
Updating inconsistent Description Logic knowledge bases
Maurizio Lenzerini, Domenico Fabio Savo

Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti
SAPIENZA Università di Roma

lastname@dis.uniroma1.it

Abstract. Finding an appropriate semantics for task of updating
an inconsistent knowledge base is a challenging problem. In this pa-
per, we consider knowledge bases expressed in Description Logics,
and focus on ABox inconsistencies, i.e., the case where the TBox is
consistent, but the whole knowledge base is not. Our first contribu-
tion is the definition of a new semantics for updating an inconsistent
Description Logic knowledge base with both the insertion and the
deletions of a set of ABox assertions. We then concentrate on the
DL-Lite family of Description Logics, and present algorithms for up-
dating a possibly inconsistent knowledge base expressed in the most
expressive logic of such family. We show that, by virtue of both the
characteristics of our semantics, and the limited expressive power
of DL-Lite, both insertions and deletions can be done in polynomial
time with respect of the size of the ABox.

1 Introduction

It is well known that inconsistency is ubiquitous in many KBs used
in real world applications. It follows that a KB management sys-
tem should be equipped with suitable mechanisms for inconsistency
tolerance, aiming at addressing at least the following two issues:
(i) How to answer queries that are posed to an inconsistent KB
(inconsistency-tolerant query answering); (ii) How to compute the
KB resulting from updating a possibly inconsistent KB with the as-
sertion of new assertions (inconsistent-tolerant update).

In this paper, we study inconsistency tolerance in the context of
Description Logic (DL) KBs. A KB of this type models a domain
of interest in terms of two components, called TBox and ABox.
The TBox is a formal description of the concepts and the relation-
ships that are relevant in the domain, whereas the ABox specifies
the properties of individuals that are instances of the concepts and
relationships described in the TBox. In our work, we are interested
in DL KBs where the TBox is consistent, and inconsistencies may
arise from the interaction between the TBox and the ABox. In other
words, we deal with ABox inconsistencies, and leave the general
case, i.e., when the TBox itself may be inconsistent, to future investi-
gations. ABox inconsistency is common in the context, for example,
of Ontology-based Data Access [15, 5] (OBDA), where the TBox
is usually a high quality representation of the domain, designed in
such a way to avoid inconsistencies in the modeling of concepts and
relationships. On the contrary, the ABox derives from data sources
which are independent on the conceptualization represented by the
TBox, and therefore may contain data which are not coherent with
it. Also, an update of the OBDA system reflects new information on
individuals in the domain, and this new information may contradict
what was known about the individuals in the current state.

Inconsistency-tolerant query answering has received considerable
attention in the last years. Generally speaking, there are many ap-
proaches for devising inconsistency-tolerant inference systems [2],
originated in different areas, including Artificial Intelligence, and
Databases. As we said before, the present paper deals with ABox
inconsistency in DL KBs. This scenario has many similarities with
the one addressed by the approaches to consistent query answering
in databases [2]. These are based on the idea of living with incon-
sistencies (i.e., data that do not satisfy the integrity constraints) in
the database, but trying to obtain only consistent information during
query answering. The main tool used for this purpose is the notion
of database repair: a repair of a database contradicting a set of in-
tegrity constraints is a database obtained by applying a minimal set
of changes which restore consistency. In general, there are many pos-
sible repairs for a database, and inconsistency-tolerant query answer-
ing amounts to compute the tuples that are answers to the query in all
possible repairs. Recent papers apply the notion of repair to the con-
text of DL KBs, and study different inconsistency-tolerant semantics
for such KBs [12, 16, 3]. As we will see, we will refer to such a
notion in our work.

Inconsistency-tolerant update in the context of DL KBs is, to our
knowledge, a new problem. Indeed, all the approaches to update in
DLs that we are aware of, assume that the evolving KB is consistent,
and the update itself preserves consistency. Updating a KB means
to modify it in order to adhere to a change in the domain of inter-
est (see [11, 17] for other kinds of KB evolution operations, such as
revision). The modification may concern either the insertion or the
deletion of assertions. In virtually all the approaches to update, some
minimality criterion is used in the modifications of the KB that must
be undertaken to realize the evolution operations. In other words,
the need is commonly perceived of keeping the distance between the
original KB and the KB resulting from the application of an evolu-
tion operator minimal. There are two main approaches to define such
a distance, called model-based (see, e.g., [9, 14]) and formula-based
(See [8], also for a comparison of the two approaches in the context
of DL KBs). We base our approach on recent papers on updating DL
KBs using the formula-based approach, namely [8, 13]. In [8], the
authors present two formula-based approaches for updating DL-Lite
ABoxes with the insertion of new information: the bold semantics
and the careful semantics. The latter aims at solving the problem of
unexpected information coming from the update. The bold semantics
is close to the semantics presented in [13], but only in the case when
only one ABox accomplishing the insertion of new information ex-
ists. Indeed, we already noted that the formula constituting the result
of an evolution operation is not unique in general. While [10] essen-
tially proposes to keep the whole set of such formulas, and [8] relies

on a nondeterministic choice, [13] takes a radical approach, and con-
sider their intersection as the result of the evolution, thus following
the When In Doubt Throw It Out (WIDTIO) [18] principle.

Building specifically on [13], in this paper we present two main
contributions. The first contribution is a semantics of updating in-
consistent DL KBs with both the insertion and the deletion of a set
of ABox assertions. Our update mechanism is based on the idea that
realizing an insertion into (resp., deletion from) a KB K of a set F
of ABox assertions means computing the (possibly inconsistent) KB
K′ that minimally differ from K and such that all the repairs of K′
entails (resp., do not entail) F . Based on the WIDTIO principle, the
result of the update is the intersection of all the KBs realizing the
update.

The second contribution is the design of two algorithms, one for
the update by insertion, and the other for the update by deletion for
KBs expressed in the DL DL-LiteA,id, which is the most expressive
logic in the DL-Lite family [6]. The DL-Lite family1 has been specif-
ically designed to keep all reasoning tasks polynomially tractable in
the size of the ABox. By characterizing the computational complex-
ity of the insertion and the deletion algorithms for DL-LiteA,id, we
show that this property still holds for inconsistency-tolerant update.

The paper is organized as follows. In Section 2 we recall the ba-
sic notions of DL KBs and DL-LiteA,id. Section 3 illustrates our
inconsistency-tolerant update semantics. Section 4 presents the al-
gorithms for update by insertion in DL-LiteA,id, and Section 5 does
the same for update by deletion. Section 7 concludes the paper.

For the sake of brevity, no proof is included in the paper.

2 Preliminaries
In this section, we define some preliminary notions used in the rest
of the article.

Description logic knowledge bases. Description Logics (DLs) are
logics that allow one to represent the domain of interests in terms
of concepts, denoting sets of objects, value-domain, denoting sets
of values, attributes, denoting binary relations between objects and
values, and roles denoting binary relations over objects.

Let S be a signature of symbols for individual (object and value)
constants, and atomic elements, i.e., concepts, value-domains, at-
tributes, and roles. If L is a DL, then a knowledge base (KB) in L
(or, L-KB) over S is a pair 〈T ,A〉, where T , called TBox, is a finite
set of intensional assertions over S expressed in L, and A, called
ABox, is a finite set of instance assertions, i.e, assertions on individ-
uals, over S. Different DLs allow for different kinds of TBox and/or
ABox assertions. In this paper we assume that ABox assertions are
always atomic, i.e., they correspond to ground atoms, and therefore
we omit to refer to L when we talk about ABox assertions.

In what follows, when we use the term DL KB (or, simply, KB),
we mean an L-KB, for some DL L. Also, for simplicity, we always
refer to a fixed signature S.

The semantics of a KB is given in terms of first-order interpreta-
tions over S. An interpretation I is a model of a KB K = 〈T ,A〉 if
it satisfies all assertions in T ∪ A, where the notion of satisfaction
depends on the constructs and axioms allowed by the specific DL in
which K is expressed. We say that T is satisfiable if there exists at
least one model of all the assertions in T . We denote the set of mod-
els of K with Mod(K), and we say that K is satisfiable or consistent
if Mod(K) 6= ∅, unsatisfiable or inconsistent otherwise.

1 Not to be confused with the set of DLs studied in [1], which form the
DL-Litebool family.

Let T be a TBox in L, and let A be an ABox. We say that A
is T -consistent if 〈T ,A〉 is satisfiable, T -inconsistent otherwise.
More over, let V be a set of ABox assertions. We say that V is a
T -inconsistent set if V is T -inconsistent. As usual, a KB K entails
a closed first-order logic (FOL) sentence φ, denoted K |= φ, if φI is
true in every I ∈ Mod(K). In what follows, if F is a set of closed
formulas, then we write K |= F to mean that every formula in F is
entailed by K.

The T -closure of A with respect to T , denoted clT (A), is the
set of all atomic ABox assertions formed with individuals appear-
ing in K, and are logically implied by 〈T ,A〉. Note that, if 〈T ,A〉
is an L-KB, then 〈T , clT (A)〉 is an L-KB as well, and, obviously,
〈T ,A〉 is logically equivalent to 〈T , clT (A)〉, i.e., Mod(〈T ,A〉) =
Mod(〈T , clT (A)〉). A is said to be T -closed if clT (A) = A.

Given a query q(~x) (either a conjunctive query or an union of con-
junctive queries) and a knowledge base K, the certain answers to
q(~x) over K is the set ans(q,K) of all tuples ~t of constants appear-
ing in K, such that, when substituted to the variables ~x in q(~x), we
have that K |= q(~t), i.e., such that ~tI ∈ qI for every I ∈ Mod(K).
Notice that, since K is finite, ans(q,K) is finite by definition.

The description logic DL-LiteA,id. The DL-Lite family [6] is a fam-
ily of low complexity DLs particularly suited for dealing with KBs
with very large ABoxes. In this paper, we refer to DL-LiteA,id, which
is the most expressive logic in the family. Due to the lack of space,
we do not describe this logic here. The reader is referred to [7] for an
account of the syntax of such logic.

Let T be a DL-LiteA,id-KB. The set of positive (resp., negative)
inclusions in T will be denoted by T + (resp., T −), whereas the set
of functionality assertions (resp., identification assertions) in T will
be denoted by Tf (resp., Tid).

Example 1 The following TBox T is a portion of a knowledge base
describing the domain of rowing competitions.

OA v ATH CX v ATH CX v ¬OA
ATH v ∃mf CH v ∃mf CH v ¬ATH
∃mf− v RTM CR v ∃fb ∃fb v CR
∃fb− v ATH (funct mf) (funct fb−)
(id CX fb−)

The axioms state that oars (OA) and coxs (CX) are both athletes
(ATH), and oars are not coxs. Every athlete is member of (mf) ex-
actly one rowing team (RTM). A crew (CR) is formed by (fb) ath-
letes, among which there is exactly one cox. Finally, a coach (CH)
is a member of exactly one rowing team, and is not an athlete.

Let us consider the ABoxA containing the following ABox asser-
tions:

A = { OA(o),mf(o, t1), fb(w, o), CX(c), CH(h),mf(c, t1),
mf(h, t2) }.

In words, A specifies that o is an oar, c is a coax, and both are mem-
bers of the rowing team t1. Moreover, coach h is a member of the
rowing team t2, and crew w is formed by o.

We conclude this section with a brief discussion on the complexity
of reasoning about a DL-LiteA,id-KB 〈T ,A〉. If 〈T ,A〉 is a satisfi-
able DL-LiteA,id-KB, then the evaluation of a UCQ posed to 〈T ,A〉
can be reduced to standard evaluation of a FOL query, and hence in
AC0 in the size of A (data complexity), and in P in the size of the
whole KB. As for query complexity, answering UCQs in DL-LiteA,id

is in NP with respect to the size of the query [6, 7]. Moreover, sat-
isfiability can be checked in polynomial time with respect to |T | and
in AC0 with respect to |A|. Finally, clT (A) can be computed in
quadratic time with respect to |T | and |A|.

3 Inconsistency-tolerant update

In this section we present our semantics for updating possibly incon-
sistent DL KBs with both the insertion and the deletion of a finite set
of ABox assertions. In what follows, L is a DL, andK = 〈T ,A〉 is a
possibly inconsistent L-KB, with T satisfiable. Moreover, F denotes
a finite set of T -consistent ABox assertions. In the rest of this paper,
we use the term “update” as a generalization of “update by insertion”
and “update by deletion”.

We follow the idea in [13] for updating consistent KBs, that we
now briefly recall.

Firstly, we need to introduce the notion of “few changes” intro-
duced in [10]. Let A, A′, and A′′ be three finite set of ABox asser-
tions. We say that A′ has fewer deletions than A′′ with respect to A
ifA\A′ ⊂ A\A′′. Also, we say thatA′ andA′′ have the same dele-
tions with respect to A if A \ A′ = A \ A′′. Finally, we say that A′
has fewer insertions thanA′′ with respect toA ifA′ \A ⊂ A′′ \A.

Definition 1 Let A, A1, and A2 be three finite sets of ABox asser-
tions. Then, A1 has fewer changes than A2 with respect to A if

(i) A1 has fewer deletions than A2 with respect to A, or
(ii) A2 have the same deletions with respect to A, and A1 has

fewer insertions than A2 with respect to A.

Now, suppose that K = 〈T ,A〉 is consistent, and we want to up-
date K with either the insertion or the deletion of F . Essentially, in
the case of insertion, the result of the update is the KB formed by
T and the intersection of all the ABoxes accomplishing the inser-
tion of F into K minimally. Similarly, the result of updating K with
the deletion of F is the KB formed by T and the intersection of all
the ABoxes accomplishing the deletion of F from K minimally. An
ABoxA′ accomplishes the insertion (resp., deletion) of F minimally
ifA′ is T -consistent, 〈T ,A′〉 logically entails F (resp., does not log-
ically entail F), and no T -consistent ABox A′′ exists that logically
entails F (resp., does not logically entail F) with T , and such that
clT (A′′) has fewer changes than clT (A′) with respect to clT (A).

Note that the above update semantics makes use of the notion of
logical entailment. In case where K is not consistent, the reasoning
becomes meaningless, since any conclusion can be inferred from an
inconsistent K. So, how can we apply this idea in the case where K
is inconsistent?

Before introducing our solution, we need some preliminary defi-
nitions. Given a KB K = 〈T ,A〉, we denote with HB(K) the Her-
brand Base of K, i.e. the set of ground atoms that can be built over
the symbols appearing in K.

Also, we define the consistent logical consequences of
A with respect to T as the set clcT (A) = {α |
α ∈ HB(K) and there exists S ⊆ A such that Mod(〈T , S〉) 6=
∅ and 〈T , S〉 |= α}. Finally, we say that two KBs 〈T ,A〉 and
〈T ,A′〉 are consistently equivalent (C-equivalent) if clcT (A) =
clcT (A′).

Notice that, if 〈T ,A〉 is an L-KB, then 〈T , clcT (A)〉 is an L-
KB as well. Notice also that, if A is T -consistent, then clcT (A) =
clT (A), i.e., the consistent logical consequences ofK coincides with
clT (A).

Generally speaking, our update semantics makes use of the notion
of repair of a T -inconsistent ABox. Intuitively, a repair of A with
respect to T is a T -consistent ABox differing from A minimally. In
order to specify what it means to differ minimally fromA, we resort
both to clcT (A) and to the notion of “few changes”.

Definition 2 Let K = 〈T ,A〉 be a possibly inconsistent KB. A
closed ABox repair (CA-repair) for K is a set A′ of membership
assertions such that:

(i) A′ is T -consistent, i.e., Mod(〈T ,A′〉) 6= ∅, and
(ii) there is no set A′′ of ABox assertions that is T -consistent, and

such that clT (A′′) has fewer changes than clT (A)′ with
respect to clcT (A).

The set of closed ABox repairs for K is denoted by CAR-Set(K).

We now present an example illustrating the notion of CA-repair.

Example 2 Consider the DL-LiteA,id-KB K′ = 〈T ,A′〉, where T
is the TBox presented in Example 1, and A′ is the ABox formed by
the following assertions:

A′ = { CX(c1),mf(c1, t1), fb(w, c1), CX(c2),mf(c2, t1),
fb(w, c2), CH(h),mf(h, t2), OA(h) }.

It is easy to see thatK′ is inconsistent, since the creww has two coxs,
namely c1 and c2, and h is both a coach and an athlete. Up to logical
equivalence, the set CAR-Set(K′) is constituted by the following T -
consistent ABoxes:

CA-rep1 = { CX(c1),mf(c1, t1), CX(c2),mf(c2, t1),
fb(w, c1),mf(h, t2), CH(h) };

CA-rep2 = { CX(c1),mf(c1, t1), CX(c2),mf(c2, t1),
fb(w, c1),mf(h, t2), OA(h) };

CA-rep3 = { CX(c1),mf(c1, t1), CX(c2),mf(c2, t1),
fb(w, c2),mf(h, t2), CH(h) };

CA-rep4 = { CX(c1),mf(c1, t1), CX(c2),mf(c2, t1),
fb(w, c2),mf(h, t2), OA(h) };

CA-rep5 = { ATH(c1),mf(c1, t1), CX(c2),mf(c2, t1),
fb(w, c1), fb(w, c2),mf(h, t2), CH(h) };

CA-rep6 = { ATH(c1),mf(c1, t1), CX(c2),mf(c2, t1),
fb(w, c1), fb(w, c2),mf(h, t2), OA(h) };

CA-rep7 = { CX(c1),mf(c1, t1), ATH(c2),mf(c2, t1),
fb(w, c1), fb(w, c2),mf(h, t2), CH(h) };

CA-rep8 = { CX(c1),mf(c1, t1), ATH(c2),mf(c2, t1),
fb(w, c1), fb(w, c2),mf(h, t2), OA(h) }.

Our solution for updating inconsistent KBs is based on a simple
modification of the notions of “accomplishing the insertion” and “ac-
complishing the deletion” given in [13] in case of consistent KBs.
We sanction that an ABox A′ accomplishes the insertion of F into
a possibly inconsistent KB K = 〈T ,A〉 if for all CA-repairs A′′ of
〈T ,A′〉, we have that 〈T ,A′′〉 logically entails F . Similarly, we say
that an ABox A′ accomplishes the deletion of F from a possibly in-
consistent KB K = 〈T ,A〉 if for all CA-repairs A′′ of 〈T ,A′〉, we
have that 〈T ,A′′〉 does not logically entail F . More formally.

Definition 3 The ABox A′ accomplishes the insertion of F into
K = 〈T ,A〉 if for all A′′ ∈ CAR-Set(〈T ,A′〉), we have that
〈T ,A′′〉 |= F . Similarly, the ABox A′ accomplishes the deletion
of F from K = 〈T ,A〉 if for all A′′ ∈ CAR-Set(〈T ,A′〉), we have
that 〈T ,A′′〉 6|= F .

Then, we specify when a set of ABox assertions accomplishes the
update of 〈T ,A〉 with F minimally.

Definition 4 Let A′ be an ABox. A′ accomplishes the insertion
(resp., deletion) of F into (resp., from) 〈T ,A〉 minimally if A′ ac-
complishes the insertion (resp., deletion) of F into (resp., from)
〈T ,A〉, and there is no ABox A′′ that accomplishes the inser-
tion (resp., deletion) of F into (resp., from) 〈T ,A〉, and such
that clcT (A′′) has fewer changes than clcT (A′) with respect to
clcT (A).

Example 3 Consider the DL-LiteA,id-KB K′ = 〈T ,A′〉 pre-
sented in Example 2, and suppose that we want to update
K′ with the insertion of the set of ABox assertions F+ =
{CX(c1), fb(w, c1),mf(h, t1)}. In words, F+ states that c1 is the
cox of the creww, and that h is member of the rowing team t1. Then,
it is easy to verify that both the following T -inconsistent ABoxes ac-
complish the insertion of F+ into K′ minimally.

A+
1 = { CX(c1),mf(c1, t1), fb(w, c1),mf(c2, t1),mf(h, t1),

OA(h), CH(h), RTM(t2), fb(w, c2) };
A+

2 = { CX(c1),mf(c1, t1), fb(w, c1),mf(c2, t1),mf(h, t1),
OA(h), CH(h), RTM(t2), CX(c2) }.

Moreover, it can been shown that every other ABox accomplishing
the insertion of F+ intoK′ minimally has the same consistent logical
consequences with respect to T ofA+

1 orA+
2 . Now, suppose that we

want to updateK′ with the deletion of F− = {mf(c1, t1), OA(h)}.
Then, it is easy to verify that both the following T -inconsistent
ABoxes accomplish the deletion of F− from K′ minimally.

A−1 = { CX(c1), fb(w, c1), CX(c2),mf(c2, t1),
fb(w, c2), CH(h),mf(h, t2), OA(h) };

A−2 = { CX(c1),mf(c1, t1), fb(w, c1), CX(c2),mf(c2, t1),
fb(w, c2), CH(h),mf(h, t2), ATH(h) }.

Also in this case, we have that every other ABox accomplishing the
deletion of F− from K′ minimally has the same consistent logical
consequences with respect to T of A−1 or A−2 .

Finally, according with the WIDTIO principle, we base our se-
mantics for update on the intersection of all the ABoxes accomplish-
ing the update minimally.

Definition 5 Let U = {A1, . . . ,An} be the set of all ABoxes ac-
complishing the insertion (resp., deletion) of F into (resp., from)
〈T ,A〉 minimally, and let A′ be an ABox. Then, 〈T ,A′〉 is the re-
sult of updating 〈T ,A〉 with the insertion (resp., deletion) of F if
clcT (A′) =

T
1≤i≤n clcT (Ai).

Example 4 Consider again K′ and F of Example 3, and the follow-
ing T -inconsistent ABoxes:

A+
u = { CX(c1),mf(c1, t1), fb(w, c1),mf(c2, t1),mf(h, t1),

OA(h), CH(h), RTM(t2), ATH(c2) }
A−u = { CX(c1), fb(w, c1), CX(c2),mf(c2, t1),

fb(w, c2), CH(h),mf(h, t2), ATH(h) }.

It is immediate that clcT (A+
u) coincides with the intersection of

clcT (A+
1) and clcT (A+

2), and that clcT (A−u) coincides with the
intersection of clcT (A−1) and clcT (A−2) shown in Example 3. Ac-
cording to Definition 5, we have that K+

u = 〈T ,A+
u 〉 is therefore

the result of updating K′ = 〈T ,A′〉 with the insertion of F+, and
that K−u = 〈T ,A−u 〉 is the result of updating K′ = 〈T ,A′〉 with the
deletion of F−.

Observe that if K = 〈T ,A〉 is an inconsistent L-KB and F is T -
consistent, then in case of both insertion and deletion, our semantics
guarantees that an L-KB Ku resulting from updating K with F al-
ways exists. Moreover, note that ifKu results from the insertion of F
into K, then Ku may be inconsistent, but every repair of Ku entails
F . Similarly, if Ku results from deleting F from K, then Ku may be
inconsistent, but every repair of Ku does not entail F . Conversely,
in the case where the original KB is consistent, our update semantics
coincides with the semantics for updating consistent KBs presented
in [13], and therefore consistency is preserved by the update opera-
tion.

Notably, in the case of inconsistent KBs, our update operators is
closed with respect to C-equivalence. Indeed, it can be shown that if
K1 andK2 are two C-equivalent KBs, andK′1 results from the update
of K1 with F , and K′2 results from the update of K2 with F , then
K′1 and K′2 are C-equivalent. This implies that, up to C-equivalent,
exactly one KB results from the update, and this will be called the
result of the update.

4 Inconsistency-tolerant insertion in DL-LiteA,id
In this section we address the problem of updating a possibly incon-
sistent DL-LiteA,id-KB K with the insertion of F , according to the
semantics given in the previous section.

The algorithm we present is based on the characterization in the
context of DL-LiteA,id of when an atom in clcT (A) does not belong
to some ABox accomplishing the insertion of a set of atoms mini-
mally. Indeed, according with the WIDTIO principle, an atom α will
not be in the result of the update exactly when it does not appear in at
least one ABox accomplishing the insertion of F into K minimally.
The following proposition provides such characterization.

Proposition 1 Let α be an atom in clcT (A) \ clT (F). There is A′
accomplishing the insertion of F into 〈T ,A〉 minimally with α 6∈
clcT (A′) if and only if there is a T -inconsistent set V in clcT (A)∪
clT (F) such that: (i) α ∈ V ; (ii) F ∪ (V \ {α}) is T -consistent;
(iii) V ∩ clT (F) 6= ∅.

Example 5 Referring to Example 3, the ABox constituted by
clcT (A′) ∪ clT (F+) contains the following T -inconsistent sets:

inset1 = { CX(c1), CX(c2), fb(w, c1), fb(w, c2) };
inset2 = {mf(h, t1),mf(h, t2) };
inset3 = { CH(h), ATH(h) };
inset4 = { CH(h), OA(h) }

where inset1 contradicts the ID (id CX fb−), inset2 contra-
dicts the functionality assertion (funct mf), and both inset3 and
inset4 contradict the negative inclusion CH v ¬ATH . Note that
only inset1 and inset2 overlap with clT (F). According to Defi-
nition 5, and by exploiting Proposition 1, is easy to verify that the
DL-LiteA,id-KB K+

u = 〈T ,A+
u 〉, where

A+
u = { CX(c1),mf(c1, t1), fb(w, c1),mf(c2, t1),mf(h, t1),

OA(h), CH(h), RTM(t2), ATH(c2) }

is the result of updating 〈T ,A〉 with the insertion of F .

From Proposition 1 one can derive the following algorithm for
computing the result of an update by insertion.

Algorithm ComputeInsertionCAR(K, F)
Input: a DL-LiteA,id-KB K = 〈T ,A〉, a set of ABox assertions F ;
Output a DL-LiteA,id-KB.
begin

W ← InconsistentSets(〈T ,A ∪ F 〉);
D ← ∅;
foreach α ∈ clcT (A) \ clT (F) do

if ∃w ∈W s.t.
(i) α ∈ w and
(ii) F ∪ (V \ {α}) is T -consistent, and
(iii) clT (F) ∩ w 6= ∅

then D ← D ∪ {α};
return 〈T , F ∪ clcT (A) \D〉;

end

The algorithm essentially computes the set D of ABox assertions
in clcT (A) \ clT (F) which do not belong to at least one ABox
accomplishing the insertion of F into K minimally. It proceeds as
follows. In order to exploit Proposition 1 the algorithm needs to
compute all T -inconsistent sets in clcT (A) ∪ clT (F). To this end,
ComputeInsertionCAR uses the algorithm InconsistentSets that
computes the set W of all T -inconsistent sets in clcT (A)∪ clT (F).
Afterwards it adds to the setD each assertion α ∈ clcT (A)\clT (F)
that is contained in at least one w ∈ W that overlaps with clT (F)
and such that F ∪ w \ {α} is T -consistent. Finally, the algorithm
returns the KB 〈T , F ∪ clcT (A) \D〉.

It remains to present the algorithm InconsistentSets. As shown
in [7], by virtue of the characteristics of DL-LiteA,id, we can com-
pute the set W of all T -inconsistent sets in clcT (A) ∪ clT (F) in
polynomial time with respect to the size of A ∪ F . Indeed, the
key property of DL-LiteA,id that we exploit is that for every T -
inconsistent sets W in clcT (A) ∪ clT (F), there is one assertions in
T −∪Tf∪Tid that is violated byW . Therefore, every T -inconsistent
set in clcT (A)∪ clT (F) corresponds to the certain answer of a suit-
able conjunctive query built out of one assertion α in T −∪Tf ∪Tid.
Essentially, such conjunctive query looks for the tuples that form the
facts satisfying the negation of α.

To illustrate the technique, we define a translation function ϕ from
assertion in T −∪Tf∪Tid to boolean conjunctive query with inequal-
ities. In what follows, B is a basic concept, Q is a basic role, U is an
attribute and x, x1, and x2 are variables.

- ϕ((funct P)) : q() = P (x, x1) ∧ P (x, x2) ∧ x1 6= x2

- ϕ((funct P−)) : q() = P (x1, x) ∧ P (x2, x) ∧ x1 6= x2
- ϕ((funct U)) : q() = U(x, x1) ∧ U(x, x2) ∧ x1 6= x2
- ϕ(B1 v ¬B2) : q() = γ1(B1, x) ∧ γ2(B2, x)
- ϕ(Q1 v ¬Q2) : q() = σ(Q1, x1, x2) ∧ σ(Q2, x1, x2)
- ϕ(U1 v ¬U2) : q() = U1(x1, x2) ∧ U2(x1, x2)
- ϕ((id B π1, . . . , πn)) : q() = γ(B, x) ∧ γ(B, x′) ∧ x 6= x′∧V

1≤i≤n(ρ(πi(x, xi)) ∧ ρ(πi(x
′, xi)))

where: γ(B, x) = A(x) if B = A, γ(B, x) = P (x, ynew)
(resp., P (ynew, x)) if B = ∃P (resp., B = ∃P−), or γ(B, x) =
U(x, ynew) if B = δ(U), where ynew is a fresh variable.
σ(Q, x, y) = P (x, y) if Q = P , or σ(Q, x, y) = P (y, x) if

Q = P−, and ρ(π(x, y)) is inductively defined on the structure of
path π as follows:

1. If π = B1? ◦ · · · ◦ Bh? ◦ Q ◦ B′1? ◦ · · · ◦ B′k? (with h ≥ 0,
k ≥ 0), then ρ(π(x, y)) = γ(B1, x)∧· · ·∧γ(Bh, x)∧Q(x, y)∧
γ(B′1, y) ∧ · · · ∧ γ(B′k, y).

2. If π = π1 ◦ π2, where length(π1) = 1 and length(π2) ≥ 1, then
ρ(π(x, y)) = ρ(π1(x, z)) ∧ ρ(π2(z, y)), with z a fresh variable
symbol.

If q()← ψ(~x) is a boolean CQ, then we denote with q(~x) the con-
junctive query obtained by transforming all existential variables in
q()← ψ(~x) into distinguished variables. Moreover, if q(~x)← ψ(~x)
is a CQ with inequalities and without non-distinguished variables,
and~t is a tuple of constants, we denote by facts(q,~t) the set of ABox
assertions in clcT (A) built by replacing the variables ~x in ψ(~x) with
the tuple ~t.

We are ready to present the algorithm InconsistentSets whose
goal is to compute all T -inconsistent sets in clcT (A) ∪ clT (F).

Algorithm InconsistentSets(〈T ,A〉)
Input: DL-LiteA,id-KB 〈T + ∪ T − ∪ Tf ∪ Tid,A〉;
Output: a set of ABox assertions.
begin

W ← ∅;
foreach α ∈ T − ∪ Tf ∪ Tid do
Q ← Q∪ PerfectRef 6=(T +, ϕ(α));

foreach q() ∈ Q and ~t ∈ ans(q(~x), 〈∅, clcT (A)〉 do
W ←W ∪ {facts(q(~x),~t)};

return V ;
end

Firstly, InconsistentSets computes, for each assertion α ∈ T −∪
Tf ∪ Tid, the boolean conjunctive query with inequalities corre-
sponding to the negation of α, by means of the translation func-
tion ϕ, and then it computes the perfect reformulation [6] of ϕ(α)
by means of the algorithm PerfectRef 6=. We remind the reader that
UCQs in DL-LiteA,id are FOL-rewritable, i.e., for every union of
conjunctive queries q and every DL-LiteA,id TBox T , there exists
a FOL query qr , over the alphabet of T , such that for every non-
empty ABox A it holds that 〈T ,A〉 |= q if and only if qr evaluates
to true over A, i.e., 〈∅,A〉 |= qr . The query qr is called the per-
fect FOL reformulation of q w.r.t. T . An algorithm for computing
such reformulation, called PerfectRef, is provided in [6]. In a nut-
shell, PerfectRef takes as input a UCQ q and a DL-LiteA,id TBox
T and compiles in q the knowledge of T useful for answering q,
returning another UCQs over T which is the perfect FOL reformu-
lation of q w.r.t. T . The reformulation computed by PerfectRef6=
is a slight variation of the one computed by the algorithm Perfec-
tRef: in this modified version, inequality is considered as a primitive
role, therefore never “expanded”, and the variables occurring in in-
equality atoms are never “reduced” (i.e., transformed by unification
steps into non-join variables). Note that the result of PerfectRef 6= is
a boolean UCQ with inequalities, represented as a set of boolean CQ
with inequalities, as usual. Every boolean query q() in such a set is
then transformed by InconsistentSets into the corresponding query
q(~x) without non-distinguished variables and evaluated over the KB
〈∅, clcT (A)〉, so that every certain answer ~t thus computed produces
the set facts(q(~x),~t) that is inserted into V , where facts(q(~x),~t) is
a T -inconsistent set violating the assertion in T − ∪ Tf ∪ Tid cor-
responding to q(). At the end, V contains all T -inconsistent sets in
clcT (A).

Proposition 2 Let 〈T ,A〉 be a DL-LiteA,id-KB. Then
InconsistentSets(〈T ,A〉) terminates, and computes all T -
inconsistent sets in clcT (A) in polynomial time with respect to
|T \ Tid| and |A|, and in exponential time with respect to |Tid|.

Finally, from Proposition 1 and Proposition 2, one can immedi-
ately derive the following theorem.

Theorem 1 ComputeInsertionCAR(〈T ,A〉, F) terminates, and
computes a KB which is the result of updating 〈T ,A〉 with the in-
sertion of F in polynomial time with respect to |T \ Tid|, |A| |F |,
and in exponential time with respect to |Tid|.

5 Inconsistency-tolerant deletion in DL-LiteA,id
In this section we study deletion under the assumption that the DL
language L is DL-LiteA,id. Thus, in what follows, we implicitly refer
to a DL-LiteA,id-KB K = 〈T ,A〉, and we address the problem of
updating K with the deletion of a finite set F of ABox assertions
according to the semantics given in Section 3.

By Definition 3 we have that an ABox A′ accomplishes the dele-
tion of F fromK = 〈T ,A〉 if every CAR-repair of 〈T ,A′〉 does not
imply F . It follows that, in the case where every CAR-repair of the

original KB K does not imply F , we have that the ABox A accom-
plishes the deletion of F from K. Moreover, since no changes have
been made, A accomplishes the deletion of F from K minimally.
From the observations above, we have the following proposition.

Proposition 3 Let 〈T ,A〉 be a possibly inconsistent DL-LiteA,id-
KB, and let F be a set of ABox assertions. If F is T -inconsistent, or
F 6⊆ clcT (A), then the result of updating 〈T ,A〉 with the deletion
of F is 〈T ,A〉 itself.

In other words, Proposition 3 states that if F is T -inconsistent,
or if F 6⊆ clcT (A), then the deletion operator does not modify the
original KB. In what follows we focus on the case where F is T -
consistent and F ⊆ clcT (A).

We start analyzing the problem in the case where the set F is con-
stituted by a single ABox assertion f . By virtue of the characteristics
of DL-LiteA,id we have that the ABox computed by removing from
clcT (A) every assertion α such that 〈T , α〉 |= f accomplishes the
deletion of {f} from 〈T ,A〉minimally. Note that from the definition
of consistent logical consequences given in Section 3, we have that
{α} is T -consistent for every ABox assertion α ∈ clcT (A).

We now consider the case of arbitrary F , i.e., the case where F =
{f1, . . . , fm}, form ≥ 0. Let U = {A1 . . .Am} be a set of ABoxes
Ai, such that, for every 1 ≤ i ≤ m, Ai accomplishes the deletion
of {fi} ⊆ F from 〈T ,A〉 minimally. The following lemmas are the
key to our solution.

Lemma 1 Let Ai and Aj be two ABoxes in U such that Ai and
Aj accomplishes respectively the deletion of {fi} ⊆ F from 〈T ,A〉
minimally, and the deletion of {fi} ⊆ F from 〈T ,A〉 minimally.
clcT (Ai) has fewer changes than clcT (Aj) with respect to clcT (A)
if and only if 〈T , {fi}〉 |= 〈T , {fj}〉 and 〈T , {fj}〉 6|= 〈T , {fi}〉.

As a consequence of Lemma 1 we have that if an ABox Ai ac-
complishes the deletion of {fi} ⊆ F from 〈T ,A〉 minimally, and
there does not exists any other assertion fj 6= fi in F such that
〈T , {fj}〉 |= fi and 〈T , {fi}〉 6|= fj , then Ai accomplishes the
deletion of F from 〈T ,A〉 minimally.

The following lemma guarantees that no ABox, other than those
contained in U , accomplishes the deletion of F from 〈T ,A〉 mini-
mally.

Lemma 2 Let 〈T ,A〉 be a DL-LiteA,id-KB, and let F be a set of
ABox assertions such that 〈T ,A〉 |= F . If A′ accomplishes the
deletion of F from 〈T ,A〉 minimally, then there exists an assertion
f ′ ∈ F such that A′ accomplishes the deletion of {f ′} from 〈T ,A〉
minimally.

Proposition 3, Lemma 1, and Lemma 2 suggest a direct strategy for
computing the result of updating a possibly inconsistent DL-LiteA,id-
KB with the deletion of a set of ABox assertions. Such a strategy is
illustrated in the algorithm ComputeDeletionCAR below.

Algorithm ComputeDeletionCAR(K, F)
Input: a DL-LiteA,id-KB K = 〈T ,A〉, a set of ABox assertions F ;
Output a DL-LiteA,id-KB.
begin

if Mod(〈T , F 〉) = ∅ or F 6⊆ clcT (A)
then return 〈T ,A〉;
F ′ ← F ;
foreach fi ∈ F ′ and fj ∈ F such that fi 6= fj do

if 〈T , {fj}〉 |= fi and 〈T , {fi}〉 6|= fj

then F ′ ← F ′ \ {fi};
F− ← ∅;
foreach f ∈ F ′ do

foreach α ∈ clcT (A) do
if 〈T , {α}〉 |= f then F− ← F− ∪ {α};

return 〈T , clT (A) \ F−〉;
end

Finally, we have the following theorem.

Theorem 2 ComputeDeletionCAR(〈T ,A〉, F) terminates, and
computes a KB which is the result of updating 〈T ,A〉 with the dele-
tion of F in polynomial time with respect to |T |, |A| and |F |.

6 Conclusions

We have presented a new approach to updating inconsistent DL KBs
based on the WIDTIO principle, and we have illustrated specific
techniques for the case of DL-LiteA,id-KBs. We are currently ex-
tending our work in several directions. In particular, we are studying
how to extend the results presented in this paper to the case of full-
fledged OBDA systems, i.e., systems where data reside in external
sources, and suitable mappings specify how to interpret such data in
terms of instances of the concepts and the roles of the DL-LiteA,id

TBox. Similarly to the case of data integration [4], the main chal-
lenge in this context is to devise suitable techniques for pushing the
updates to the sources, so as to realize the desired update by means
of appropriate operations on the data at the sources.

Acknowledgments. This research has been partially supported by
the EU under FP7 project ACSI – Artifact-Centric Service Interoper-
ation (grant n. FP7-257593), and by Regione Lazio under the project
“Integrazione semantica di dati e servizi per le aziende in rete”.

REFERENCES
[1] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael

Zakharyaschev, ‘The DL-Lite family and relations’, J. of Artificial In-
telligence Research, 36, 1–69, (2009).

[2] Inconsistency Tolerance, eds., Leopoldo E. Bertossi, Anthony Hunter,
and Torsten Schaub, volume 3300 of LNCS, Springer, 2005.

[3] Meghyn Bienvenu, ‘First-order expressibility results for queries over
inconsistent DL-Lite knowledge bases’, in Proc. of DL 2011, volume
745 of CEUR, ceur-ws.org, (2011).

[4] Andrea Calı̀ and Diego Calvanese and De Giacomo, Giuseppe and
Maurizio Lenzerini, ‘Accessing Data Integration Systems through Con-
ceptual Schemas’, in Proc. of ER 2011, volume 2224 of LNCS, 270–
284. Springer, 2001.

[5] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-
izio Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, Riccardo
Rosati, Marco Ruzzi, and Domenico Fabio Savo, ‘The Mastro system
for ontology-based data access’, Semantic Web J., 2(1), 43–53, (2011).

[6] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-
izio Lenzerini, and Riccardo Rosati, ‘Tractable reasoning and efficient
query answering in description logics: The DL-Lite family’, J. of Auto-
mated Reasoning, 39(3), 385–429, (2007).

[7] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati, ‘Path-based identification constraints
in description logics’, in Proc. of KR 2008, 231–241, (2008).

[8] Diego Calvanese, Evgeny Kharlamov, Werner Nutt, and Dmitriy
Zheleznyakov, ‘Evolution of DL-Lite knowledge bases’, in Proc. of
ISWC 2010, volume 6496 of LNCS, 112–128. Springer, (2010).

[9] De Giacomo, Giuseppe and Maurizio Lenzerini and Antonella Poggi
and Riccardo Rosati, ‘On the Update of Description Logic Ontologies
at the Instance Level’, in Proc. of AAAI 2006, 1271–1276, 2006.

[10] Ronald Fagin, Jeffrey D. Ullman, and Moshe Y. Vardi, ‘On the seman-
tics of updates in databases’, in Proc. of PODS’83, 352–365, (1983).

[11] Hirofumi Katsuno and Alberto Mendelzon, ‘On the difference between
updating a knowledge base and revising it’, in Proc. of KR’91, 387–394,
(1991).

[12] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi,
and Domenico Fabio Savo, ‘Inconsistency-tolerant semantics for de-
scription logics’, in Proc. of RR 2010, (2010).

[13] Maurizio Lenzerini and Domenico Fabio Savo, ‘On the evolution of
the instance level of DL-Lite knowledge bases’, in Proc. of DL 2011,
volume 745 of CEUR, ceur-ws.org, (2011).

[14] H. Liu and C. Lutz and M. Milicic and F. Wolter, ‘Updating Description
Logic ABoxes’, in Proc. of KR 2006, 46–56, (2006).

[15] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe
De Giacomo, Maurizio Lenzerini, and Riccardo Rosati, ‘Linking data
to ontologies’, J. on Data Semantics, X, 133–173, (2008).

[16] Riccardo Rosati, ‘On the complexity of dealing with inconsistency
in description logic ontologies’, in Proc. of IJCAI 2011, 1057–1062,
(2011).

[17] Zhe Wang, Kewen Wang, and Rodney W. Topor, ‘A new approach to
knowledge base revision in DL-Lite’, in Proc. of AAAI 2010, (2010).

[18] Marianne Winslett, Updating Logical Databases, Cambridge Univer-
sity Press, 1990.

