
MASTRO at Work: Experiences on
Ontology-based Data Access

Domenico Fabio Savo1, Domenico Lembo1, Maurizio Lenzerini1,
Antonella Poggi1, Mariano Rodriguez-Muro2, Vittorio Romagnoli3,

Marco Ruzzi1, Gabriele Stella3

1 SAPIENZA Università
di Roma

lastname@dis.uniroma1.it

2 Free University of
Bozen-Bolzano

rodriguez@inf.unibz.it

3 Banca Monte dei
Paschi di Siena

firstname.lastname@banca.mps.it

Abstract. We report on an experimentation of Ontology-based Data Access
(OBDA) carried out in a joint project with SAPIENZA University of Rome,
Free University of Bolzano, and Monte dei Paschi di Siena (MPS), where we
used MASTRO for accessing, by means of an ontology, a set of data sources of
the actual MPS data repository. By both looking at these sources, and by in-
terviews with domain experts, we designed both the ontology representing the
conceptual model of the domain, and the mappings between the ontology and the
sources. The project confirmed the importance of several distinguished features
of DL-LiteA,Id to express the ontology and has shown very good performance of
the MASTRO system in all the reasoning tasks, including query answering, which
is the most important service required in the application.

1 Introduction
While the amount of data stored in current information systems continuously grows,
turning these data into information is still one of the most challenging tasks for Infor-
mation Technology. The task is complicated by the proliferation of data sources both in
single organizations, and in open environments. Specifically, the information systems
of medium and large organizations are typically constituted by several, independent,
and distributed data sources, and this poses great difficulties with respect to the goal of
accessing data in a unified and coherent way. Such a unified access is crucial for getting
useful information out of the system, as well as for taking decision based on them. This
explains why organizations spend a great deal of time and money for the understanding,
the governance, the curation, and the integration of data stored in different sources [7].

The following are some of the reasons why a unified access to data sources is prob-
lematic.

– Despite the fact that the initial design of a collection of data sources (e.g., a
database) is adequate, corrective maintenance actions tend to re-shape the data
sources into a form that often diverges from the original conceptual structure.

– It is common practice to change a data repository so as to adapt it both to spe-
cific application-dependent needs, and to new requirements. The result is that data
sources often become data structures coupled to a specific application (or, a class
of applications), rather than application-independent databases.

– The data stored in different sources tend to be redundant, and mutually inconsistent,
mainly because of the lack of central, coherent and unified data management tasks.

In principle, there are two alternative solutions to the above problems. One solution
is the re-engineering of the information system, i.e., the design of a new, coherent, and
unified data repository serving all the applications of the organization [8], and replac-
ing the original data sources. This approach is unfeasible in many situations, due to cost
and organization problems. The other solution is to create a new stratum of the infor-
mation system, co-existing with the data sources, according to the “data integration”
paradigm [1]. Such new stratum is constituted by (i) a global (also called “mediated”)
schema, representing the unified structure presented to the clients, and (ii) the mapping
relating the source data with the elements in global schema. There are two methods for
realizing such stratum, called materialized and virtual. In the materialized approach,
called data warehousing, the global schema is populated with concrete data deriving
from the sources. In the virtual approach, data are not moved, and queries posed to the
system are answered by suitably accessing the sources [9]. The latter approach, which
is the one referred to in this work, is preferable in a dynamic scenario, where sources
may be updated frequently, and clients want to use up-to-date information.

In current data integration tools the global schema is expressed in terms of a logical
database model, e.g. the relational data model [1]. It is well-known that the abstractions
and the constructs provided by this kind of data models are influenced by implementa-
tion issues. It follows that the global schema represents a sort of unified data structure
accommodating the various data at the sources, and the client, although freed from
physical aspects of the source data (where they are, and how they can be accessed), is
still exposed to issues concerning how data are packed into specific structures.

To overcome these problems, we recently proposed the notion of ontology-based
data integration, also called ontology-based data access (OBDA) [14,12]1, whose ba-
sic idea is to express the global schema as an ontology, i.e., a conceptual specification of
the application domain. With this idea, the integrated view that the system provides to
information consumers is not merely a data structure accommodating the various data
at the sources, but a semantically rich description of the relevant concepts and relation-
ships in the domain of interest, with the mapping acting as the reconciling mechanism
between the conceptual level and the data sources. Besides this characteristic, OBDA
also exploits reasoning on the ontology in computing the answers to queries, thus (at
least partially) overcoming possible incompleteness that may be present in the data.

In this paper we report on an experimentation of OBDA carried out in a joint project
by Banca Monte dei Paschi di Siena (MPS)2, Free University of Bozen-Bolzano, and
SAPIENZA Università di Roma, where we used MASTRO [13] for accessing, by means
of an ontology, a set of data sources from the actual MPS data repository. MASTRO is an
OBDA system extending the QUONTO3 reasoner, which is based on, DL-LiteA,Id [2],

1 The two terms have very similar meaning. We tend to use the term “ontology-based data inte-
gration” in scenarios where the data sources are heterogenous (i.e., managed by different data
management systems), and distributed, which is not the case in the project described here.

2 MPS is one of the main banks, and the head company of the third banking group in Italy (see
http://english.mps.it/).

3 http://www.dis.uniroma1.it/quonto

one of the logics of the DL-Lite family [4]. The OBDA scenario refers to a set of 12
relational data sources, collectively containing about 15 million tuples. By both looking
at these sources, and by interviews with domain experts, we designed both the ontol-
ogy representing the conceptual model of the domain, and the mapping between the
ontology and the sources. The ontology comprises 79 concepts and 33 roles, and is ex-
pressed in terms of approximately 600 DL-LiteA,Id axioms. The relationships between
the ontology and the sources are expressed in terms of about 200 mapping assertions.
The results of the experimentation can be summarized as follows.

1) In the context of the MPS scenario, OBDA has indeed addressed many of the
data access issues mentioned before. The system provides the users with the possibility
of querying the data sources by means of the conceptual model of the domain, and this
opens up the possibility for a variety of users of extracting information from a set of
data sources that previously were accessed through specific applications.

2) The project confirmed the importance of several distinguished features of
DL-LiteA,Id, namely, identification constraints, and epistemic queries. Both features
are missing in the standard ontology language OWL 2. In particular, we believe that
the absence of identification constraints in OWL 2 may hamper the usefulness of such
language in ontology-based data access.

3) MASTRO has shown very good performance in all the reasoning tasks, including
query answering, which is the most important service required in the application. This
has been achieved by specific optimizations designed within this project of the MASTRO
query answering algorithm, in particular concerning the phase of unfolding the query
against the mapping.

4) The experience in this project has shown that OBDA can be used for checking
the quality of data sources. There are basically two kinds of data quality problems that
our system is able to detect, one related to unexpected incompletenesses in the data
sources, and the other one related to inconsistencies present in the data. The OBDA
system designed for the MPS scenario has been able to provide useful information in
order to improve both aspects of data quality.

5) Our work has pointed out the importance of the ontology itself, as a precious
documentation tool for the organization. Indeed, the ontology developed in our project
is adopted in MPS as a specification of the relevant concepts in the organization.

6) The OBDA system serves also as an inspiration for devising new data gover-
nance tasks. Relying on OBDA services, queries such as “how is a certain concept
(e.g., customer) represented in a specific data source (e.g., table GZ0005)?” can now
be answered, simply by exploiting both the ontology and the mappings designed in the
project, and the query reformulation capability of MASTRO.

The paper is organized as follows. Section 2 presents a brief description of MAS-
TRO. Sections 3 illustrates the scenario of our experimentation. Section 4 presents the
ontology and the mapping. Section 5 illustrates the use of MASTRO in the scenario.
Section 6 concludes the paper.

2 The MASTRO system
MASTRO is an OBDA system jointly developed at the SAPIENZA University of
Rome and Free University of Bozen-Bolzano. MASTRO allows for the definition of

DL-LiteA,Id [2] ontologies connected through semantic mappings to external indepen-
dent relational databases storing data to be accessed. Thus, differently from other ap-
proaches to ontology definition and reasoning [10,6,11], the extensional level of the
ontology, namely, the instances of concepts and roles, are not explicitly asserted and
possibly managed by a DBMS, but are specified by mapping assertions describing how
they can be retrieved from the data at the sources. In the following we briefly sketch
the architecture of the system, distinguishing between “Ontology Definition Module”,
“Mapping Manager”, “Data Source Manager”, and “Reasoner”.

The Ontology Definition Module provides mechanisms for the specification of the
ontology as a DL-LiteA,Id TBox. DL-LiteA,Id is a Description Logic (DL) belonging
to the DL-Lite family, which adopts the Unique Name Assumption, and provides all
the constructs of OWL 2 QL4, a tractable profile of OWL 2, plus functionality and
identification assertions, with the limitation that these kind of assertions cannot involve
sub-roles. These last features, while enhancing the expressive power of the logics, do
not endanger the efficiency of both intensional reasoning, and query answering. In other
words, the computational complexity of these tasks is the same as in OWL 2 QL, namely
PTIME with respect to the size of the TBox, and LOGSPACE in the size of the data at
the sources.

The Mapping Manager supports the definition of mapping assertions relating the
data at the sources to the concepts in the ontology. The mapping assertions supported
by MASTRO are a particular form of GAV mappings [9]. More specifically, a mapping
assertion is an expression of the form ψ ; ϕ where ψ is an arbitrary SQL query over
the database, and ϕ is a DL-LiteA,Id conjunctive query without existential variables. As
described in [12], data extracted by means of query ψ are used, together with suitable
Skolem functions, to build the logic terms representing the object identifiers, thus solv-
ing the impedance mismatch problem between data at the sources and instances of the
ontology. The Mapping Manager interacts with the Data Source Manager, which is in
charge of the communication with the underlying relational sources, providing trans-
parent access to a wide range of both commercial and freeware relational DBMSs5.

Finally, the Reasoner exploits both the TBox and the mapping assertions in order to
(i) check the satisfiability of the whole knowledge base, and (ii) compute the answer
to the queries posed by the users. Such module is based on QUONTO, a reasoner for the
DL-Lite family that uses query rewriting as a main processing technique. The two main
run-time services provided by the reasoner are query answering, and consistency check.
The MASTRO process to answer conjunctive queries (CQs) is inspired by the one imple-
mented in the QUONTO system. First, the query posed by the user over the ontology is
reformulated in terms of the inclusion assertions expressed among concepts and roles;
second, such rewriting is unfolded according to the mapping assertions in order to gen-
erate an SQL query which can be directly issued over the relational data source. It can be
shown that the answers to such an SQL query are exactly the answers logically implied
by the whole knowledge base [2]. As a further powerful feature, MASTRO is able to an-
swer EQL (Epistemic Query Language) queries [3], i.e., first-order logic queries over
the ontology interpreted under an epistemic semantics. Finally, MASTRO provides the

4 http://www.w3.org/TR/owl2-profiles/
5 No relational sources can be accesses by means of suitable wrapping tools

consistency check capability. By virtue of the characteristics of DL-LiteA,Id, MASTRO
reduces consistency checking to verifying whether queries generated for disjointness
assertions, functionality assertions, identification constraints and EQL constraints re-
turn an empty result. To this aim, a boolean query is automatically generated for every
such construct and then rewritten, unfolded, and evaluated over the database.

3 Case study: The domain of experimentation
The data of interest in our case study are those exploited by MPS personnel for risk es-
timation in the process of granting credit to bank customers. A customer may be a per-
son, an ordinary company, or an holding company. Customers are ranked with respect
to their credit worthiness, which is established considering various circumstances and
credit/debit positions of customers. In addition to customer information, data of inter-
est regard company groups to which customers belong, and business relations between
bank customers (in particular, fifteen different kinds of such relations are relevant).

Source name Source Decription Source size
GZ0001 Data on customers 3.463.083
GZ0002 Data on juridical connections between customers 157.280
GZ0003 Data on guarantee connection between customers 1.270.333
GZ0004 Data on economical connections between customers 104.033
GZ0005 Data on corporation connections between customers 1.021.779
GZ0006 Data on patrimonial connections between customers 809.321
GZ0007 Data on company groups 55.362
GZ0012 Customers loan information 5.966.948
GZ0015 Data on monitoring and reporting procedures 1.243
GZ0101 Data on membership of customers into CCCs 2.225.466
GZ0102 Information on CCCs 663.656
GZ0104 Data on bank credit coordinators for juridical CCCs 38.457

Fig. 1. Data sources

Hereinafter, such groups of customers
will be called Clusters of Connected
Customers (CCCs). A 15 million tuple
database, stored in 12 relational tables
managed by the IBM DB2 RDBMS, has
been used as data source collection in
the experimentation. Figure 1 shows a
summary of the data sources. Such data
sources are managed by a specific appli-
cation. The application is in charge of
guaranteeing data integrity (in fact, the
underlying database does not force constraints on data). Not only this application per-
forms various updates, but an automatic procedure is executed on a daily basis to exam-
ine the data collected in the database so as to identify connections between customers
that are relevant for the credit rating calculus. Based on these connections, customers
are grouped together to form CCCs. For each cluster, several data are collected that
characterize the kinds of connections holding among cluster members (i.e., specifying
juridical, economic, or financial aspects of connections).

Data source schemas have undergone many changes in the years, trying to adapt
to the changes in the application. The result is a stratification of the data source which
causes an extended use of control fields, validity flags, and no longer used attributes
in the source schemas. Consequently, an increasing effort for the management of the
data sources is required, which has to be completely entrusted to the management ap-
plications rather than the domain experts. The aim of the experimentation has been to
prove the validity of the OBDA approach in all cases in which companies need to access
efficiently their information assets.

4 Case study: ontology, mapping, and methodology
The process that led us to realize the OBDA system for the MPS case study has been
carried out essentially in two main phases: in the first one, we have developed the on-
tology, whereas in the second one we have specified the mapping between the ontology
and the data sources.

To be as much independent as possible from the actual source database, in the first
phase we carried out an in-depth analysis of the business domain following a top-down
approach. Therefore, after identifying the central concepts and the main relations be-
tween them, we iteratively refined the ontology, being supported in each development
cycle by the experts from MPS. The top-down approach turned out to be fundamental
for the success of the entire project, since in this way we were able to avoid that the
data model provided by the schema of the data sources could affect the definition of
the ontology, thus achieving complete separation between the conceptual layer and the
logical/physical layer of the system. In fact, further information on the model coming
from the analysis of the sources has been exploited only towards the end of the design
process, in order to refine the realized ontology.

The final ontology comprises 79 concepts, 33 roles, 37 concept attributes, and is
expressed in terms of about 600 DL-LiteA,Id axioms, including 30 identification con-
straints (IDCs), plus 20 EQL constraints (EQLCs). Basically, the ontology is con-
structed around the concepts Customer, CompanyGroup, CCC, and various kinds of
relations existing between customers (cf. Section 3).

In the following, we report on a series of modeling issues we dealt with during
the ontology definition phase. First, we observe that in the domain we have analyzed,
several properties of individuals depend on time. It has been therefore necessary in the
ontology to take trace of the changes of such properties, maintaining the information on
the validity periods associated with each such change. Even though from a very abstract
point of view, such properties might be considered roles or attributes, to properly model
the temporal dimension, each such role or attribute needs to be in fact reified in the
ontology. A timestamp attribute has been associated to each concept introduced by the
reification process, together with a suitable identification constraint ensuring that no
two instances of each such concept refer to the same period of time.

Example 1. The membership of a customer in a cluster of connected customers is a
time-dependent notion which is associated with a validity period. A crucial requirement
is that a customer is not member of two clusters at the same time. In the ontology, this
is modeled by the following assertions.

1. ∃inGrouping v Customer
2. ∃inGrouping− v Grouping
3. ∃relativeTo v Grouping
4. ∃relativeTo− v CCC
5. Grouping v ∃inGrouping−

6. Grouping v ∃relativeTo
7. (funct relativeTo)
8. (funct inGrouping−)
9. Grouping v δ(timestamp)

10. (id Grouping inGrouping−, timestamp)
The concept Grouping can be seen as the reification of the notion of membership of a
customer in a CCC. Assertions (1) – (8) realize reification. Assertion (9) imposes that
a timestamp is associated to each instance of Grouping. Finally, assertion (10) is the
IDC imposing that no two distinct instances of Grouping exist that are connected to
the same pair constituted by a value for the attribute timestamp and an object filler
for inGrouping−, thus specifying that a customer is never grouped at the same time in
two CCCs.

Identification constraints turned out to be an essential modeling construct, not only
for correctly modeling the temporal dimension through reification, but also for express-
ing important integrity constraints over the ontology that could not be captured other-
wise, as shown next in Example 2.

Example 2. Two types of clusters of connected customers are of interest represented by
the concepts JuridicalCCC and EconomicCCC, respectively. Consider then the follow-
ing identification constraint on JuridicalCCC.

(id JuridicalCCC timestamp, relativeTo− ◦ ?actualGrupping ◦ inGrouping− ◦
inMembership ◦ ?Holding ◦ hasMembership−)

Such constraint specifies that no two distinct instances of JuridicalCCC exist
that are connected to the same pair constituted by a value for timestamp and
an object filler for the path relativeTo−◦?actualGrupping ◦ inGrouping− ◦
inMembership◦?Holding ◦ hasMembership−. Intuitively, the path navigates
through the roles of the ontology, using the construct ?C to test that the path passes
through instances of C. Since the role hasMembership is typed in the ontology by
the concept CompanyGroup, the identification constraint actually says that for a certain
timestamp no two juridical CCCs exists that are connected via the above path to the
same company group.

Globally, we have specified more than 30 IDCs in the ontology. None of these
presently correspond to integrity constraints at the data sources. This is because, as it
is usual in practice, very few integrity constraints are explicitly asserted at the sources.
Thus, our ontology plays an important role in representing business rules not explicitly
reflected in the data repository of the organization.

EQLCs turned out to be another important means for correct domain model-
ing. Such constraints indeed permit to overcome some expressiveness limitations of
DL-LiteA,Id, without causing any computational blow up. Indeed, EQLCs are inter-
preted according to a suitable semantic approximation (cf. Section 2). In this experi-
mentation we have heavily used EQLCs to express, e.g., hierarchy completeness and
other important business constraints, otherwise not expressible in our ontology.

Example 3. An important constraint we want to force on the ontology is that for ev-
ery customer which has a guarantor for a loan we have to know the amount of bank
credit provided to the customer. This is specified through the following EQLC, which is
expressed in SparSQL, a query language presented in [5] based on SPARQL and SQL:

EQLC(verify not exists (
SELECT withGuarantor.cus, withGuarantor.t
FROM sparqltable(SELECT ?cus ?t

WHERE{ ?cus :isLinked ?link.
?link rdf:type ’GuaranteeRelations’.
?link :timestamp ?t}) withGuarantor

WHERE (withGuarantor.cus, withGuarantor.t) NOT IN (
SELECT withCredit.cus, withCredit.t
FROM sparqltable(SELECT ?cus ?amnt ?t

WHERE{ ?cus :hasLoan ?loan.
?loan :creditAmount ?amnt.
?loan :timestamp ?t }) withCredit)))

The above constraint says that no customer cus exists, such that cus is connected
to an instance of the concept GuaranteeRelations at the time t, and cus has not a
“known” creditAmount at the same time t. It is worth noticing that OWL 2, despite
its expressiveness, does not allow for expressing the above constraint.

Let us now turn our attention to mapping specification. The mapping specifica-
tion phase has required a complete understanding and an in-depth analysis of the data
sources, which highlighted some modeling weaknesses present in the source database
schema: various modifications stratified in the years over the original data schema have
partially transformed the data sources, which now reveal some problems related to re-
dundancy, inconsistency, and incompleteness in the data. Localizing the right data to
be mapped to ontology constructs has thus required the definition of fairly complex
mapping assertions, as shown in Example 4.

Example 4. Consider the following mapping assertion specifying how to construct in-
stances of JuridicalCCC using data returned by an SQL query accessing both the table
GZ0102, which contains information about CCCs, and the table GZ0007, which con-
tains information about the company groups.

SELECT id cluster, timestamp val FROM GZ0102, GZ0007
WHERE GZ0102.validity code = ‘T’ AND GZ0102.id cluster <> 0

AND GZ0007.validity code = ‘T’ AND GZ0007.id group <> 0
AND GZ0102.id cluster = GZ0007.id group

 JuridicalCCC(ccc(id cluster, timestamp val))

From the data source analysis it turned out that each CCC that has an iden-
tifier (GZ0102.id cluster) coinciding with the identifier of a company group
(GZ0007.id group) is a juridical CCC. Such a property is specified in the SQL query in
the mapping through the join between GZ0102 and GZ0007 (GZ0102.id cluster =
GZ0007.id group). Notice that invalid tuples (those with validity code different from
‘T ′) and meaningless tuples (those with id cluster or id group equal zero) are ex-
cluded from the selection. The query returns pairs of id cluster and timestamp val,
which are used as arguments of the function ccc() to build logic terms representing
objects that are instances of JuridicalCCC, according to the method described in [12].

The mapping specification phase has produced around 200 mapping assertions,
many of which are quite involved. Their design has been possible by a deep under-
standing of the tables involved, their attributes, and the values they store. We initially
tried to automate this process with the help of current tools for automatic mapping gen-
eration, but, due to the complexity of extracting the right semantics of the source tables,
we failed. This is in line with our past experience on mapping design: the bulk of the
work in mapping specification has to be essentially carried out manually.

5 The system at work
In this section we discuss the actual use of MASTRO in the MPS scenario. As a general
comment, we remark that the OBDA system we designed for this scenario allowed to
overcome many of the data access problems we have discussed in the previous sec-
tions. In particular, querying the data sources through the conceptual view provided
by the ontology enabled various kinds of users, not necessarily experts of the appli-
cation managing data at the sources, to profitably access such data. In what follows,
we concentrate on two crucial aspects of our experience: the use we made of MASTRO
to check the quality of the data sources, and the impact that certain characteristics of

the MPS scenario have had on the evolution of the system in terms of its tuning and
optimizations.

As mentioned in the introduction, we faced two main issues concerning the quality
of the data sources, namely incompleteness and inconsistency in the data at the sources.
Detecting data incompleteness has been possible by exploiting the MASTRO query an-
swering services, and more precisely, by inspecting the rewriting and the unfolding that
MASTRO produces in the query answering process. Let us see this on an example. To re-
trieve from the data sources the identification codes of all company groups, MPS opera-
tors simply use a single SQL query projecting out the id code from the table GZ0007,
which contains information about company groups. Surprisingly, using the ontology to
obtain all company codes, we actually get a larger answer set, by posing over the ontol-
ogy the obvious corresponding query q(y)← CompanyGroup(x), id code(x, y). The
reason for such a difference in the answers resides in the fact that the query that MAS-
TRO asks to the source database, and that is automatically produced by the rewriting and
unfolding procedures of MASTRO, is much more complex than the query used by the
MPS operators. By reasoning over the ontology, and exploiting the mapping assertions,
MASTRO accesses all the source tables that store codes of company groups, and this
set of tables does not in fact contain only the codes of company groups that occur in
table GZ0007. Such a result showed that some foreign key dependencies constraining
the identification codes stored in the table GZ0007 were in fact missing in the source
database, and that such a table should not been considered complete with respect to
such information.

We turn now to data inconsistency issues. In DL-LiteA,Id, inconsistencies are caused
by data that violate the assertions of the ontology, specifically disjointness assertions,
functionality constraints, identification constraints, and EQL constraints. Also, causes
of inconsistencies can be easily localized by retrieving the minimal set of data that
produce each single violation. We actually modified the classical consistency check of
MASTRO in order to identify the offending data, in particular exploiting the feature of
answering EQL queries (cf. Section 2) and their ability to express negation. Consider
for example the relation linkedTo, which is declared to be inverse functional (i.e.,
(funct linkedTo−)). In order to detect the violation of such constraint and the guilty
data, we use the following EQL query:

SELECT testview.l, testview.c1, testview.c2
FROM sparqltable (SELECT ?l ?c1 ?c2

WHERE{?c1:linkedTo?l. ?c2:linkedTo?l}) testview
WHERE testview.c1 <> testview.c2

Switching our attention to the performance of the system, there are two sources of
complexity to be considered in the query answering and consistency checking services
provided in MASTRO, the query reformulation and query unfolding procedures. Refor-
mulation introduces complexity since it may produce an exponential number of queries
to be answered. Nevertheless, in the case of the MPS ontology, this potential drawback
did not occur. Indeed, in most cases, the number of queries produced by this step was
small (between 1 and 25). In contrast, the query unfolding step presented challenges
that led to several important improvements in MASTRO, briefly discussed below.

In complex scenarios, such as the one we considered in our experimentation, we
found that the most critical aspect for performance is what we call query structure, i.e.,

the form of the SQL queries issued to the source database. Query structure is character-
ized by the specific technique used to produce SQL queries out of queries formulated
over TBox predicates (T -predicates).

In MASTRO, query unfolding is based on the use of SQL views over the source
database. More specifically, the mapping is first pre-processed so as to have only as-
sertions in which the query over the ontology contains just one predicate (splitting).
Then, all assertions referring to the same T -predicate are combined together in order to
have one SQL view, which we call T -view, for each predicate. Essentially, the view is
obtained taking the union of the SQL queries occurring in the left-hand side of the as-
sertions, and pushing the construction of logic terms representing instances of concepts
and roles in the view itself. Unfolding a query specified over T -predicates amounts
therefore to simply unfold each query atom with the corresponding T -view. For exam-
ple, if the split mapping assertions for the role linkedTo are

m1: SELECT WHERE cd tp = 503 ; linkedTo(cus(idcus), link(linkid))
m2: SELECT WHERE cd tp = 501 ; linkedTo(cus(idcus), link(linkid))

then, the following view, linkedto Tview, is associated to the linkedTo predicate:

SELECT ‘cus(’||idcus||‘)’ as term1, ‘link(’||linkid||‘)’ as term2
FROM (SELECT WHERE cd tp = 503) view m1
UNION
SELECT ‘cus’(||idcus||‘)’ as term1, ‘link(’||linkid||‘)’ as term2
FROM (SELECT WHERE cd tp = 501) view m2

Notice that in the SELECT clause we build logical terms by means of simple SQL string
concatenation operations, indicated with the || operator. Then, the query q(X) ←
linkedTo(X,Y) is unfolded into SELECT term1 FROM linkedto Tview.

Despite its simplicity, we found out that, in scenarios characterized by a high vol-
ume of data and complex and numerous mapping assertions, this approach fail, due to
low performance of the generated queries. For example, in our test cases, queries with
a single atom that involve database relations with high volume of data often required
several minutes to be answered. More complex queries, with more than 2 atoms and
involving also big relations, would often require hours or would even not terminate.
The reason for this bad performance is in the limitations of DBMS query planners in
handling subqueries in the FROM clause, and joins between terms representing objects,
rather than directly on database values. What we observed is that, in order to deal with
subqueries, query planners rely on a process called query flattening, in which the query
planner attempts to rephrase a query with subqueries into a new query with no sub-
queries. If the query planner is not successful in this attempt, e.g., due to the complex-
ity of the subqueries, it will resort to subquery materialization, an extremely expensive
operation when the volume of data is high.

In order to avoid materialization and joins between object terms, and in general, to
increase the chances of the query planner to produce a good plan, we devised a strategy
that led us to produce queries that are as simple as possible with respect to subqueries.
This led us to adopt what we call anM-view approach to unfolding. In this approach,
we build simpler views, one for each SQL query in the split mapping assertions, and
we associate all of them to the corresponding T -predicate. For example, in the previous
case we would define the two views below

view m1 = SELECT WHERE cd tp = 503
view m2 = SELECT WHERE cd tp = 501

and the unfolding of the query q(X)← linkedTo(X,Y) would be as follows

SELECT ‘cus(’||idcus||‘)’ FROM view m1
UNION
SELECT ‘cus(’||idcus||‘)’ FROM view m2

Notice that in this case, the construction of the object term ‘cus(’||idcus||‘)’
is in the external SELECT clause and is not pushed into the views in the FROM clause.

What is important to note here is the exchange of simplicity of the unfolding pro-
cedure for simplicity of the structure of the queries being generated (i.e., less nesting
in the subqueries) and a new exponential growth in the amount of queries sent to the
database, e.g., now for every linkedTo atom in a query, we will produce an SQL query
taking the union of at least two queries, one where we only use view m1 and one with
view m2. Although this growth could seem problematic, we have found that the in-
crease in the performance of executing each individual query pays off the increase in
the number of queries to be executed. Moreover, since these queries are independent,
we can use parallelism in query execution to improve performance even more.

Fig. 2.M-views vs. T -views using an execution timeout of 1hr.

To give an idea of the effectiveness of the described optimizations, we present in Figure
2 the data about the execution of a collection of 8 representative queries (the units of the
vertical axis are seconds). These queries are all of interest to MPS, and challenging in
terms of number of atoms, complexity of the unfolding and the volume of data accessed.

6 Conclusions
From the point of view of MPS, the project has provided very useful results in various
areas of interest:
− Data integration, providing the capability of accessing application data in a uni-

fied way, by means of queries written at a logical/conceptual level by end-users not
necessarily acquainted with the characteristics of the application;
− Database quality improvement, providing tools for monitoring the actual quality

of the database, both at an intensional and an extensional level;
− Knowledge sharing, providing, with the ontology-based representation of the ap-

plication domain, an efficient means of communicating and sharing knowledge and
information throughout the company.

The plan is to continue the experience by extending the work to other MPS appli-
cations, with the idea that the ontology-based approach could result in a basic step for
the future IT architecture evolution, oriented towards Service-oriented architectures and
Business Process Management.

References

1. P. A. Bernstein and L. Haas. Information integration in the enterprise. Comm. of the ACM,
51(9):72–79, 2008.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, and
R. Rosati. Ontologies and databases: The DL-Lite approach. In S. Tessaris and E. Fran-
coni, editors, Reasoning Web Summer School 2009, volume 5689 of LNCS, pages 255–356.
Springer, 2009.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. EQL-Lite: Effective
first-order query processing in description logics. In Proc. of IJCAI 2007, pages 274–279,
2007.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

5. C. Corona, E. D. Pasquale, A. Poggi, M. Ruzzi, and D. F. Savo. When OWL met DL-Lite...
In SWAP-08, 2008.

6. J. Dolby, A. Fokoue, A. Kalyanpur, L. Ma, E. Schonberg, K. Srinivas, and X. Sun. Scalable
grounded conjunctive query evaluation over large and expressive knowledge bases. In Proc.
of ISWC 2008, volume 5318 of LNCS, pages 403–418. Springer, 2008.

7. L. M. Haas. Beauty and the beast: The theory and practice of information integration. In
Proc. of ICDT 2007, volume 4353 of LNCS, pages 28–43. Springer, 2007.

8. J. Henrard, D. Roland, A. Cleve, and J.-L. Hainaut. Large-scale data reengineering: Re-
turn from experience. In WCRE ’08: Proceedings of the 2008 15th Working Conference on
Reverse Engineering, pages 305–308. IEEE Computer Society, 2008.

9. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002, pages
233–246, 2002.

10. C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description logic EL
using a relational database system. In Proc. of IJCAI 2009, pages 2070–2075, 2009.

11. H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable query answering and rewriting under
description logic constraints. J. of Applied Logic, 2009. To appear.

12. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

13. A. Poggi, M. Rodriguez, and M. Ruzzi. Ontology-based database access with DIG-Mastro
and the OBDA Plugin for Protégé. In K. Clark and P. F. Patel-Schneider, editors, Proc. of
OWLED 2008 DC, 2008.

14. M. Rodriguez-Muro, L. Lubyte, and D. Calvanese. Realizing ontology based data access: A
plug-in for Protégé. In Proc. of IIMAS 2008, pages 286–289. IEEE CS Press, 2008.

