axioms of the form B1 v ¬B2, Q1 v ¬Q2 and U1 v ¬U2.

We notice that also other constructs and axioms are in fact allowed in
OWL 2 QL. In particular, it allows for the use of δF (U) in the left-hand side of
subsumptions, or in the right-hand side of negative inclusions, the use of “top”
constructs in the left hand-side of subsumptions, corresponding to rdfs:Literal,
owl:Thing, owl:topObjectProperty, and owl:topDataProperty, and the use of re-
flexivity and irreflexivity on roles (i.e., object-properties). For the sake of pre-
sentation, in this paper we prefer to not consider such aspects of OWL 2 QL,
since their presence requires to burden our algorithms with some technicalities,
which represent very minor contributions of our approach. Also, such constructs
and axioms are rarely used in the practice, and in particular are never used in
the benchmark ontologies considered in our experimentations (cf. Section 4). We
notice however, that all the techniques presented in the following sections can be
extended to full OWL 2 QL with minimal adaptations. Other constructs, such
us symmetric or asymmetric roles, even though not explicitly mentioned, can be
easily expressed by the OWL 2 QL syntax we consider.

As for OWL 2 QL ABoxes, we do not present them here, since we concentrate
on intensional reasoning, and refer the interested reader to [20].

The semantics of OWL 2 QL ontologies and TBoxes is given in the standard
way [20,3]. We only recall here that, datatypes, i.e., value-domains, have a fixed
predefined interpretation, i.e., each datatype Ti is interpreted always in the same
way, denoted val(Ti), in every interpretation of the ontology. Notice also that
OWL 2 QL supports only OWL datatypes such that the intersection of the value
spaces of any set of these datatypes is either infinite or empty, i.e., for each i, j ∈
{1, . . . , n}, it holds either that val(Ti)∩val(Tj) is infinite or val(Ti)∩val(Tj) = ∅.
Graph Theory Notions. In this paper we use the term digraph to refer to a
directed graph. We assume that a digraph G is a pair (N , E), where N is a set of
elements called nodes, and E is a set of ordered pairs (s, t) of nodes in N , called
arcs, where s is denoted the source of the arc, and t the target of the arc.

The transitive closure G∗ = (N , E∗) of a digraph G = (N , E) is a digraph
such that there is an arc in E∗ having a node s as source and a node t as target
if and only if there is a path from s to t in G [4]. Let G = (N , E) be a digraph,
and let n be a node in N . We denote with predecessors(n,G) the set of nodes pn
in N such that there exists in E an arc (pn, n).

3 T -classification in OWL 2 QL

In this section we describe our approach to computing, given a signature ΣP

and an OWL 2 QL TBox T over ΣP , the T -classification of ΣP .



In OWL 2 QL, a subsumption relation between two concepts, roles, or at-
tributes in ΣP , can be inferred by a TBox T if and only if (i) T contains such
subsumption; (ii) T contains a set of positive inclusion assertions that together
entail the subsumption; or (iii), trivially, the subsumed concept, role, or attribute
is unsatisfiable in T . The above observation is formalized as follows.

Theorem 1. Let T be an OWL 2 QL TBox containing only positive inclusions,
and let S1 and S2 be two atomic concepts, two atomic roles, or two atomic
attributes. S1 v S2 is entailed by T if and only if at least one of the following
conditions holds:

1. a set P of positive inclusions exists in T , such that P |= S1 v S2;
2. T |= S1 v ¬S1.

Proof. (sketch) (⇐) This is trivially proven.
(⇒) Assume T |= S1 v S2. Towards a contradiction, suppose that both state-
ments 1 and 2 are false. If T |= S1 v S2 then the following cases are conceivable:

(a) S1 v S2 ∈ T , but this implies that statement 1 is true (contradiction);
(b) S1 v S2 /∈ T and S1 is satisfiable. Since statement 1 does not hold, it remains

that there exists a subset T ′ of T formed by positive inclusions and at least
one negative inclusion such that T ′ |= S1 v S2. It can be shown that in
OWL 2 QL negative inclusions do not concur in the entailment of positive
inclusions [6], and therefore S1 v S2 follows only from the positive inclusions
of T ′, which contradicts that statement 1 is false;

(c) S1 v S2 /∈ T and S1 is unsatisfiable. But then statement 2 is true (contra-
diction).

Given a OWL 2 QL TBox T over a signature ΣP , we use ΦT and ΩT to
denote two sets of positive inclusions of the form S1 v S2, with S1, S2 ∈ ΣP ,
such that ΦT contains only positive inclusions for which statement 1 holds, and
ΩT contains only positive inclusions for which statement 2 holds. It is easy to
see that ΦT and ΩT are not disjoint. From Definition 1 and Theorem 1 it follows
that the T -classification coincides with the union of the sets ΦT and ΩT .

In the following, we describe our approach to the computation of the T -
classification by firstly computing the set ΦT , and then computing the set ΩT .

Computation of ΦT . Given an OWL 2 QL TBox T , in order to compute ΦT ,
we encode the set of positive inclusions in T into a digraph GT and compute
the transitive closure of GT in such a way that each subsumption S1 v S2 in
ΦT corresponds to an arc (S1, S2) in such transitive closure, and vice versa. The
following constructive definition describes the appropriate manner to obtain the
digraph TBox representation for our aims.

Definition 2. Let T be an OWL 2 QL TBox over a signature ΣP . We call the
digraph representation of T the digraph GT = (N , E) built as follows:

1. for each atomic concept A in ΣP , N contains the node A;
2. for each atomic role P in ΣP , N contains the nodes P , P−, ∃P , ∃P−;



3. for each atomic attribute U in ΣP , N contains the nodes U and δ(U);
4. for each concept inclusion B1 v B2 ∈ T , E contains the arc (B1, B2);
5. for each role inclusion Q1 v Q2 ∈ T , E contains the arcs (Q1, Q2),

(Q−1 , Q
−
2 ), (∃Q1 ,∃Q2), and (∃Q−1 ,∃Q

−
2 );

6. for each attribute inclusion U1 v U2 ∈ T , E contains the arcs (U1, U2) and
(δ(U1), δ(U2));

7. for each concept inclusion B1 v ∃Q.A ∈ T , E contains the arc (B1,∃Q);
8. for each concept inclusion B1 v δF (U) ∈ T , E contains the arc (B1, δ(U)).

The idea is that each node in the digraph GT represents a basic concept,
a basic role or an attribute, and each arc models a positive inclusion, i.e., a
subsumption, contained in T , where the source node of the arc represents the
left-hand side of the subsumption and the target node of the arc represents the
right-hand side of the subsumption. Observe that for each role inclusion assertion
P1 v P2 in the TBox T , we also represent as nodes and arcs in the digraph GT
the entailed positive inclusions P−1 v P−2 , ∃P1 v ∃P2, and ∃P−1 v ∃P

−
2 . We

operate in a similar fashion for positive inclusions on attributes in T .
Let T be an OWL 2 QL TBox and let GT = (N , E) be its digraph represen-

tation. We denote with G∗T = (N , E∗) the transitive closure of GT . Note that by
definition of digraph transitive closure, for each node n ∈ N there exists in E∗
an arc (n, n). Moreover, in what follows, we denote with α(E∗) the set of arcs
(S1, S2) ∈ E∗ such that both terms S1 and S2 denote in T either two atomic
concepts, two atomic roles, or two attributes. Then, the following property holds.

Theorem 2. Let T be an OWL 2 QL TBox and let GT = (N , E) be its digraph
representation. Let S1 and S2 be two atomic concepts, two atomic roles, or two
atomic attributes. An inclusion assertion S1 v S2 belongs to ΦT if and only if
there exists in α(E∗) an arc (S1, S2).

Proof. (sketch) (⇐) This is trivially proven.
(⇒) To prove the thesis we need to introduce the notion of chase for an OWL
2 QL ontology, which is analogous to the notion of chase given in [6,8]. We first
note that every positive inclusion in the TBox can be formulated as a FOL
implication of the form

∀x,y.S(x,y)→ ∃z.ψ(x, z) (1)

where S is an atomic concept, an atomic attribute, or an atomic role, ψ is a
single atom or a conjunction of two atoms constructed on predicates of ΣP , x
is a vector of one or two variables, y and z are vectors of one or zero variables,
i.e., they may be missing. For example, a positive inclusion of the form A1 v A2

is written as ∀x.A1(x)→ A2(x), the positive inclusion ∃P−1 v ∃P2.A is written
as ∀x, y.P1(x, y) → ∃z.P2(y, z) ∧ A(z), or the inclusion U1 v U2 is written as
∀x, y.U1(x, y)→ U2(x, y).

Now, let O = 〈T ,A〉 be an OWL 2 QL ontology. Our notion of chase is given
inductively as follows. We pose chase0(O) = A, and for every non-negative
integer i, we define chasei+1(O) as the set of ABox assertions obtained from
chasei(O) by applying the following rule:



Chase Rule. Let I be a positive inclusion in T of the form (1). Let h
be a homomorphism from S(x,y) to chasei(O) such that h(S(x,y)) =
S(a, b), and such that there is no extension of h to a homomorphism
h′ from S(x,y) ∧ ψ(x, z) to chasei(O) (we say in this case that I is
applicable to S(a, b)). Then chasei+1(O) = chasei(O)∪{ψ(a, n)}, where
n is a fresh constant, i.e., a constant in ΣC not occurring in chasei(O),
if z is a single variable in (1), or chasei+1(O) = chasei(O) ∪ {ψ(a)}, if
z is absent in (1). We say that chasei+1(O) is obtained from chasei(O)
via application of the positive inclusion I to S(a, b).

We assume that the chase rule is always executed in such a way that if a positive
inclusion I becomes applicable to an ABox assertion β in a certain chasei(O),
then there exists j > i such that chasej(O) is obtained from chasej−1(O) via
application of I to α. Then, we call chase of O, denoted chase(O), the set of
ABox assertions obtained as the infinite union of all chasei(O), i.e., chase(O) =⋃

i∈N chasei(O). Associated to the chase, we consider the so-called canonical
interpretation of O, denoted can(O), in which every constant is interpreted by
itself, and for every predicate S, we have that Scan(O) = {a | S(a) ∈ chase(O)}.
It is possible to show that can(O) is a model of O [6].

Let us now turn back to our proof, and show that from the fact that an arc
(A1, A2) /∈ α(E∗), where A1 and A2 are atomic concepts, it follows that there
does not exist a set P of positive inclusions in T such that P |= A1 v A2. The
cases of arcs between nodes corresponding to roles or attributes can be proved
analogously. Let us consider any set P ⊆ T of positive inclusions. To prove the
thesis we construct a model I of P and show that if (A1, A2) /∈ α(E∗), I is
not a model of A1 v A2. To this aim, we consider the ABox AA1

= {A1(d)},
where d is a constant in ΣC , and the canonical interpretation can(OP ) of the
ontology OP = 〈P,AA1〉, i.e., the model associated to chase(OP ). Since can(OP )
is a model of OP , it is also a model of P. We show now that can(OP ) is not
a model of A1 v A2. Let us denote with chasei(OP ) the chase obtained after
i applications of the chase rule. We can now show that chasei(OP ) contains
an ABox assertion of the form A(d) (resp. P (d, n), P (n, d), or U(d, n)) if and
only if there exists an arc from A1 to A (resp. to ∃P , ∃P−, or δ(U)) in G∗P .
The if direction of this property can be easily verified. For the only if direction
we proceed by induction on the construction of the chase. The base step is
indeed trivial. As for the inductive step, various cases are possible. We consider
here the case in which chasei+1(OP ) contains the fact A(d) that is generated
from chasei(OP ) by applying the axiom A′ v A of P (in fact its FOL version,
according to our definition of chase). This means that chasei(OP ) contains the
ABox assertion A′(d), and, by the inductive hypothesis, G∗P contains the arc
(A1, A

′). It is easy then to see that G∗P contains the arc (A1, A). Other possible
cases can be proved in an analogous way. It is now very easy to conclude that
can(OP ) is not a model of A1 v A2, since the arc (A1, A2) is not in α(E∗).

We can then easily construct an algorithm, called ComputeΦ, that, taken as
input an OWL 2 QL TBox T , first builds the digraph GT = (N , E) according



to Definition 2, then computes its transitive closure, and finally returns the set
ΦT , which contains an inclusion assertion S1 v S2 for each arc (S1, S2) ∈ α(E∗).

According to Theorem 2, ComputeΦ is sound and complete with respect to
the problem of computing ΦT for any OWL 2 QL TBox T containing only
positive inclusions.

Computation of ΩT . In OWL 2 QL, unsatisfiability of concepts, roles, and at-
tributes can mainly arise due to a malicious interaction of negative and positive
inclusions. However, also disjoint value-domains, i.e., datatypes having empty
intersection of their value spaces, can cause unsatisfiability. This can happen,
due to the presence in the TBox of ill-defined value-domain inclusions, which
can make one derive contradictory information. For instance, consider the TBox
T containing the assertions ρ(U) v xsd:dateTime and ρ(U) v xsd:integer.
Since the xsd:dateTime and xsd:integer datatypes are disjoint, we have that
T |= U v ¬U . The detection of the situation above described is rather technical,
and does not add particular value to our overall technique for identification of
unsatisfiable predicates. Furthermore, this situation is quite rare in the practice
(for example, no ill-typed attributes are present in the benchmark ontologies
used in Section 4). Therefore, for the sake of presentation, we prefer here to not
consider this case, and assume that the TBox does not contain value-domain in-
clusions. Furthermore, since under such assumption the treatment of attributes
and roles is analogous, we limit here our attention to the case where the TBox
does not contain axioms involving attributes. All results given below apply how-
ever also to full-fledged OWL 2 QL TBoxes.

We first observe that, according Definition 2, no node corresponding to a
qualified existential role is created in the TBox digraph representation. This
kind of node is indeed not useful for computing ΦT . Differently, if one aims to
identify every cause of unsatisfiability, the creation of nodes corresponding to a
qualified existential role is needed. This is due to the fact that a TBox may entail
that a qualified existential role ∃P.A is unsatisfiable, even in case of satisfiability
of ∃P . Specifically, this may occur in two instances: (i) if the TBox T entails
the assertion ∃P− v ¬A, and (ii), the TBox T entails A v ¬A. Clearly, in both
cases the concept ∃P.A is unsatisfiable. We therefore modify here Definition 2
by substituting Rule 7 with the following one:

7∗. for each concept inclusion B1 v ∃Q.A ∈ T , N contains the node ∃Q.A, and
E contains the arches (B1,∃Q.A) and (∃Q.A,∃Q);

From now on, we adopt the digraph representation built according to Defi-
nition 2, where rule 7∗ replaces rule 7, and, according to the above assumptions,
we consider only OWL 2 QL TBoxes that do not contain axioms involving at-
tributes in ΣP . Given one such TBox T over a signature ΣP , the algorithm
computeUnsat given in Figure 1 returns all unsatisfiable concepts and roles in
ΣP , by exploiting the transitive closure of the digraph representation of T .

Before describing the algorithm, we recall that, given a digraph G = (N , E)
and a node n ∈ N , the set predecessors(n,G∗) contains all those nodes n′ in N
such that G∗ contains the arc (n′, n), which means that there exists a path from n′



Algorithm: computeUnsat
Input: an OWL 2 QL TBox T
Output: a set of concept and role expressions
foreach negative inclusion S1 v ¬S2 ∈ T do /* step 1 */

foreach n1 ∈ predecessors(S1,G∗T ) do
foreach n2 ∈ predecessors(S2,G∗T ) do

if n1 = n2

then Emp← Emp ∪ {n1};
if (n1 = ∃Q− and n2 = A) or (n2 = ∃Q− and n1 = A)
then Emp← Emp ∪ {∃Q.A};

Emp′ ← ∅;
while Emp 6= Emp′ do /* step 2 */

Emp′ ← Emp;
foreach S ∈ Emp′ do

foreach n ∈ predecessors(S,G∗T ) do
Emp← Emp ∪ {n};
if n = P or n = P− or n = ∃P or n = ∃P−
then Emp← Emp ∪ {P, P−,∃P,∃P−};
if there exists B v ∃Q.n ∈ T
then Emp← Emp ∪ {∃Q.n};

return Emp.

Fig. 1: The algorithm computeUnsat(T )

to n in G. Also, it can be shown that G∗T allows in fact to obtain all subsumptions
between satisfiable basic concepts or roles, in the sense that the TBox T infers
one such subsumption S1 v S2 if and only if there is an arc (S1, S2) in E∗. Then,
the two steps that compose the algorithm proceed as follows:

Step 1 Let S be either a concept expression or a role expression. We have
that for each Si ∈ predecessors(S,G∗T ) the TBox T entails Si v S.
Hence, given a negative inclusion assertion S1 v ¬S2, for each Si

1 ∈
predecessors(S1,G∗T ) and for each Sj

2 ∈ predecessors(S2,G∗T ), T |= Si
1 v

¬Sj
2. Therefore, for each negative inclusion S1 v ¬S2 ∈ T , the algo-

rithm computes the set predecessors(S1,G∗T ) and predecessors(S2,G∗T ) and
is able to: (i) recognize as unsatisfiable all those concepts and roles
whose corresponding nodes occur in both the set predecessors(S1,G∗T ) and
predecessors(S2,G∗T ), and (ii) identify those unsatisfiable qualified exis-
tential roles ∃Q.A whose inverse existential role node ∃Q− occurs in
predecessors(S1,G∗T ) (resp. predecessors(S2,G∗T )) and whose concept node A
occurs in predecessors(S2,G∗T ) (resp. predecessors(S1,G∗T )), which indeed im-
plies ∃Q− v ¬A and therefore unsatisfiability of ∃Q.A.

Step 2 Further unsatisfiable concepts and roles are identified by the algorithm
through a cycle in which: (i) if a concept or role S is in Emp, then all the ex-
pressions corresponding to the nodes in predecessors(S,G∗T ) are in Emp. This
captures propagation of unsatisfiability through chains of positive inclusions;
(ii) if at least one of the expressions P, P−,∃P,∃P− is in Emp, then all four
expressions are in Emp; (iii) for each expression ∃Q.A in N , if A ∈ Emp,
then ∃Q.A ∈ Emp. We notice that the algorithm stops cycling when no new



expressions of the form ∃Q or ∃Q.A are added to Emp (indeed, in this case
only a single further iteration may be needed).

It easy to see that, by virtue of the fact that the size of the set N of the
digraph representation of the TBox T is finite, computeUnsat(T ) terminates,
and that the number of executions of the while cycle is less than or equal to |N |.

The following theorem shows that algorithm computeUnsat can be used for
computing the set containing all the unsatisfiable concepts and roles in T .

Theorem 3. Let T be an OWL 2 QL TBox without axioms involving attributes
and let S be either an atomic concept or an atomic role in ΣP . T |= S v ¬S if
and only if S ∈ computeUnsat(T ).

As already said, it is easy to extend computeUnsat in such a way that it
returns all unsatisfiable atomic concepts, atomic roles, and attributes occurring
in general OWL 2 QL TBoxes. Therefore, we can restate Theorem 3 considering
OWL 2 QL ontologies with also attributes and value-domain inclusions, and
S that can be also an attribute. As an immediate consequence of this, we can
compute the set ΩT of all “trivial” inclusion assertions inferred by an OWL 2 QL
ontology T , by means of the unsatisfiable predicates identified by computeUnsat.
We call ComputeΩ the algorithm that, taken T as input, returns ΩT by making
use of computeUnsat.

The following theorem, which is a direct consequence of Theorem 2 and of
(the generalized version of) Theorem 3, states that our technique is sound and
complete with respect to the problem of classifying an OWL 2 QL TBox.

Theorem 4. Let T be an OWL 2 QL TBox and let S1 and S2 be either two
atomic concepts, two atomic roles, or two attributes. T |= S1 v S2 if and only
if S1 v S2 ∈ ComputeΦ(T ) ∪ ComputeΩ(T ).

4 Implementation and Evaluation

By exploiting the results presented in Section 3, we have developed a Java-based
OWL 2 QL classification module for the QuOnto reasoner [1,5,7].

This module computes the classification of an OWL 2 QL TBox T by adopt-
ing the technique described in Section 3. In this implementation the transitive
closure of the digraph GT is based on a breadth first search through GT .

We have performed comparative experiments, where QuOnto was tested
against several popular ontology reasoners. Specifically, during our test we com-
pared ourselves with the Fact++ [23], Hermit [9], and Pellet [22] OWL reasoners,
and with the CB [14] Horn SHIQ reasoner, and with the ELK [15] reasoner for
those ontologies that are also in OWL 2 EL.

The ontology suite used during testing includes twenty OWL ontologies, as-
sembled from the TONES Ontology Repository1 and from other independent

1 http://owl.cs.manchester.ac.uk/repository/

http://owl.cs.manchester.ac.uk/repository/


Table 1: In the table the Original and OWL 2 QL axioms fields indicate respec-
tively the total number of axioms in the original version of the ontology and in
the OWL 2 QL-approximated version. The Negative inclusion field reports the
number of negative inclusions in the OWL 2 QL-approximated version.

Ontology Concepts Roles Attributes
Original DL

fragment
Original
axioms

Owl 2 QL
axioms

Negative
inclusions

Mouse 2753 1 0 ALE 3463 3463 0
Transportation 445 89 4 ALCH(D) 931 931 317
DOLCE 209 313 4 SHOIN(D) 1736 1991 45
AEO 760 47 16 SHIN(D) 3449 3432 1957
Gene 26225 4 0 SH 42655 42655 3
EL-Galen 23136 950 0 ELH 46457 48026 0
Galen 23141 950 0 ALEHIF+ 47407 49926 0
FMA 1.4 6488 165 0 ALCOIF 18612 18663 0
FMA 2.0 41648 148 20 ALCOIF(D) 123610 118181 0
FMA 3.2.1 84454 132 67 ALCOIF(D) 88204 84987 0
FMA-OBO 75139 2 0 ALE 119558 119558 0

sources. The six reasoners exhibited negligible differences in performance for the
majority of the smaller tested ontologies, so we will only discuss the ontologies
which offered interesting results, meaning those on which reasoning times are
significantly different for at least a subset of the reasoners.

These ontologies include: the Mouse ontology; the Transportation on-
tology2; the Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE) [18]; the Athletic Events Ontology (AEO)3; the Gene Ontology
(GO) [2]; two versions of the GALEN ontology [21]; and four versions of the
Foundational Model of Anatomy Ontology (FMA) [10].

Because QuOnto is an OWL 2 QL reasoner, each benchmark ontology
was preprocessed prior to classification in order to fit OWL 2 QL expressiv-
ity. Therefore, every OWL expression which cannot be expressed by OWL 2 QL
axioms was approximated from the ontology specifications. This approximation
follows this procedure: each axiom in the ontology is fed to an external reasoner,
specifically Hermit, and every OWL 2 QL-compliant axiom that is implied from
that axiom, between the ontology symbols that appear in it, is added to the
OWL 2 QL-approximated ontology. For instance, the OWL assertion Equiva-
lentClasses(ObjectUnionOf(:Male :Female) :Person) is approximated by the two
assertions SubClassOf(:Male :Person) and SubClassOf(:Female :Person). Note
that, as is the case in this example, the OWL 2 QL-approximated ontology may
contain a greater number of axioms than the original ontology.

During the tests for each reasoner, classification was performed on the OWL
2 QL-compliant versions of the ontologies resulting from the above described
preprocessing. Metrics about the ontologies are reported in Table 1.

All tests were performed on a DELL Latitude E6320 notebook with Intel
Core i7-2640M 2.8Ghz CPU and 4GB of RAM, running Microsoft Windows 7
Premium operating system, and Java 1.6 with 2GB of heap space. Classification
timeout was set at one hour, and aborting if maximum available memory was

2 http://www.daml.org/ontologies/409
3 http://www.boemie.org/deliverable d 3 5



Table 2: Classification times of benchmark OWL 2 QL ontologies by QuOnto and
other tested reasoners.

Ontology QuOnto FaCT++ HermiT Pellet CB ELK

Mouse 0.156 0.282 0.296 0.179 0.159 0.246
Transportation 0.150 0.045 0.163 0.151 0.195 0.343
DOLCE 1.327 0.245 25.619 1.696 1.358 —
AEO 0.650 0.743 0.920 0.647 0.605 —
Gene 1.255 1.400 3.810 2.803 1.918 1.419
EL-Galen 2.788 109.835 7.966 50.770 2.446 1.205
Galen 4.600 145.485 34.608 timeout 2.505 —
FMA 1.4 0.688 timeout 93.781 timeout 1.243 —
FMA 2.0 4.111 out of memory out of memory timeout 7.142 —
FMA 3.2.1 4.146 4.576 11.518 24.117 4.976 —
FMA-OBO 4.827 timeout 50.842 16.852 7.433 4.078

exhausted. All figures reported in Table 2 are in seconds, and, because classifi-
cation results are subject to minor fluctuation, particularly when dealing with
large ontologies, are the average of 3 classifications of the respective ontologies
with each reasoner. The following versions of the OWL reasoners were tested:
Fact++ v.1.5.34, HermiT v.1.3.65, Pellet v.2.3.06, CB v.127, and ELK v.0.3.28.

In our test configuration, the classifications of the FMA 2.0 ontology by the
Hermit and FaCT++ reasoners terminate due to an out-of-memory error. In [9],
classification of this ontology by the Hermit reasoner is performed successfully,
but classification time far exceeds the one registered by QuOnto.

The results of the experiments are summarized in Table 2. These results
confirm that the performance offered by QuOnto compares favorably to other
reasoners for almost all tested ontologies. Classification for even the largest of the
tested ontologies, i.e., the FMA-OBO and FMA 3.2.1 ontologies, is performed
in under 5 seconds, and memory space issues were never experienced during
our tests with QuOnto. For some test cases, the gap in performance between
QuOnto and other reasoners is sizeable: for instance, classification by Pellet of
the Galen and FMA (1.4 and 2.0) and by FaCT++ of the FMA (1.4 and OBO)
ontologies exceeds the predetermined timeout limit of one hour.

Detailed analysis of the results provided in Table 2 shows that only the CB
and ELK reasoners consistently display comparable performances to QuOnto,
which is fastest for all ontologies which feature only positive inclusions, with the
exception of the EL-Galen, Galen, and FMA-OBO ontologies. The CB reasoner,
which is the best-performing reasoner for the Galen ontology, does not however
always perform complete classification. For instance, it does not compute prop-
erty hierarchies. The ELK reasoner instead is slower than QuOnto for three
out of the five ontologies also in OWL 2 EL, showing instead markedly better
performance for EL-Galen.

4 http://code.google.com/p/factplusplus/
5 http://hermit-reasoner.com/
6 http://clarkparsia.com/pellet
7 http://code.google.com/p/cb-reasoner/
8 http://code.google.com/p/elk-reasoner/

http://code.google.com/p/factplusplus/
http://hermit-reasoner.com/
http://clarkparsia.com/pellet
http://code.google.com/p/cb-reasoner/
http://code.google.com/p/elk-reasoner/


Furthermore, if, as it is usually the case, an ontology does not present unsat-
isfiable predicates, the computation of such predicates through the exploration
of all negative inclusions can be avoided. This is the case for ontologies such
as DOLCE and AEO, for which computation of the set ΦT of positive inclusion
assertions resulting from the transitive closure of GT is performed respectively in
0.347 and 0.384 seconds, fastest among tested reasoners. Instead, for ontologies
such as Pizza and Transportation, which feature respectively 2 and 62 unsatis-
fiable atomic concepts, the identification of all such predicates is unavoidable,
and the resulting set of trivial inclusion assertions must be added to ΩT .

5 Conclusions

The research presented in this paper can be extended in various directions. First
of all, in the implementation of our technique we have adopted a naive algorithm
for computing the digraph transitive closure. We are currently experimenting
more sophisticated and efficient techniques for this task. We are also working
to optimize the procedure through which we identify unsatisfiable predicates.
Finally, we are working to extend our technique to compute all inclusions that are
inferred by the TBox (which, in OWL 2 QL, are a finite number). In this respect,
we notice that through G∗T it is already possible to obtain the classification of all
basic concepts, basic roles, and attributes, and not only that of predicates in the
signature, and that, with slight modifications of computeUnsat, we can actually
obtain the set of all negative inclusions inferred by an OWL 2 QL TBox. The
remaining challenge is to devise an efficient mechanism to obtain all inferred
positive inclusions involving qualified existential roles and attribute domains.

Acknowledgments. This research has been partially supported by the EU
under FP7 project Optique – Scalable End-user Access to Big Data (grant n.
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