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ABSTRACT
In ontology-based data access (OBDA), an ontology is connected to
autonomous, and generally pre-existing, data repositories through
mappings, so as to provide a high-level, conceptual view over such
data. User queries are posed over the ontology, and answers are
computed by reasoning both on the ontology and the mappings.
Query answering in OBDA systems is typically performed through
a query rewriting approach which is divided into two steps: (i) the
query is rewritten with respect to the ontology (ontology rewriting
of the query); (ii) the query thus obtained is then reformulated over
the database schema using the mapping assertions (mapping rewrit-
ing of the query). In this paper we present a new approach to the
optimization of query rewriting in OBDA. The key ideas of our ap-
proach are the usage of inclusion between mapping views and the
usage of perfect mappings, which allow us to drastically lower the
combinatorial explosion due to mapping rewriting. These ideas are
formalized in PerfectMap, an algorithm for OBDA query rewrit-
ing. We have experimented PerfectMap in a real-world OBDA
scenario: our experimental results clearly show that, in such a sce-
nario, the optimizations of PerfectMap are crucial to effectively
perform query answering.

1. INTRODUCTION
While the amount of data managed by current information sys-

tems and the processes acting on such data continuously grow, turn-
ing these data into information, and governing both data and pro-
cesses are still tremendously challenging tasks for even small orga-
nizations. The problem is complicated by the proliferation of both
data sources and services that are relevant for the organization. Sev-
eral factors combine to explain why such a proliferation constitutes
a major problem with respect to the goal of carrying out effective
data governance tasks. Firstly, the data sources are often created for
serving specific applications, and they lack mechanisms for com-
paring, combining, and reconciling their content with the one of
other data sources. Secondly, it is common practice to change
a data source (e.g., a database) so as to adapt it both to specific
application-dependent needs, or to new requirements, with little or
no attention to keeping the documentation up-to-date. Finally, the
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data stored in different sources and the processes operating over
them tend to be redundant, and mutually inconsistent, mainly be-
cause of the lack of central, coherent and unified coordination of
data management tasks.

All the above observations show that a unified access to data
and an effective governance of data are extremely difficult goals to
achieve in modern information systems. Yet, both are crucial ob-
jectives for getting useful information out of the information sys-
tem. This explains why organizations spend a great deal of time
and money for the understanding, the governance, the curation, and
the integration of data stored in different sources, and of the pro-
cesses/services that operate on them, and why this problem is often
cited as a key and costly Information Technology challenge faced
by medium and large organizations today [1].

Ontology-based data access [16] (OBDA) is a promising direc-
tion for addressing the above challenges. OBDA is a new paradigm
for accessing data, whose key idea is to resort to a three-level ar-
chitecture, constituted by the ontology, the data sources, and the
mapping between the two. The ontology is a formal description of
the domain of interest, and is the heart of the whole system. The
data sources are the repositories used in the organization by the var-
ious processes and the various applications. The mapping layer ex-
plicitly specifies the relationships between the domain concepts on
the one hand and the data sources on the other hand. Notice that,
the ontology and the corresponding mappings to the data sources
provide a common ground for the documentation of all the data in
the organization, with clear advantages for the governance and the
management of the information system.

In this sense, OBDA can be seen as a form of information in-
tegration, where the usual global schema is replaced by the con-
ceptual model of the domain of interest, formulated as an ontology
expressed in a logic-based language. With this approach, the in-
tegrated view that an OBDA system provides to information con-
sumers is not merely a data structure accommodating the various
data at the sources, but a semantically rich description of the rele-
vant concepts in the domain of interest, as well as the relationships
(called “roles”) between such concepts. As in information inte-
gration, one of the most important tasks that an OBDA system is
required to carry out is to allow a client to query the data through
the global unified view represented by the ontology. Such task is
the focus of this paper. In particular, it is the responsibility of the
OBDA system to compute the answer to the queries posed in terms
of the ontology. Such queries are expressions that use the predi-
cates defined in the ontology, and should be answered by reasoning
on the ontology and on the mappings, and by accessing the appro-
priate data sources to collect the correct data to return to the client.

Query answering in OBDA is currently a hot research topic (see
e.g., [5, 19, 4, 13, 2, 9]). One of the outcomes of this research is a



detailed study of the complexity of query answering. In particular,
the study of OBDA has focused on understanding which languages
for the ontology and for the mappings allow query answering to be
performed with reasonable computational complexity with respect
to the size of the data. It is now well known that query answering
can be performed efficiently only if (i) the ontology is expressed in
a lightweight ontology language, and (ii) the mappings are of type
GAV (Global-As-View) [6]. We remind the reader that, while in
the LAV (Local-As-View) approach, every data source is described
in terms of a view over the ontology, in the GAV approach, the data
sources are mapped to the ontology by associating to each predicate
in the ontology a query over the data sources [15]. Notably, it has
been shown that, with lightweight ontology languages, and with
GAV mappings, conjunctive queries are first-order rewritable, i.e.,
answering (unions of) conjunctive queries ((U)CQs) expressed over
the ontology can be reduced to the evaluation of a suitable first-
order query (called the perfect rewriting of the original query, and
computed on the basis of the original query, the ontology, and the
mapping) expressed over the data sources.
The problem. As we said before, many recent papers on OBDA
have concentrated on understanding how reasoning on the ontol-
ogy affects the process of query answering. For this reason, most
of them refer to a simplified framework of OBDA, in which the
data sources are constituted by ad-hoc data stores accommodating
the instances of the concepts and the relationships of the ontology.
Obviously, in such a simplified setting, mappings reduce to direct
correspondences between the ontology predicates and the tables in
the data stores, and do not pose any challenge to query answering.

In the present work, we address the full-fledged OBDA scenario,
i.e., the situation where the data of the OBDA system are located in
the sources of the organization, and a (complex) mapping is used to
relate such data with the domain ontology. In order to simplify the
exposition, we assume that all such data sources are wrapped into
a single relational database, and the mappings are used to reconcile
the view of the domain represented by the ontology with the data
stored in such relational database. We observe that assuming that
the data sources are represented as a single database is a realistic as-
sumption, because, even if they are distributed and heterogeneous,
they can be easily wrapped into a single relational store by means
of a data federation tool. More precisely, here is the list of assump-
tions that we make in our work:

• the OBDA system comprises a single relational (SQL) data
source;

• the mapping assertions are of type GAV, and therefore spec-
ify suitable correspondences between each predicate of the
ontology and appropriate queries over the relational data
source;

• the language used to express the ontology allows first-order
rewritability (actually UCQ-rewritability, see later) of con-
junctive queries.

As we already mentioned, under the above assumptions, the most
effective approach to query answering in OBDA systems is through
query rewriting. According to this approach, query answering is
divided into two steps:

1. The original query is first rewritten with respect to the ontol-
ogy into a new query over the ontology; we call this step the
ontology rewriting of the query;

2. The query thus obtained is then reformulated over the source
database schema using the mapping assertions; we call this
step the mapping rewriting of the query.

While in recent years we have seen many approaches to the on-
tology rewriting step and its optimizations, (see, e.g., [5, 22, 23,
9]), very little has been done towards the optimization the mapping
rewriting step. Note that mapping rewriting is also relevant in data
integration. However, the literature on data integration has mainly
focused on the LAV approach to mappings [17, 20, 12], where
mapping rewriting is a form of view-based query rewriting, a well-
known NP-complete problem. Differently, query answering under
GAV mappings does not suffer from the intractability problem, and
has been considered somehow trivial. Indeed, a naive approach
to GAV mapping rewriting consists of grouping all SQL queries
mapping the same ontology concept (or role) to the database into a
single query, in such a way that such single query becomes a view
constituted by the union of all original SQL queries. After this step,
performing the mapping rewriting of an ontology query is trivial,
since every concept and role can be simply rewritten in terms of
the database view associated with it by the mappings. This method
produces a compact final SQL query to be sent to the sources, i.e.,
an SQL query of size polynomial with respect to the input of the
mapping rewriting step. Unfortunately, this approach is unfeasible
in practice, since, even under relatively simple mappings and un-
der empty ontologies, the final queries to be executed at the source
database are too complex to be handled by current SQL engines.
This is due to the fact that such engines are not able to optimize the
execution of queries with complex nested expressions, such as the
ones using views with complex unions.

The conclusion is that grouping all mappings relative to the same
concept or role into a single SQL query is not a good idea. If,
however, we keep such queries separate, i.e., we keep several map-
ping assertions for the same element of the ontology, and we target
our rewriting towards (unions of) conjunctive queries, thus avoid-
ing complex nested expressions in the final query, we have to face a
different problem. Indeed, in this case, when processing the query
atom corresponding to conceptC, the mapping rewriting algorithm
is forced to combine the various queries in the mappings in all pos-
sible ways into the final rewriting, and this may very well produce
a final SQL query whose size is exponential with respect to the size
of the initial query and the size of the mappings. For instance, if the
query to be rewritten with respect to the mappings is a CQ with 10
atoms, and the predicate of each atom is mapped to 4 SQL queries,
then the mapping rewriting step produces a rewritten query which
is the union of 410 SQL queries, i.e., over 1 million SQL disjuncts.
That is, even if the ontology query is not very large, the size of the
rewriting might be too large to be handled by any SQL engine.

In fact, according to our experiments in real world scenarios,
the mapping rewriting phase is a bottleneck of query rewriting
in OBDA, even under GAV mappings. In particular, computing
the mapping rewriting of a CQ may be prohibitive if the map-
ping is even moderately complex. Note that this is very likely the
case when the “cognitive distance” between the ontology and the
database is significant, e.g., when the ontology is a domain concep-
tualization independent of the source database schema.

Our proposal. The starting point of our work is that the ex-
periments we have carried out in various applications of OBDA
showed that the above mentioned combinatorial explosion can be
often avoided. Indeed, in many cases, several subqueries of the fi-
nal union of SQL subqueries are actually redundant, i.e., contained
into other subqueries. So, in principle it is possible to optimize the
mapping rewriting phase by limiting the combinatorial explosion,
in particular if we could exploit the knowledge on containment be-
tween the SQL subqueries used in the mapping. Note that checking
containment of arbitrary SQL queries is an undecidable problem,
and therefore it might seem unfeasible to base the optimization on



the ability to perform such check. Fortunately, there are two ob-
servations that make the idea applicable. Firstly, there are classes
of (relatively simple) SQL queries for which the problem becomes
actually decidable. Secondly, even sound and incomplete contain-
ment checking algorithms (i.e., algorithms that do not guarantee to
discover all containments) make sense in this context. Indeed, dis-
covering even a small number of containments between SQL sub-
queries can drastically lower the size of the final SQL query, thus
making query answering over the OBDA system feasible.

Based on the above considerations, our experience in real world
OBDA scenarios led us to propose the following optimizations:

1. We use intermediate predicates, called view predicates, to de-
note views in the mappings, and split the mapping rewriting
phase into two steps, called high-level and low-level mapping
rewriting, respectively. This allows us to limit the size of the
final rewritten query on the one hand, and to exploit further
optimizations of the rewritten query without reasoning about
SQL expressions.

2. We add view inclusions to the OBDA specification, i.e., in-
clusion assertions between (projections of) the SQL queries
used in mapping assertions, or, more precisely, between the
corresponding view predicates. Based on such inclusions,
we are able to eliminate conjunctive queries contained into
other conjunctive queries of the rewritten query.

3. Although already very useful, the optimization step based
on view inclusions is not sufficient in general to consider-
ably lower the combinatorial explosion previously described,
since it is applied only after generating the unoptimized map-
ping rewriting of the query. We therefore propose a further
optimization of the whole query rewriting process, based on
the use of so-called perfect mapping assertions. These are
special assertions logically entailed by the OBDA specifi-
cation, which allow for handling whole subqueries as sin-
gle atoms both in the ontology rewriting and in the mapping
rewriting process. We show that their usage leads to a dras-
tic reduction of the combinatorial explosion of the mapping
rewriting phase.

We combine all the above techniques in PerfectMap, an algo-
rithm for computing the perfect rewriting of UCQs in OBDA sys-
tems. Notably, PerfectMap abstracts away from the specific lan-
guage used for defining the ontology and the technique used for the
ontology rewriting step, which is used as a black box. The only
assumption that PerfectMap makes on such a technique is that it
is able to produce a UCQ as ontology rewriting of the input query,
which is a realistic assumption in current OBDA approaches [5, 9,
18, 3].
Evaluation. We have tested an implementation of the Per-
fectMap algorithm within the MASTRO [4] OBDA system, in
which ontologies are specified in the lightweight Description Log-
ics DL-LiteA [19]. In this implementation, PerfectMap makes use
of the algorithm Presto [24] to realize the ontology rewriting step1.

We have used this system in an OBDA project funded by the Ital-
ian Ministry of Economy and Finance. Within this project, we have
experienced the limits of the previous techniques for OBDA query
answering. Indeed, in this scenario, a large part of the queries corre-
sponding to the real information needs of the administration could
not be effectively processed by the system: within a 4-hour time-
out, we could actually execute only 6 out of the 40 queries which
were initially extracted by the reports used by the administration.
1In fact, Presto returns a non-recursive Datalog program, which in
our implementation of PerfectMap is unfolded to obtain a UCQ.

An analysis of the problem highlighted that the queries produced
by the mapping rewriting were highly redundant: in particular, such
queries could be drastically simplified by exploiting the contain-
ment relationship between many SQL queries used in mapping as-
sertions. We thus were able to specify a significant number of view
inclusions; then, we experimented the PerfectMap-based version
of MASTRO on this extended specification.

Our experimental results show that query answering based on
the PerfectMap query rewriting technique outperforms the previ-
ous unoptimized technique (in particular, all the 40 relevant queries
could be executed within a few seconds by the system). In the final
part of the paper, we present a fragment of the ontology and the
mapping used in our experimental setting, and a set of results about
query answering. These results, summarized in Figure 3, clearly
show the improvement in the performance due to the PerfectMap
algorithm (and the different optimizations).

Structure of the paper. In the following, after some preliminaries
given in Section 2, we define our notion of OBDA system specifica-
tion, which includes the definition of inclusions between database
views, and introduce the notion of OBDA perfect rewriting (Sec-
tion 3). Then, in Section 4, we define an algorithm for comput-
ing OBDA perfect rewritings and discuss the limits of the above
query rewriting technique. In Section 5, we introduce the notion
of perfect mapping for an OBDA system specification, and then,
in Section 6, we define the algorithm PerfectMap, which exploits
perfect mappings to optimize the computation of OBDA perfect
rewritings. In Section 7, we present a set of experimental results,
conducted in a real-world OBDA scenario, which show how Per-
fectMap improves query answering over OBDA systems. We then
discuss some related work in Section 8, and finally conclude the
paper in Section 9.

2. PRELIMINARIES
In this section we discuss some preliminary notions on ontolo-

gies and relational databases.
In OBDA, we consider three pairwise disjoint alphabets: an al-

phabet Pred of predicate symbols, an alphabet Const of constant
symbols, and an alphabet Var of variable symbols. The alphabet
Pred is partitioned into two alphabets: the ontology predicate al-
phabet ΣO , and the database predicate alphabet ΣR.

A database instance, or simply a database, is a set of ground
atoms over the predicates in ΣR and the constants in Const . To
express queries over databases, we use SQL. Given an n-tuple of
variables ~x = x1, . . . , xn, we use the notationQDB (~x) for an SQL
query of arity n, where every xi denotes the i-th attribute of the
query2. When the specification of the attributes ~x is not necessary,
we simply use QDB to denote SQL queries. Given an SQL query
QDB and a database instance D, we denote by Ans(QDB , D) the
set of tuples computed by evaluating QDB over D.

An ontology is a conceptualization of a domain of interest ex-
pressed in terms of a formal language. Here, we consider logic-
based languages, and, more specifically, Description Logics (DLs).
Generally speaking, an ontologyO = 〈T ,A〉 expressed in a DL is
formed by two distinct parts: the TBox T , which comprises axioms
specifying universal properties of the concepts and the roles that
are relevant in the domain, and the ABoxA, which contains axioms
about instances of concepts and roles. In OBDA, and in this paper,
the only relevant component of the ontology is the TBox. Indeed,
the information about the instances of concepts and roles is not pro-

2To simplify notation, we assume that query attribute names are
obtained by renaming attributes in the target list of the SQL query
with variable symbols.



vided by the ABox, but by the combination of the database and the
mappings.

In the examples and experiments discussed in this paper we fo-
cus on ontologies specified in DL-LiteA [19], a member of the
DL-Lite family. DL-LiteA allows for specifying concepts, repre-
senting sets of objects, roles, representing binary relations between
objects, and attributes, representing binary relations between ob-
jects and values. The syntax of concept, role and attribute expres-
sions in DL-LiteA is as follows:

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→ T1 | · · · | Tn

Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

In such rules, A,P, U, T1, . . . , Tn belong to ΣO . A, P , and U
denote a concept name, a role name, and an attribute name, respec-
tively. P− denotes the inverse of a role. B and R are called basic
concept and basic role, respectively. ¬B (resp. ¬Q, ¬U ) denotes
the negation of a basic concept B (resp. basic role, or attribute).
The concept ∃Q, also called unqualified existential restriction, de-
notes the domain of a role Q, i.e., the set of objects that Q relates
to some object. Similarly, the concept δ(U) denotes the domain of
an attribute U , i.e., the set of objects that U relates to some value.
Conversely, ρ(U) denotes the range of an attributeU , i.e., the set of
values to which U relates some object. T1, . . . , Tn are unbounded
pairwise disjoint predefined value-domains.

A DL-LiteA TBox T is a finite set of assertions of the form

B v C Q v R E v F U v V
(funct Q) (funct U)

From left to right, assertions in the first row denote inclusions be-
tween concepts, roles, value-domains, and attributes, respectively.
Assertions of the second row denote global functionality on roles
and on attributes. Notice that in DL-LiteA TBoxes we further im-
pose that roles and attributes occurring in functionality assertions
cannot be specialized (i.e., they cannot occur in the right-hand side
of inclusions).

The semantics of DL-LiteA is given in terms of first-order logic
interpretations I = (∆I , ·I) over ΣO∪Const . ∆I is a non-empty
domain such that ∆I = ∆V ∪∆IO , where ∆IO is the domain used
to interpret object constants in ΓO , and ∆V is the fixed domain
(disjoint from ∆IO) used to interpret data values. ·I is an interpre-
tation function defined as follows:

AI ⊆ ∆IO (δ(U))I = { o | ∃v. (o, v) ∈ UI }
P I ⊆ ∆IO ×∆IO (P−)I = { (o, o′) | (o′, o) ∈ P I }
UI ⊆ ∆IO ×∆V (∃Q)I = { o | ∃o′. (o, o′) ∈ QI }
(¬B)I = ∆IO \BI (ρ(U))I = { v | ∃o. (o, v) ∈ UI }
(¬Q)I = (∆IO ×∆IO) \QI (¬U)I = (∆IO ×∆V ) \ UI

Notice that each ·I interprets the value domains T1, . . . , Tn and
each value constant c in the same way, i.e., such interpretations are
fixed once and for all. An interpretation I satisfies a concept (resp.,
role) inclusion assertion B v C (resp., Q v R) if BI ⊆ CI

(resp., QI ⊆ RI). Furthermore, a role functionality assertion
(funct Q) is satisfied by I if, for each o, o′, o′′ ∈ ∆IO , we have that
(o, o′) ∈ QI and (o, o′′) ∈ QI implies o′ = o′′. The semantics for
attribute and value-domain inclusion assertions, and for functional-
ity assertions over attributes can be defined analogously. As for the
semantics of ABox assertions, we say that I satisfies the ABox as-
sertions A(a), P (a, b) and U(a, c) if aI ∈ AI , (aI , bI) ∈ P I

and (aI , cI) ∈ UI , respectively. Furthermore, DL-LiteA adopts
the Unique Name Assumption (UNA), i.e., in every interpretation
I, and for every pair c1, c2 ∈ Const , if c1 6= c2 then cI1 6= cI2 .

The main mechanism for querying ontologies is through unions
of conjunctive queries (UCQs). Generally speaking, given a sig-
nature Σ = ΣP ∪ Var ∪ Const , such that ΣP is an alphabet of
predicates (e.g., ΣP = ΣO), a conjunctive query q over Σ is a first-
order query of the form {~x | ψ(~x)}, where ψ is an expression of
the form ∃~y.α1(~x, ~y)∧ . . .∧αn(~x, ~y), where ~y are variables from
Var , ~x are terms from Var ∪Const , and each αi(~x, ~y) is an atom
with predicate from ΣP . The number of variables in ~x is the arity
of the query q.

A subquery q′ of q is a CQ of the form {~x′ | ∃~y′.α′1(~x′, ~y′) ∧
. . .∧α′m(~x′, ~y′)}, where each atomα′i(~x

′, ~y′) occurs also in q, each
variable in ~x′ occurs also in ~x and each variable in ~y′ occurs also
in ~y. The difference between q and its subquery q′, denoted q− q′,
is the CQ {~x′′ | ∃~y′′.φ(~x′′, ~y′′)}, where φ is obtained deleting the
atoms of q′ from q, and ~x′′ (resp. ~y′′) contains those variables of ~x
(resp. of ~y) that occur in the remaining atoms. An UCQ over Σ is a
set of CQs over Σ of the same arity.

The notion of evaluation of UCQs over a first-order interpreta-
tion is given in the standard way. More precisely, given an in-
terpretation I for ΣP ∪ Const , a CQ q(~x) of arity n over Σ is
interpreted in I as the set qI of tuples ~c ∈ Constn such that,
when we substitute the variables ~x with the constants ~c, the for-
mula ∃~y.α1(~x, ~y) ∧ . . . ∧ αn(~x, ~y) evaluates to true in I. A UCQ
Q over Σ is interpreted in I as the union QI of the interpretations
of all CQs contained in Q.

Finally, given a CQ cq of the form {~x | ψ(~x)} and a tuple ~t
of constants, we denote by cq(~t) the first-order sentence obtained
from ψ by replacing the free variables ~x with ~t.

3. OBDA SYSTEM SPECIFICATION
We extend the classical notion of OBDA specification by adding

inclusions between the database views appearing in the mapping.
Therefore, while traditional OBDA is based on three components,
in our approach, an OBDA system is characterized by four com-
ponents: the ontology, the source schema, the mapping between
the source schema and the ontology, and a set of view inclusions.
The purpose of this section is to present the formal definition of the
syntax and the semantics of this new notion of OBDA specification.

As we said in the introduction, in ODBA specifications, we limit
our attention to GAV mapping assertions. We first define the notion
of mapping assertions in general. A mapping assertion m is an
expression of the form

QDB (~x1) cq(~x2)

where

• QDB (~x1) is an SQL query over the alphabet ΣR – such query
is called the view associated to m;

• cq(~x2) is a conjunctive query over the alphabet ΣO;

A GAV mapping assertion is simply a mapping assertion in which
every variable x occurring in ~x2 also occurs in ~x1. Note that this
condition guarantees that the mapping is indeed of type GAV. In
fact, a LAV mapping assertion differs from a GAV assertion be-
cause it contains only atomic queries on the left-hand side, and may
contain variables in the right-hand side of the assertion that do not
appear in the left-hand side (existential variables). Such variables
are exactly those which are not allowed by the above condition.

In the following, we assume that no variable occurs more than
once in ~x1 or ~x2. Also, when we talk about the arity of m, we
simply mean the arity of QDB (~x1).

The intuitive meaning of a mapping assertion m of the above
form is that all the tuples satisfying view QDB also satisfy the on-
tology query cq . Note that this implies that we are assuming that



the source database directly stores the constants denoting the in-
stances of the concepts and the roles in the ontology. More so-
phisticated approaches to OBDA do not make such a simplified
assumption. Rather, they are based on the idea that the objects de-
noting instances of concepts are not stored in the database, but are
constructed through the mappings starting from the values of the
data sources (cf.[19]). The whole approach presented in this paper
can be in fact straightforwardly generalized to this situation. This
has not been done here for ease of exposition.

For every mapping assertion m, we introduce a new predicate
symbol vm (called the view name of m), drawn from an alphabet
which is pairwise disjoint with the alphabets Pred ,Const ,Var .
The arity of the predicate symbol vm is simply the arity of m.

We are now ready to define the syntax of an OBDA specification.
As we said before, while traditionally an OBDA a specification is
constituted by the ontolgy, the source schema and the mapping,
here we introduce a new notion of OBDA specification, whose form
is defined as follows.

DEFINITION 1. (Syntax of OBDA specification) An OBDA
specification B is a quadruple 〈T ,M,S, C〉, where

• T is a TBox, called the ontology of B,

• S is a database schema, called the data source of B,

• M is a set of mapping assertions between S and T , called
the mapping of B,

• C is a set of view inclusion dependencies, called the view
inclusions of B, where each view inclusion dependency (or
simply view inclusion) is an expression of the form

v1[i1, . . . , ik] ⊆ v2[j1, . . . , jk]

with v1 and v2 view names, i1, . . . , ik sequence of pair-
wise distinct integers ranging from 1 to the arity of v1,
and j1, . . . , jk sequence of pairwise distinct integers rang-
ing from 1 to the arity of v2.

Let us now show an example of OBDA specification, which is
a simplified version of the one used in the real world project men-
tioned in the introduction.

EXAMPLE 1. The OBDA system used in this example is consti-
tuted by the following DL-LiteA ontology:

PublicOrg v Organization PublicDep v PublicOrg
∃worksWith v Organization ∃worksWith− v Organization
(funct name) (funct address)

The concepts in the ontology are Organization, PublicOrg, denot-
ing public organizations, and PublicDep, denoting public depart-
ments. The axioms in the first row state that public organizations
are particular organizations, and public departments are particu-
lar public organizations. The role worksWith relates organizations
that work together (second row). The attributes of the ontology are
name, address, prjName. The axioms in the third row specify
that name and address are functional.

The following is the source schema of our OBDA example:
Dept_MinistryA(dep_id,dep_name)

Works_On(dep_id,proj_name)

Dept_MinistryB(dep_id,dep_addr) Cooperate(dept1,dept2)

Table Dept_MinistryA (Dept_MinistryB) stores data
about departments belonging to MinistryA (MinistryB). Table

Works_On stores data about projects carried out by departments,
and Cooperate specifies pairs of departments which cooperate.

The mapping between the sources and the ontology is expressed
in terms of the following mapping assertions:
SELECT dep_id AS x, dep_name AS y FROM Dept_MinistryA

 {x, y | PublicDep(x) ∧ name(x, y)}

which relates table Dept_MinistryA to the instances of concept
PublicDep and their names;

SELECT dep_id AS x, dep_addr AS y FROM Dept_MinistryB

 {x, y | PublicDep(x) ∧ address(x, y)}

which relates table Dept_MinistryB to the instances of
PublicDep and their addresses;

SELECT w1.dep_id as x, w2.dep_id as y, w2.proj_name as z

FROM Works_On w1, Works_On w2, Dept_MinistryA d1,

Dept_MinistryA d2

WHERE d1.dep_id=w1.dep_id AND d2.dep_id=w2.dep_id

AND w1.proj=w2.proj AND w1.dep_id <> w2.dep_id

 {x, y, z | worksWith(x, y) ∧ prjName(x, z) ∧ prjName(y, z)}

which specifies that departments from MinistryA that work on the
same project actually work together, and therefore are mapped to
worksWith, together with the indication of the project they work
for (attribute prjName);

SELECT d1.dep_id as x, d2.dep_id as y

FROM Cooperate c, Dept_MinistryB d1, Dept_MinistryB d2

WHERE c.dept1=d1.dep_id AND c.dept2=d2.dep_id

 {x, y | worksWith(x, y)}

which maps the notion of cooperation represented in table
Cooperate to the role worksWith in the ontology.

Now, let v1, v2, v3, v4 be the view names associated to the
mapping assertions shown above, in the same order they have been
presented. Note that v1, v2, v4 have arity 2, whereas v3 has arity
3. By taking into account their meaning, it is easy to see that the
following view inclusions are part of the OBDA specification:

v3[1] ⊆ v1[1], v3[2] ⊆ v1[1], v4[1] ⊆ v2[1], v4[2] ⊆ v2[1].

We now turn our attention to the semantics of OBDA specifica-
tions. We start with two preliminary notions, namely view inclu-
sion satisfaction, and mapping assertion satisfaction. Let

m1 : QDB (~x) cq m2 : Q′DB (~y) cq ′

be two mapping assertions with associated view names vm1 , vm2 ,
respectively. Let D be a database instance for the schema S. The
inclusion vm1 [i1, . . . , ik] ⊆ vm2 [j1, . . . , jk] is satisfied by D if
the projection of Ans(QDB , D) over the attributes xi1 , . . . , xik
is contained in the projection of Ans(Q′DB , D) over the attributes
yj1 , . . . , yjk .

Given a database schema S and a set of inclusion dependencies
C between views over S, a database instanceD for S is called legal
for C if D satisfies every inclusion in C.

Let I be a first-order interpretation over ΣO ∪ Const , and
let D be a database instance for ΣR. A mapping assertion
QDB (x1, . . . , xn)  cq(xi1 , . . . , xik ), is satisfied by I and D
if, for every n-tuple of constants 〈c1, . . . , cn〉 ∈ Ans(QDB , D), we
have that I |= cq(~c ′), where ~c ′ = 〈ci1 , . . . , cik 〉.

Based on the above notions, we are now ready to specify the
semantics of OBDA specifications. We do so by defining the notion
of model of an OBDA specification.

DEFINITION 2. (Semantics of OBDA specification) Let B =
〈T ,M,S, C〉 be an OBDA specification, and let D be a source



database that is legal for C. A model for 〈B, D〉 is a first-order
interpretation I of ΣO ∪ Const such that (i) I is a model for T ;
(ii) every mapping assertion inM is satisfied by I and D.

Note that, in general, several (even an infinite number of) models
exist for a given OBDA specification B, and a database instanceD.
In the following, we denote by Models(B, D) the set of models for
〈B, D〉.

The main task to be carried out by an OBDA system is to answer
queries expressed over the ontology. Given a query Q over the
ontology, the answer to Q that the system should compute is the
set of the so-called certain answers, where the certain answers to
Q over B and D, denoted by CertAns(Q,B, D), are the tuples of
constants ~c such that I |= Q(~c) for each I ∈ Models(B, D).

In our work, we concentrate on the rewriting approach to com-
puting the certain answers. The basic notion underlying this ap-
proach is the one of OBDA perfect rewriting.

DEFINITION 3. Let B = 〈T ,M,S, C〉 be an OBDA specifi-
cation, and let Q be a query over T . A query QDB over S is an
OBDA perfect rewriting (or, simply, perfect rewriting) of Q un-
der B if, for every source database D legal for C, we have that
CertAns(Q,B, D) = Ans(QDB , D).

In other words, a perfect rewriting of a query Q expresed over
the ontology is a query over the sources that, when evaluated over
a legal source databaseD, returns exactly the certain answers toQ.
In the rest of this paper, we assume that the language used to ex-
press the ontology of our OBDA specification is UCQ-rewritable,
defined as follows.

DEFINITION 4. Let 〈T ,M,S, C〉 be an OBDA specification,
and let Q,Q′ be two queries over T . Q′ is an ontology rewriting
of Q under 〈T ,M,S, C〉, if for every databaseD of S we have that
CertAns(Q, 〈T ,M,S, C〉, D) = CertAns(Q′, 〈∅,M,S, C〉, D).

Intuitively, an ontology rewriting of a query Q under
〈T ,M,S, C〉 is another query Q′ which incorporates all the rel-
evant properties of the ontology axioms, so that, by using Q′, we
can compute the certain answers of Q by ignoring the TBox T .
Based on the notion of ontology rewriting, we now formally define
what it means for an ontology language to be UCQ-rewritable.

DEFINITION 5. An ontology language L is said to be UCQ-
rewritable if, for every OBDA specification B = 〈T ,M,S, C〉,
with T expressed in L, and for every UCQ Q over T , one can
effectively compute a UCQ over T which is an ontology rewriting
of Q under B.

We observe that DL-LiteA is UCQ-rewritable. Other examples
of UCQ-rewritable languages can be found in [5, 9, 3].

We conclude this section with an observation on view inclusions.
A natural question to ask is how such inclusions are determined in
practice. One obvious method is manually specifying the view in-
clusions, based on an analysis of the source relations and the mean-
ing of the views. This is what we did in Example 1. This approach
might be very costly, and error prone. An alternative method is
based on the idea of trying to automatically derive them with the
help of a first-order theorem prover. Of course, since SQL query
containment is in general undecidable, termination is not guaran-
teed. Nevertheless, we have experimented the above idea, and our
experiments have shown that state-of-the-art theorem provers are
effectively able to check containment between SQL/relational alge-
bra expressions in practice. More specifically, given a set of map-
ping assertions (in particular, the mappings generated in the OBDA

project described in Section 7), we have systematically checked
containment between all possible projections of the views used in
such mappings, by translating the above problem to unsatisfiability
of a first-order sentence, and then solving this problem through the
Vampire theorem prover [21]. Notably, Vampire was able to solve
all the above reasoning problems in a few seconds.

4. USING VIEW INCLUSIONS FOR
QUERY REWRITING IN OBDA

In this section we describe a new algorithm for the computation
of perfect rewritings of UCQs in OBDA systems with GAV map-
pings. In the rest of the paper, if not otherwise specified, we im-
plicitely refer to OBDA specifications B = 〈T ,M,S, C〉, where
T is expressed in a UCQ-rewritable ontology language, andM is
a GAV mapping.

We know that, for OBDA specifications of this type, the OBDA
perfect rewriting of a UCQ Q over T under B can be obtained
in two steps: (i) compute the ontology rewriting Q′ of Q under
B (by using only the ontology T ), where Q′ is a UCQ over T ;
(ii) compute the mapping rewriting of Q′ under EO (by using the
mappingM), thus obtaining an SQL query over S.

Compared to existing approaches, the algorithm we propose per-
forms an important optimization in the mapping rewriting step,
based on the view inclusions that are present in the OBDA specifi-
cation. Essentially, the optimization exploits the knowledge about
view inclusions in order to eliminate redundant queries from the
rewriting. The benefit will be that the size of the UCQ representing
the rewriting will be smaller than in the traditional approaches, and
the evaluation time of the final SQL will be smaller too.

Hereafter, each mapping assertion m of the form QDB (~x1)  
cq(~x2) in the setM with associated view vm will be split into two
parts:

• one low-level mapping assertion of the form QDB (~x)  
{~x | vm(~x)}, and

• a set of high-level mapping assertions of the form

{~x | vm(~x)} {~x1 | α1(~x1)} . . . {~x | vm(~x)} {~xn | αn(~xn)}

where αi(~xi) is an atom of cq(~x2) and every variable in ~xi
occurs in ~x, for 1 ≤ i ≤ n.

We will denote withML (resp.MH ) the set of low-level (resp.
high-level) mapping assertions obtained from the mapping asser-
tions in the setM.

EXAMPLE 2. Consider the first mapping assertion given in Ex-
ample 1 associated with view v1. The low-level mapping assertion
for this case is
SELECT dep_id AS x, dep_name AS y
FROM Dept_MinistryA
 {x, y | v1(x, y)}
while the high-level mapping assertions are:

{x, y | v1(x, y)}  {x | PublicDep(x)}
{x, y | v1(x, y)}  {x | ∃z.name(x, z)}.

We notice that the use of view predicates and high-level map-
pings, besides allowing the optimizations described in the follow-
ing, may per se help to limit the size of queries produced in the
mapping rewriting phase. Indeed, even by applying classical un-
folding techniques (cf. step 2 of the algorithm OBDA-RewriteID
given below), different atoms of the query to unfold might be



rewritten into the same atom. For example, the query {x, y |
PublicDep(x) ∧ name(x, y)}, posed over the OBDA system of
Example 2, is unfolded according to the high-level mappings into
the query {x, y | v1(x, y)}.

We are ready to present the algorithm, that we call
OBDA-RewriteID .

Algorithm OBDA-RewriteID (B, Q)
Input: An OBDA system specification B = 〈T ,M,S, C〉,

with T expressed in an UCQ-rewritable language L;
a UCQ Q over T

Output: An SQL query over S
begin

Compute a UCQ Q1 that is an ontology rewriting of Q under B;
Q2 = HighMappingRewrite(Q1,MH);
Q3 = ID-Optimize(Q2, C);
QSQL = LowMappingRewrite(Q3,ML);
return QSQL;

end

The algorithm is constituted by four steps, which we now discuss.
Step 1: a UCQ Q1 over T is computed, which is the ontol-

ogy rewriting of Q under B. Algorithm OBDA-RewriteID does not
make any assumption on the way in which such a rewriting is com-
puted. Since we assume that the language L is UCQ-rewritable
(cf. Section 2), we can rely on any method for this task. Ex-
amples of ontology rewriting algorithms for UCQ-rewritable lan-
guages are [5, 9, 18, 3].

Step 2: Q1 is rewritten into query Q2 using the high-level map-
pings MH by means of the function HighMappingRewrite. This
function performs what is called an unfolding of a query in the data
integration jargon [15, 25, 11]. In particular, for every disjunct in
Q1, a new disjunct is introduced in Q2, by substituting every atom
of q2 with a view predicate that the mappingMH associates to αi

(cf. [19]). Note that Q2 is a UCQ over the view names.
Step 3: Q2 is minimized by the algorithm ID-Optimize, on the

basis of the view inclusions in C, thus obtaining a new query Q3

over the view names. Algorithm ID-Optimize is discussed later in
the section.

Step 4: Q3 is rewritten by LowMappingRewrite into an SQL
query over the source database using the mappingML. This step
is similar to the unfolding in step 2, with the difference that the view
names are now substituted by the corresponding SQL queries.

We now describe in some detail the algorithm ID-Optimize. In-
tuitively, the algorithm proceeds as follows: it first minimizes every
single CQ in the UCQ, and then performs a further optimization on
the whole UCQ.

Algorithm ID-Optimize(Q, C)
Input: UCQ Q over the view names; set of inclusions C
Output: UCQ Q′ over the view names
begin
Q′ = Q;
for each CQ q ∈ Q′ do q = DeleteRedundantAtoms(q, C);
for each pair of distinct CQs q1, q2 of Q′ do

if contained(q1, q2, C)
then eliminate q1 from Q′;

return Q′;
end

The function DeleteRedundantAtoms(q, C) eliminates from the
conjunctive query q the atoms that are redundant with respect
to the set C of view inclusions, i.e., the atoms that are im-
plied, under C, by other atoms of q. The obtained query is ob-
viously equivalent to q. For example, if q is the query {x |
∃y.v1(x) ∧ v2(x, y)} and v2[2] ⊆ v1[1] is an inclusion in C,
then DeleteRedundantAtoms(q, C) minimizes q into the query
{x | ∃y.v2(x, y)}.

After this first minimization, for every pair of CQs q1, q2 in Q′,
the algorithm checks containment of q1 in q2 under the inclusion
dependencies C, through the procedure contained. Formally, let
Σ be the signature for q1 and q2, q1 is contained in q2 under C if,
for every database instance D for Σ, Ans(q1, D) ⊆ Ans(q2, D).
This check is in fact non-trivial, and can be realized in vari-
ous ways. In our implementation (cf. Section 6 and Section 7),
contained(q1, q2, C) is realized by verifying whether q1 is con-
tained in ID-rewrite(q2, C), where ID-rewrite is a query rewriting
algorithm given in [3]. This algorithm rewrites q2 according to C,
i.e., it produces a UCQ containing all queries implied by q2 under
C. For example, let q2 be the query {x | ∃y.v1(x) ∧ v2(x, y)} and
v3[2] ⊆ v1[1] an inclusion in C, ID-rewrite(q2, C) returns the UCQ
{q2, {x | ∃y.v3(x)∧ v2(x, y)}}. To check containment of q1 in q2
under the inclusions in C is then sufficient to check standard query
containment of q1 in any CQ returned by ID-rewrite(q2, C).

Let us now discuss an example of application of the algorithm
OBDA-RewriteID .

EXAMPLE 3. Consider the OBDA system of Example 1, and the
following conjunctive query Q:

{x, y | PublicOrg(x) ∧WorksWith(x, y) ∧ PublicOrg(y)}

Assume that the first step of the algorithm OBDA-RewriteID pro-
duces the following ontology rewriting (e.g., by the algorithm
PerfectRef [5], or REQUIEM [18]):

{x, y | PublicOrg(x) ∧WorksWith(x, y) ∧ PublicOrg(y)}
{x, y | PublicOrg(x) ∧WorksWith(x, y) ∧ PublicDep(y)}
{x, y | PublicDep(x) ∧WorksWith(x, y) ∧ PublicOrg(y)}
{x, y | PublicDep(x) ∧WorksWith(x, y) ∧ PublicDep(y)}

Then, HighMappingRewrite returns the UCQ given by the set of
CQs below:

{x, y | ∃u, v, z.v1(x, u) ∧ v3(x, y, v) ∧ v1(y, z)}
{x, y | ∃u, v, z.v1(x, u) ∧ v3(x, y, v) ∧ v2(y, z)}
{x, y | ∃u, v, z.v2(x, u) ∧ v3(x, y, v) ∧ v1(y, z)}
{x, y | ∃u, v, z.v2(x, u) ∧ v3(x, y, v) ∧ v2(y, z)}
{x, y | ∃u, z.v1(x, u) ∧ v4(x, y) ∧ v1(y, z)}
{x, y | ∃u, z.v1(x, u) ∧ v4(x, y) ∧ v2(y, z)}
{x, y | ∃u, z.v2(x, u) ∧ v4(x, y) ∧ v1(y, z)}
{x, y | ∃u, z.v2(x, u) ∧ v4(x, y) ∧ v2(y, z)}

ID-Optimize then computes the two CQs {x, y | ∃z.v3(x, y, z)}
and {x, y | v4(x, y)}. The final rewriting returned by
OBDA-RewriteID is simply the union of the SQL queries associ-
ated to v3 and v4.

On the basis of the correctness of the unfolding steps in the al-
gorithms, and of the function contained, which in turn relies on
the correctness of the ID-rewrite algorithm, showed in [3], one can
easily prove the following theorem.

THEOREM 1. Let B = 〈T ,M,S, C〉 be an OBDA system
where T is specified in a UCQ-rewritable language, and let Q be
a UCQ over T . The algorithm OBDA-RewriteID(B, Q) returns a
perfect rewriting of Q under B.

The effectiveness of OBDA-RewriteID in optimizing query
rewriting relies essentially on the fact that the query produced
by ID-Optimize can be significantly smaller than the input query
Q, even if only few inclusions are declared and/or used by
the algorithm. As a consequence, the SQL query returned by
OBDA-RewriteID can be evaluated much more efficiently than the
query it would return without the ID-Optimize step. In Figure 3
of Section 7, we report some data about the experiments we car-
ried out in using our OBDA approach. We anticipate some results



here: the table shows that the size of the rewritten query computed
by using ID-Optimize (column ND under (ii)) is in general much
smaller than the one computed without applying such optimization
(column ND under (i)). The same applies to the time needed for
evaluating the rewritten query at the sources (columns ET under (i)
and (ii)). On the other hand, there is a price to pay for this opti-
mization: the treatment of view inclusions may make the overall
rewriting process longer with respect to the non-optimized version
(see columns RT under (i) and (ii) in Figure 3). To manage this
issue, in the next two sections we introduce the notion of perfect
mapping, and we devise new optimizations based on such notion.

5. PERFECT MAPPINGS
The use of algorithm OBDA-RewriteID in real word application

shows that, while the treatment of view inclusions allows for sig-
nificantly reducing the size of the rewriting produced, the combi-
natorial explosion due to the mapping rewriting step is not actually
avoided. This is due to the fact that the optimization introduced by
the use of view inclusions is applied only after the whole unopti-
mized UCQ, which represents the reformulation of the initial query
over the view names, is produced. Note that, as a consequence, the
optimization introduced based on view inclusions appears of no use
if the unoptimized rewritten query has a very large size.

In the rest of the paper, we present an approach to address this
problem. The main ingredient of such an approach is the notion
of perfect mapping assertion, which is introduced in this section.
The intuitive meaning of a perfect mapping assertion is that it ex-
plicitely states which is a perfect rewriting of a conjunctive query
(the one “covered” by the perfect mapping) over the ontology. We
will see that, by exploiting perfect mapping assertions, we are able
to adopt a kind of semantic caching approach for speeding up the
evaluation of new queries, in the case where they contain sub-
queries “covered” by perfect mapping assertions.

DEFINITION 6. A perfect mapping assertion for an OBDA
specification B is a mapping assertion QDB  cq such that QDB

is a perfect rewriting of cq under B. A perfect mapping for B is a
set of perfect mapping assertions for B.

We illustrate below an example of perfect mapping assertion.

EXAMPLE 4. In the following perfect mapping assertion, the
conjunctive query in the right-hand side is the queryQ1 of Example
3, and the SQL query in the left-hand side is the perfect rewriting
of Q1 shown in the same example.
SELECT w1.dep_id as x,w2.dep_id as y

FROM Works_On w1, Works_On w2, Dept_MinistryA d1,

Dept_MinistryA d2

WHERE d1.dep_id=w1.dep_id AND d2.dep_id=w2.dep_id

AND w1.proj=w2.proj AND w1.dep_id<>w2.dep_id

UNION

SELECT d1.dep_id as x, d2.dep_id as y

FROM Cooperate c, Dept_MinistryB d1, Dept_MinistryB d2

WHERE c.dept1=d1.dep_id AND c.dept2=d2.dep_id

 {x, y| PublicOrg(x), worksWith(x, y), PublicOrg(y)}

Notice that perfect mappings are constituted by arbitrary (i.e.,
not necessarily GAV) mapping assertions, where existential vari-
ables may appear in the CQs over the ontology.

It is important to observe that, from the semantic viewpoint, the
perfect mapping associated to an OBDA specification does not add
any knowledge to the specification. This is formalized by the fol-
lowing theorem.

THEOREM 2. Let B be an OBDA specification with arbitrary
mappings, and letMp be a set of perfect mappings for B. Then,
for every legal database instance D for C, Models(〈T ,M ∪
Mp,S, C〉, D) = Models(B, D).

PROOF. First, we show that every interpretation I ∈
Models(B, D) satisfies every mapping assertion in Mp. In fact,
let QDB (x1, . . . , xn)  cq(xi1 , . . . , xik ) be a mapping asser-
tion in Mp. Then, from Definition 6 it follows that, for ev-
ery n-tuple of constants 〈c1, . . . , cn〉 ∈ Ans(QDB , D), the tuple
~c ′ = 〈ci1 , . . . , cik 〉 is a certain answer to cq over B and D, and
therefore I |= cq(~c ′) for every I ∈ Models(B, D), which implies
that the above mapping assertion is satisfied in I. This proves that
Models(〈T ,M∪Mp,S, C〉, D) ⊇ Models(B, D). Conversely,
Models(〈T ,M∪Mp,S, C〉, D) ⊆ Models(B, D) trivially fol-
lows from Definition 2.

The above property shows that the OBDA specification 〈T ,M∪
Mp,S, C〉 is logically equivalent to the OBDA specification
〈T ,M,S, C〉. Nevertheless, in the following we prove that the
availability of perfect mapping assertions may drastically improve
the computation of perfect rewritings (and hence the overall query
answering over OBDA systems).

Similarly to the case of view inclusions, one might wonder how,
in practice, perfect mappings for an OBDA specification are de-
rived. This issue will be discussed at the end of the next section.

6. THE ALGORITHM PERFECTMAP
In this section we present PerfectMap, a new technique for com-

puting OBDA perfect rewritings. With respect to the algorithm
OBDA-RewriteID presented above, PerfectMap exploits the pres-
ence of perfect mappings to optimize the size of the OBDA perfect
rewriting of queries.

We first reformulate the perfect mapping Mp into a high-level
and a low-level mapping in a way analogous to the above algorithm
OBDA-RewriteID . More precisely, a perfect mapping assertion m
of the formQDB (~x1) cq(~x2) is associated with a fresh auxiliary
view predicate vm, and is reformulated into a high-level mapping
assertion {~x2 | ∃~x ′.vm(~x2, ~x ′)} cqi(~x

2) (where ~x ′ represents
the tuple of variables from ~x1 that do not occur in ~x2), and a low-
level mapping assertion QDB (~x1)  {~x1 | vm(~x1)}. We denote
withMp

H (resp.Mp
L) the set of high-level (resp. low-level) map-

ping assertions of the form above.
The PerfectMap algorithm is the following.

Algorithm PerfectMap (B,Mp, Q)
Input: OBDA specification B = 〈T ,M,S, C〉

with T expressed in a UCQ-rewritable language L
perfect mappingMp for B
UCQ Q

Output: An SQL query over S
begin
Q1 = ReplaceSubqueryR(Q,Mp

H , T );
Compute a UCQ Q2 that is an ontology rewriting of Q1 under B;
Q3 = ReplaceSubquery(Q2,Mp

H);
Q4 = HighMappingRewrite(Q3,MH);
Q5 = ID-Optimize(Q4, C);
Q6 = LowMappingRewrite(Q5,ML ∪Mp

L);
return Q6;

end

PerfectMap is constituted of six steps: step 2, 4, 5, and 6
are actually identical to the four steps of the previous algorithm
OBDA-RewriteID . Thus, the novelty of PerfectMap lies in the first
and the third steps, i.e., in the algorithms ReplaceSubqueryR and



ReplaceSubquery. The purpose of these algorithms is to stop the
rewriting of subqueries that correspond to queries appearing in the
head of perfect mappings. All the atoms of one such subquery are
replaced with a single atom whose predicate is the auxiliary view
predicate in the body of the high-level perfect mapping assertion.
This atom will not be further rewritten until step 5 of PerfectMap.

Notice that, even though PerfectMap essentially considers the
algorithm adopted at step 2 as a black box, we need here to assume
that such an algorithm is able to process UCQs with auxiliary view
predicates: this is trivial for ontology languages allowing for n-ary
predicates [7, 2], whereas it may require some adaptations for DL
languages.

The algorithms ReplaceSubqueryR and ReplaceSubquery are
very similar, however they are based on different conditions for the
applicability of the above replacement to subqueries of the input
query.

The algorithm ReplaceSubqueryR is based on the notion of re-
stricted homomorphism. Given two CQs q1, q2, a restricted homo-
morphism from q1 to q2 is a function h on the variables occurring
in q1 such that: (i) every distinguished variable of q1 is mapped to
a distinguished variable of q2 or to a constant; (ii) every existen-
tial variable of q1 is mapped to an existential variable of q2; (iii)
h(q1) = q2, where h(q1) is the CQ obtained from q1 by applying
the function h to its variables.

In the following, we assume that a high-level perfect mapping
assertion mi is of the form {~x | ∃~y.vmi(~x, ~y)}  cqi(~x). Fur-
thermore, we call length of mi, denoted length(mi), the number
of atoms in cqi.

The algorithm ReplaceSubqueryR is as follows:

Algorithm ReplaceSubqueryR (Q,Mp
H)

Input: UCQ Q, high-level perfect mappingMp
H

Output: UCQ Q′

begin
Compute an ordering 〈m1, . . . ,mn〉 of the assertions inMp

H
s.t. length(mi) ≥ length(mi+1) for every i ∈ {1, . . . , n− 1};
Q0 = Q;
i = 1;
while i ≤ n do begin
Q′ = Q0;
repeat

if there exists a CQ q ∈ Q′ of the form
{~x | ∃~y.α1(~x, ~y) ∧ . . . ∧ αn(~x, ~y)}
and a subquery q′ of q of the form
{~x′ | ∃~y′.α′1(~x′, ~y′) ∧ . . . ∧ α′m(~x′, ~y′)} such that:
(i) every existential variable of q that occurs in q′ does not

occur in any atom of q that does not belong to q′, and
(ii) there exists a restricted homomorphism h from cqi to q′

then
replace q in Q′ with the CQ
{~x | ∃~y.h(vmi (~x)) ∧ αj1 (~x, ~y) ∧ . . . ∧ αjk (~x, ~y)}
(where αj1 (~x, ~y), . . . , αjk (~x, ~y) are the atoms of
q different from α′1(~x

′, ~y′), . . . , α′m(~x′, ~y′));
until Q′ = Q0;
i = i+ 1;

end
return Q′;

end

Essentially, the algorithm looks for subqueries in each CQ inQ that
unify with the head of high-level perfect mapping assertions, and
replaces such subqueries with single atoms using the view names of
these mapping assertions. Notice that this is a form of query rewrit-
ing using views, a well-known NP-complete problem [17, 10]. In
fact, ReplaceSubqueryR faces this problem by applying the follow-
ing greedy strategy: the high-level perfect mapping assertions are
ordered by decreasing length, and are checked in this order against
the queries of Q. So, at every step, a perfect mapping assertion of

maximum length is selected among the ones that are applicable to
some query in Q. Of course, such a greedy strategy does not pro-
duce in general an optimal solution (i.e., CQs of minimal length).

Moreover, the algorithm executes the above subquery replace-
ment under a restricted notion of unification between the head of
the high-level perfect mapping assertion and the subquery used in
the algorithm. As described above, the algorithm only looks for
subqueries that do not share existential variables with the rest of
the query, and only applies restricted homomorphisms to unify the
head of the mapping with the subquery. It can be shown that such
restrictions constitute a sufficient condition for the correctness of
such a replacement.

THEOREM 3. Let B be an OBDA specification, let q1, q2 be
Boolean CQs, let q′ be a subquery of q2 such that there exists a
restricted homomorphism h from q1 to q′ and q′ does not share ex-
istential variables with q2−q′. IfQ1, Q

′′ are UCQs such thatQ1 is
an ontology rewriting of q1 under B and Q′′ is an ontology rewrit-
ing of q2 − q′ under B, then h(Q1) ∧Q′′ is an ontology rewriting
of q2 under B.

Then, the algorithm ReplaceSubquery is a simplified ver-
sion of ReplaceSubqueryR: the difference lies in the fact that
ReplaceSubquery applies the standard, non-restricted notions of
unification and homomorphism in the subquery replacement step,
i.e., the algorithm does not impose any restriction neither on the
existential variables occurring in the subexpression nor in the
homomorphism. Therefore, the specification of ReplaceSubquery
can be obtained from that of ReplaceSubqueryR by simply replac-
ing point (i) and (ii) with the condition:

“there exists a homomorphism h from cqi to q′”

From Theorem 1 and Theorem 3, correctness of PerfectMap
easily follows.

THEOREM 4. Let B be an OBDA specification, let Mp be a
perfect mapping for B, let Q be a UCQ, and let Q′ be the query
returned by PerfectMap(Q,B,Mp). Then,Q′ is an OBDA perfect
rewriting of q under B.

Let us now intuitively explain the optimization introduced by
PerfectMap. The above described subquery replacement allows
for exploiting perfect mappings to minimize OBDA perfect rewrit-
ings, because in this way a subquery is directly mapped to the
OBDA perfect rewriting represented in the perfect mapping. This
allows for lowering the number of CQs over the view names pro-
duced at the end of step 2, but only if perfect mappings store OBDA
perfect rewritings of queries that have been significantly optimized,
through the ID-Optimize algorithm, with respect to their unopti-
mized version. Therefore, the presence and usage of view inclu-
sions is crucial for making perfect mappings useful in PerfectMap.
In other words, the key idea here is that the use of perfect mappings
allows for drastically reducing the number of conjunctive queries
generated at the end of step 2, if the perfect mappings are the result
of a previous optimization due to the presence of view inclusions.

EXAMPLE 5. The perfect mapping m shown in Example 4 can
be exploited by PerfectMap. Consider for example the following
query Q2:

{z1, z2, z3, z4 | PublicOrg(z1) ∧ worksWith(z1, z2)
∧PublicOrg(z2) ∧ name(z1, z3) ∧ name(z2, z4)}

Let us consider the query Q′ = {z1, z2 | PublicOrg(z1) ∧
worksWith(z1, z2)∧PublicOrg(z2)}, which is a subquery of Q2.
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Figure 1: UML representation of the test ontology

Now, h(x) = z1, h(y) = z2 is a restricted homomorphism to Q′

from the head of the perfect mapping m given in Example 4.
It is easy to see that Q′ and m satisfy the conditions described

in the algorithm ReplaceSubqueryR. Therefore, ReplaceSubqueryR
replaces in Q2 the atoms occurring in the query Q′ with the atom
vm(z1, z2), and returns the CQ

{z1, z2, z3, z4 | vm(z1, z2) ∧ name(z1, z3) ∧ name(z2, z4)}

where vm is the auxiliary view predicate associated to m.
This query is then passed to the algorithm HighMappingRewrite
which in turn returns the CQ

{z1, z2, z3, z4 | vm(z1, z2) ∧ v1(z1, z3) ∧ v1(z2, z4)}.

Notice that, without the replacement done at step 1 using the perfect
mapping assertion m, at step 2 the algorithm PerfectMap would
rewrite the atoms of the subquery Q′ according to the ontology.
This actually would mean producing several queries, e.g., 4 CQs
if such rewriting is performed as mentioned in Example 3. Then,
HighMappingRewrite would return 8 CQs instead of one (cf. Ex-
ample 3).

It is easy then to obtain the perfect rewriting by applying step 5
and step 6 of the algorithm PerfectMap.

Finally, as anticipated in the previous section, we deal with the
issue of how automatically derive perfect mapping assertions. The
idea is to use PerfectMap for this purpose. Actually, perfect
mapping assertions may be obtained by simply storing the perfect
rewritings computed by the algorithm PerfectMap itself. In fact,
one may think of a methodology that starts from relatively sim-
ple queries, that can be computed even in the absence of perfect
mappings, and whose OBDA perfect rewriting is significantly opti-
mized by the ID-Optimize algorithm. Once such an OBDA perfect
rewriting QDB is produced by PerfectMap for a query q, then it is
possible to add the mapping QDB  q to the perfect mapping as-
sertions. In other words, the set of perfect mappings can be simply
considered as a memory of the previous optimized OBDA perfect
rewritings computed by the system itself. In this sense, a nice prop-
erty of PerfectMap is that its computation improves along the time,
since PerfectMap exploits its previous results to compute new re-
sults.

7. IMPLEMENTATION AND EVALUA-
TION

We have implemented the algorithm PerfectMap and integrated
it into the MASTRO tool for OBDA [4]. The new release of MAS-
TRO thus obtained has been used within a joint project between
Sapienza Università di Roma and the Italian Ministry of Economy

Q1,1 = {x, y | SW(x) ∧ issD(x, y)}
Q1,2 = {x, y, z | SW(x) ∧ issD(x, y) ∧ hasUnd(x, z)}
Q1,3 = {x, y, z, k | SW(x) ∧ issD(x, y) ∧ hasUnd(x, z) ∧ issD(z, k)}
Q1,4 = {x, y, z, k, w | SW(x) ∧ issD(x, y)∧

hasUnd(x, z) ∧ issD(z, k) ∧ expD(z, w)}
Q1,5 = {x, y, z, k, w, t | SW(x) ∧ issD(x, y)∧

hasUnd(x, z) ∧ issD(z, k) ∧ expD(z, w) ∧ hasTr(z, t)}
Q1,6 = {x, y, z, k, w, t, a | SW(x) ∧ issD(x, y) ∧ hasUnd(x, z)∧

issD(z, k) ∧ expD(z, w) ∧ hasTr(z, t) ∧ amount(t, a)}
Q2,1 = {x | Bond(x)}
Q2,2 = {x, y | Bond(x) ∧ issD(x, y)}
Q2,3 = {x, y, z | Bond(x) ∧ issD(x, y) ∧ expD(x, z)}
Q2,4 = {x, y, z, t | Bond(x) ∧ issD(x, y) ∧ expD(x, z) ∧ hasTr(x, t)}
Q2,5 = {x, y, z, t, a | Bond(x) ∧ issD(x, y) ∧ expD(x, z)∧

hasTr(x, t) ∧ amount(t, a)}
Q2,6 = {x, y, z, t, a, k | Bond(x) ∧ issD(x, y) ∧ expD(x, z)∧

hasTr(x, t) ∧ amount(t, a) ∧ soldAt(t, k) ∧ aucD(k, y)}
Q3,1 = {x | Tr(x)}
Q3,2 = {x, y | Tr(x) ∧ hasTr(y, x)}
Q3,3 = {x, y, a | Tr(x) ∧ hasTr(y, x) ∧ amount(x, a)}
Q3,4 = {x, y, z | Tr(x) ∧ hasTr(y, x) ∧ Tr(z) ∧ hasTr(y, z)}
Q3,5 = {x, y, z, a | Tr(x) ∧ hasTr(y, x) ∧ amount(x, a) ∧ Tr(z)∧

hasTr(y, z) ∧ amount(z, a)}
Q3,6 = {x, y, z, a, k | Tr(x) ∧ hasTr(y, x) ∧ amount(x, a) ∧ Tr(z)∧

hasTr(y, z) ∧ amount(z, a) ∧ soldAt(x, k) ∧ soldAt(z, k)}
Q4,1 = {x, y | hasTr(x, y)}
Q4,2 = {x, y, a | hasTr(x, y) ∧ amount(y, a)}
Q4,3 = {x, y, a, k | hasTr(x, y) ∧ amount(y, a) ∧ soldAt(y, k)}
Q4,4 = {x, y, a, d, k | hasTr(x, y) ∧ amount(y, a) ∧ soldAt(y, k)∧

aucD(k, d)}
Q4,5 = {x, y, a, d, k | BOT(x) ∧ hasTr(x, y) ∧ amount(y, a)∧

soldAt(y, k) ∧ aucD(k, d)}
Q4,6 = {x, y, a, d, k, t, r | BOT(x) ∧ hasTr(x, y) ∧ amount(y, a)∧

soldAt(y, k) ∧ aucD(k, d) ∧ issD(x, t) ∧ expD(x, r)}

Figure 2: Queries used in the experiments

and Finance. The main objectives of the project have been: the de-
sign and specification in DL-LiteA of an ontology on the domain of
the Italian public debt; the realization of the mapping between the
ontology and relational data sources that are part of the manage-
ment accounting system currently in use at the ministry; the defini-
tion and execution of queries over the ontology aimed at extracting
data of core interest for the users of the applications. In particular,
the information returned by such queries relates to sales of bonds
issued by the Italian government, maturities of bonds, monitoring
of various financial products, etc., and are at the basis of various
reports on the overall trend of the national public debt.

The overall ontology that we realized is over an alphabet con-
taining 164 concept names, 47 role names, 86 attribute names, and
is specified through around 1440 DL-LiteA assertions. Moreover,
we defined 300 mapping assertions involving around 60 relational
tables managed by Microsoft SQLServer. This database contains
193 tables for an overall number of 3 million tuples and an overall
size of 1.5 gigabytes. To capture the interdependencies between
mapping assertions, due to the characteristics of the domain, we
specified around 100 inclusion assertions on mapping views, and
executed a tuning phase during which the system learned about
50 perfect mapping assertions. We tested a very high number of
queries and produced through MASTRO several reports of interest
for the ministry. We point out that around 80% of the queries we
tested could be executed only thanks to the optimizations described
in this paper, since without optimizations the system either ran out
of memory or did not terminate within a 4-hour timeout. Further-
more, optimizations allowed for a drastic reduction of the query
answering time for all queries of interest.

We now present some sample tests that summarize what we ex-
perimented in the practice. We carried out such tests over an ex-
cerpt of the ontology produced in the project, and considering only
a subset of the mappings and of the inclusions. An UML repre-



(i) No Opt. (ii) Inclusion Opt. (iii) Full Opt.
ND RT ET ND RT ET ND RT ET

Q1,1 7 74 162 2 84 78 2 73 68
Q1,2 7 71 122 2 80 62 2 68 70
Q1,3 161 176 3644 2 250 94 2 111 82
Q1,4 3703 9504 145885 2 70708 242 2 94 90
Q1,5 44436 1267285 2397053 T/O 4 88 148
Q1,6 (12600000) T/O T/O 4 126 226
Q2,1 37 71 257 1 89 81 1 80 76
Q2,2 851 210 14301 1 2698 91 1 80 75
Q2,3 19573 21846 743797 1 1599547 154 1 89 92
Q2,4 (266400) T/O T/O 2 78 217
Q2,5 (2664000) T/O T/O 2 87 251
Q2,6 (213120000) T/O T/O 2 302 538
Q3,1 22 62 328 4 70 162 4 70 112
Q3,2 12 64 236 2 66 115 2 72 92
Q3,3 120 110 3403 2 194 171 2 69 105
Q3,4 144 107 3587 4 242 382 4 70 321
Q3,5 14400 94327 686085 4 1133332 501 4 985 950
Q3,6 (1440000) T/O T/O 16 2766 3774
Q4,1 12 57 234 2 66 110 2 74 114
Q4,2 120 102 3315 2 168 161 2 77 170
Q4,3 1200 1202 37044 4 6769 300 4 87 343
Q4,4 9600 46646 537886 4 481921 757 4 119 503
Q4,5 28800 410201 1537348 T/O 4 78 509
Q4,6 (17280000) T/O T/O 4 22957 1157

Legenda: ND = Number of disjuncts of the rewriting; RT = Rewriting time;
ET = Evaluation time; T/O = timeout

Figure 3: Experimental results

sentation of the portion of the ontology used in this test is given
in Figure 1. Such a portion talks about Financial Instrument
and the two main subclasses it has, i.e., Bond and Optes, where
Bond indicates a certificate of debt issued by the Italian govern-
ment or a by local public organization, and Optes consists of very
short debt contracts (normally of few days), used mainly to raise
cash. Each Financial Instrument has an issueDate and expira-
tionDate. Bond has several subclasses of interest. Each of them
corresponds to a particular type of certificates of debt. For example
BOT and CTZ are zero coupon bond of different duration where
interests are computed at a fixed rate, whereas BTP are deferred
coupon bonds. A Financial Instrument can be issued in various
tranches, each with a certain amount, and soldAt an Auction, in
a certain auctionDate. A SWAP is a contract in which two par-
ties agree to exchange periodic interest payments. The amounts
exchanged depend on a financial instrument called underlying (cf.
role hasUnderlying in Figure 1). Each SWAP has an issueDate
and expirationDate.

Figure 2 shows 24 queries divided into four groups, each one
containing queries of increasing difficulty (due to lack of space, the
reported queries use abbreviations of predicate names). We exe-
cuted such queries through MASTRO under three different modal-
ities: (i) without optimizations, which amounts to simply execute
the OBDA-RewriteID algorithm in the absence of view inclusions;
(ii) with the optimization that uses only inclusions on mapping
views, which means executing all steps of OBDA-RewriteID for
every query; (iii) with the complete optimization technique de-
scribed in this paper. More precisely, in modality (iii), we ran the
algorithm PerfectMap for each query, and modified the extended
OBDA system specification in input at each such execution, start-
ing with an empty set of perfect mappings, and adding at each exe-
cution perfect mapping assertions learned at the end of the previous
execution. We considered each group of query separately, i.e., the
setMp has been emptied after processing each group of queries.

The experiments have been carried out on a 2.6 GHz Intel Core
i7 740M with 6GB RAM memory and under Windows7 operat-
ing system and Microsoft SQL Server DBMS. Figure 3 reports
the results we have obtained under the three mentioned modalities

(columns (i), (ii) and (iii)). All times are in milliseconds, and the
timeout has been fixed at 2 hours. Timeout is always caused by the
rewriting phase: for queries that led to system timeout we report an
estimated number of the expected disjuncts of the rewriting. This
is indicated in italic and between parenthesis in the ND column of
mode (i). For each query q with n atoms, let ki with 1 ≤ i ≤ n
be the number of mappings that involve the i-th atom predicate of
q, the above value is given by the product k1 ∗ . . . ∗ kn. Analogous
values for mode (ii) are omitted for space reasons.

As already discussed, the table shows that applying the optimiza-
tion that exploit mapping inclusions produces rewritings of much
smaller size, and requiring lower evaluation time, with respect to
those produced without using such optimization (see columns ND
and ET under (i) and (ii), respectively). This however can make
the overall rewriting process longer, since it also takes into account
the time needed for the execution of the ID-Optimize algorithm.
For query Q1,5 and query Q4,5 this even led to a system timeout,
whereas, by disabling the optimizations, we have been able to pro-
cess such queries (see columns RT under (i) and (ii)).

To execute all queries considered in our experiments we there-
fore needed to use all optimizations presented in this paper (modal-
ity (iii) of the experiments). The power of such optimizations is
clearly showed by the last two columns of Figure 3. Indeed, even
though for very simple queries, e.g., Q1,1, Q1,2, Q2,1, the compu-
tational overhead introduced by the use of perfect mappings is not
useful, for complex queries the gain is really notable.

8. RELATED WORK
To the best of our knowledge, our work is the first one to investi-

gate in detail the mapping rewriting step in OBDA and to propose
optimizations for this task. Indeed, as already said, previous works
on OBDA (see, e.g., [5, 24, 13, 2, 9]) have focused on the ontology
rewriting step and its optimizations, and for this reason have con-
sidered a simplified OBDA framework, in which data are directly
stored in the ontology ABox, rather than in external data sources
connected to the ontology TBox through mappings. Notably, the
optimization technique proposed in this paper couples with any on-
tology rewriting algorithm proposed in the literature, provided that
the ontology rewriting is given in terms of a UCQ.

The mappings considered in the present paper have been in fact
introduced in [19]. In that paper, however, no optimizations for
the mapping rewriting step have been provided. In this respect, the
introduction of view inclusion dependencies in the OBDA specifi-
cation, and their use in the algorithm OBDA-RewriteID , as well as
the notion of perfect mappings, and the algorithm PerfectMap are
original contributions of this paper.

A recent work [22, 23] that is very close to the present approach
proposes the use of ABox dependencies to optimize conjunctive
query answering in the DL DL-Lite. ABox dependencies are con-
cept inclusions that are satisfied by the ABox, i.e., the extensional
part of the ontology. While there is a semantic similarity between
database view inclusions and ABox dependencies, it can be shown
that view inclusions are more powerful than the ABox dependen-
cies used in [22, 23], since they are expressed at a lower level of
the OBDA system: therefore, in general view inclusions cannot be
translated into corresponding ABox dependencies.

As already said, mapping rewriting is also relevant in data inte-
gration, where the notions of GAV and LAV mappings have been
introduced [15, 25, 11]. Research in this field has mostly consid-
ered GAV mapping rewriting a trivial task, realizable essentially
by unfolding query atoms with the corresponding mapping views.
Conversely, LAV mapping rewriting, which amounts to a form of
query answering using views, has been widely investigated, and



various interesting optimizations for it have been proposed (see,
e.g., [17, 8, 20, 12]). We notice that all such techniques are specifi-
cally tailored to the treatment of non-distinguished variables occur-
ring in the mapping views, and that in the absence of such variables,
as in GAV mappings, they essentially collapse to unfolding. There-
fore, their use does not provide gains in our OBDA framework.

An interesting exception among papers considering GAV map-
ping rewritings is [14], which addresses the problem of answer-
ing SPARQL queries posed over virtual (GAV) SPARQL views.
Driven by motivations similar to ours, the authors provide some
optimizations to reduce the size of the final rewriting, which is a
union of conjunctive queries specified in SPARQL. In particular,
their methods aim to minimize conjunctive queries in the rewriting
and eliminate disjuncts that have an empty evaluation. To eliminate
such disjuncts they exploit some heuristics that look at the under-
lying data. In this respect, the approach differs from ours, which
is instead purely intensional, and therefore does not have to cope
with updates at data sources. Furthermore, the technique in [14]
does not make use of dependencies on mapping views, nor allow
for re-using previously computed rewritings, as we do through per-
fect mappings, and can be therefore considered complementary to
our approach, despite the different languages it considers.

9. CONCLUSIONS
In this paper we have presented an approach to the optimiza-

tion of query answering in OBDA. The approach is based on two
main ideas: (i) the use of inclusions on database views to optimize
perfect rewritings; (ii) the usage of perfect mappings to reuse pre-
vious optimizations of subqueries in the computation of the perfect
rewriting of a new query.

We plan to continue the present work along several directions.
First, we would like to extend our constraint language on database
views to other forms of constraints, in particular disjointness con-
straints. Then, it would be interesting to go beyond perfect map-
pings, and explore alternative ways of exploiting view inclusions
(as well as other forms of constraints over the views) to improve on-
tology rewriting and the overall query rewriting process in OBDA.
Finally, we would like to consider whether, and to what extent, our
optimizations can be extended to OBDA contexts using different
ontology specification languages, even non-UCQ-rewritable ones.
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