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Abstract. We study the problem of approximating Description Logic (DL) on-
tologies specified in a source language LS in terms of a less expressive target
language LT . This problem is getting very relevant in practice: e.g., approxima-
tion is often needed in ontology-based data access systems, which are able to deal
with ontology languages of a limited expressiveness. We first provide a general,
parametric, and semantically well-founded definition of maximal sound approxi-
mation of a DL ontology. Then, we present an algorithm that is able to effectively
compute two different notions of maximal sound approximation according to the
above parametric semantics when the source ontology language is OWL 2 and
the target ontology language is OWL 2 QL. Finally, we experiment the above
algorithm by computing the two OWL 2 QL approximations of a large set of ex-
isting OWL 2 ontologies. The experimental results allow us both to evaluate the
effectiveness of the proposed notions of approximation and to compare the two
different notions of approximation in real cases.

1 Introduction

Description Logic (DL) ontologies are the core element of ontology-based data access
(OBDA) [15], in which the ontology is utilized as a conceptual view, allowing user ac-
cess to the underlying data sources. In OBDA, as well as in all the current applications
of ontologies requiring automated reasoning, a trade-off between the expressiveness
of the ontology specification language and the complexity of reasoning in such a lan-
guage must be reached. More precisely, most of the current research and development
in OBDA is focusing on languages for which reasoning, and in particular query an-
swering, is not only tractable (in data complexity) but also first-order rewritable [2,5].
This imposes significant limitations on the set of constructs and axioms allowed in the
ontology language.

The limited expressiveness of the current ontology languages adopted in OBDA
provides a strong motivation for studying the approximation of ontologies formulated
in (very) expressive languages with ontologies in low-complexity languages such as
OWL 2 QL. Such a motivation is not only theoretical, but also practical, given the
current availability of OBDA systems and the increasing interest in applying the OBDA
approach in the real world [1,6,7,16]: for instance, ontology approximation is currently
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one of the main issues in the generation of ontologies for OBDA within the use cases
of the Optique EU project.1

Several approaches have recently dealt with the problem of approximating Descrip-
tion Logic ontologies. These can roughly be partitioned in two types: syntactic and
semantic. In the former, only the syntactic form of the axioms of the original ontology
is considered, thus those axioms which do not comply with the syntax of the target
ontology language are disregarded [17,18]. This approach generally can be performed
quickly and through simple algorithms. However, it does not, in general, guarantee
soundness, i.e., to infer only correct entailments, or completeness, i.e., all entailments of
the original ontology that are also expressible in the target language are preserved [14].
In the latter, the object of the approximation are the entailments of the original ontol-
ogy, and the goal is to preserve as much as possible of these entailments by means of
an ontology in the target language, guaranteeing soundness of the result. On the other
hand, this approach often necessitates to perform complex reasoning tasks over the on-
tology, possibly resulting significantly slower. For these reasons, the semantic approach
to ontology approximation poses a more interesting but more complex challenge.

In this paper, we study the problem of approximating DL ontologies specified in
a source language Ls in terms of a less expressive target language Lt. We deal with
this problem by first providing a general, parametric, and semantically well-founded
definition of maximal sound approximation of a DL ontology. Our semantic definition
captures and generalizes previous approaches to ontology approximation [4,8,11,14].
In particular, our approach builds on the preliminary work presented in [8], which pro-
posed a similar, although non-parameterized, notion of maximal sound approximation.

Then, we present an algorithm that is able to effectively compute two different no-
tions of maximal sound approximation according to the above parametric semantics,
when the source ontology language is OWL 2 and the target ontology language is OWL
2 QL. In particular, we focus on the local semantic approximation (LSA) and the global
semantic approximation (GSA) of a source ontology. These two notions of approxima-
tion correspond to the cases when the parameter of our semantics is set, respectively, to
its minimum and to its maximum. Informally, the LSA of an ontology is obtained by
considering (and reasoning over) one axiom α of the source ontology at a time, so this
technique tries to approximate α independently of the rest of the source ontology. On
the contrary, the GSA tries to approximate the source ontology by considering all its
axioms (and reasoning over such axioms) at the same time. As a consequence, the GSA
is potentially able to “approximate better” than the LSA, while the LSA appears in prin-
ciple computationally less expensive than the GSA. Notably, in the case of OWL 2 QL,
the GSA corresponds to the notion of approximation given in [14], which has been
shown to be very well-suited for query answering purposes.

Finally, we experiment the above algorithm by computing the LSA and the GSA in
OWL 2 QL of a large set of existing OWL 2 ontologies. The experimental results allow
us both to evaluate the effectiveness of the proposed notions of approximation and to
compare the two different notions of approximation in real cases. In particular, the main
properties pointed out by our experimental results are the following:

1 http://optique-project.eu

http://optique-project.eu
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1. the computation of the LSA is usually less expensive than computing the GSA of a
given source ontology;

2. in many cases, both the LSA and the GSA of an ontology are very good approxima-
tions of the ontology, in the sense that the approximated ontologies actually entail
a large percentage of the axioms of the source ontology;

3. in many cases, the LSA and the GSA coincide. This and the previous property imply
that the computationally less expensive LSA is usually already able to compute a
high-quality sound approximation of the source ontology.

The paper is structured in the following way. First, in Section 2 we recall DL ontol-
ogy languages, in particular OWL 2 and OWL 2 QL. Then, in Section 3 we present our
formal, parameterized notion of semantic sound approximation of an ontology, and il-
lustrate some general properties of such a notion. In Section 4 we present the techniques
for computing the GSA and the LSA of OWL 2 ontologies in OWL 2 QL. Finally, we
present an experimental evaluation of the above techniques in Section 5, and draw some
conclusions in Section 6.

2 Preliminaries

Description Logics (DLs) [3] are logics that allow one to represent the domain of in-
terest in terms of concepts, denoting sets of objects, value-domains, denoting sets of
values, attributes, denoting binary relations between objects and values, and roles de-
noting binary relations over objects.

In this paper we consider the DL SROIQ [10], which is the logic underpinning
OWL 2, as the “maximal” DL considered in this paper.

Let Σ be a signature of symbols for individual (object and value) constants and
predicates, i.e., concepts, value-domains, attributes, and roles. Let Φ be the set of all
SROIQ axioms over Σ.

An ontology over Σ is a finite subset of Φ.
A DL language over Σ (or simply language) L is a set of ontologies over Σ. We

call L-ontology any ontology O such that O ∈ L. Moreover, we denote by ΦL the set
of axioms

⋃
O∈LO.

We call a language L closed if L = 2ΦL . As we will see in the following, there exist
both closed and non-closed DL languages among the standard ones.

The semantics of an ontology is given in terms of first-order (FOL) interpretations
(cf. [3]). We denote withMod(O) the set of models ofO, i.e., the set of FOL interpreta-
tions that satisfy all the axioms in O (we recall that every SROIQ axiom corresponds
to a first-order sentence). As usual, an ontologyO is said to be satisfiable if it admits at
least one model, and O is said to entail a First-Order Logic (FOL) sentence α, denoted
O |= α, if αI = true for all I ∈ Mod(O). Moreover, given two ontologies O and O′,
we say that O and O′ are logically equivalent if Mod(O) =Mod(O′).

In this work we will mainly focus on two specific languages, which are OWL 2,
the official ontology language of the World Wide Web Consortium (W3C) [9], and
one of its profiles, OWL 2 QL [12]. Due to the limitation of space, here we do not
provide a complete description of OWL 2, and refer the reader to the official W3C
specification [13].
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We now present the syntax of OWL 2 QL. We use the German notation for de-
scribing OWL 2 QL constructs and axioms, and refer the reader to [12] for the OWL
functional style syntax.

Expressions in OWL 2 QL are formed according to the following syntax:

B −→ A | ∃Q | δF (U) | >C | ⊥C E −→ ρ(U)
C −→ B | ¬B | ∃Q.A F −→>D | T1 | · · · | Tn

Q −→ P | P− | >P | ⊥P V −→ U | >A | ⊥A

R −→ Q | ¬Q W −→ V | ¬V

where: A, P , and U are symbols denoting respectively an atomic concept, an atomic
role, and an atomic attribute; P− denotes the inverse of P ; ∃Q, also called unqualified
existential role, denotes the set of objects related to some object by the role Q; δF (U)
denotes the qualified domain of U with respect to a value-domain F , i.e., the set of
objects that U relates to some value in F ; ρ(U) denotes the range of U , i.e., the set
of values related to objects by U ; T1, . . . , Tn denote n unbounded value-domains (i.e.,
datatypes); the concept ∃Q.A, or qualified existential role, denotes the qualified domain
of Q with respect to A, i.e., the set of objects that Q relates to some instance of A. >C ,
>P , >A, and >D denote, respectively, the universal concept, role, attribute, and value-
domain, while ⊥C , ⊥P , and ⊥A denote, respectively, the empty concept, role, and
attribute.

An OWL 2 QL ontology O is a finite set of axioms of the form:

B v C Q v R U v V E v F ref(P ) irref(P )
A(a) P (a, b) U(a, v)

From left to right, the first four above axioms denote subsumptions between concepts,
roles, attributes, and value-domains, respectively. The fifth and sixth axioms denote
reflexivity and irreflexivity on roles. The last three axioms denote membership of an
individual to a concept, membership of a pair of individuals to a role, and membership
of a pair constituted by an individual and a value to an attribute.

From the above definition, it immediately follows that OWL 2 QL is a closed lan-
guage. On the other hand, we recall that OWL 2 is not a closed language. This is due to
the fact that OWL 2 imposes syntactic restrictions that concern the simultaneous pres-
ence of multiple axioms in the ontology (for instance, there exist restrictions on the
usage of role names appearing in role inclusions in the presence of the role chaining
constructor).

3 Approximation

In this section, we illustrate our notion of approximation in a target language LT of an
ontology OS in a language LS .

Typically, when discussing approximation, one of the desirable properties is that of
soundness. Roughly speaking, when the object of approximation is a set of models, this
property requires that the set of models of the approximation is a superset of those of the
original ontology. Another coveted characteristic of the computed ontology is that it be
the “best” approximation of the original ontology. In other words, the need of keeping
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a minimal distance between the original ontology and the ontology resulting from its
approximation is commonly perceived.

On the basis of these observations, the following definition of approximation in a
target language LT of a satisfiable LS-ontology is very natural.

Definition 1. Let OS be a satisfiable LS-ontology, and let ΣOS
be the set of predicate

and constant symbols occurring in OS . An LT -ontology OT over ΣOS
is a global

semantic approximation (GSA) in LT of OS if both the following statements hold:

(i) Mod(OS) ⊆Mod(OT );
(ii) there is no LT -ontology O′ over ΣOS

such that Mod(OS) ⊆ Mod(O′) ⊂
Mod(OT ).

We denote with globalApx (OS ,LT ) the set of all the GSAs in LT of OS .

In the above definition, statement (i) imposes the soundness of the approximation,
while statement (ii) imposes the condition of “closeness” in the choice of the approxi-
mation.

We observe that an LT -ontology which is the GSA in LT ofOS may not exist. This
is the case when, for each LT ontology O′T satisfying statement (i) of Definition 1,
there always exists an LT -ontology O′′T which satisfies statement (i), but for which we
have that Mod(OS) ⊆Mod(O′′T ) ⊂Mod(O′T ).

The following lemma provides a sufficient condition for the existence of the GSA
in a language LT of an ontology OS .

Lemma 1. Given a language LT and a finite signature Σ, if the set of non-equivalent
axioms in ΦLT

that one can generate over Σ is finite, then for any LS-ontology OS
globalApx (OS ,LT ) 6= ∅.

In cases where GSAs exist, i.e., globalApx (OS ,LT ) 6= ∅, given two ontologies
O′ and O′′ in globalApx (OS ,LT ), they may be either logically equivalent or not. The
condition of non-equivalence is due to the fact that the language in which the original
ontology is approximated is not closed. We have the following lemma.

Lemma 2. Let LT be a closed language, and let OS be an ontology. For each O′ and
O′′ belonging to globalApx (OS ,LT ), we have thatO′ andO′′ are logically equivalent.

Proof. Towards a contradiction, suppose that Mod(O′) 6= Mod(O′′). From this, and
from Definition 1 we have that Mod(O′) 6⊂ Mod(O′′) and Mod(O′′) 6⊂ Mod(O′).
Hence, there exist axioms α and β in ΦLT

such thatO′ |= α andO′′ 6|= α, andO′′ |= β
and O′ 6|= β. Since both O′ and O′′ are sound approximations of OS , OS |= {α, β}.
Because LT is closed, the ontology O′β = O′ ∪ {β} is an LT -ontology. From the
above considerations it directly follows that Mod(OS) ⊆ Mod(O′β) ⊂ Mod(O′).
This means that O′ does not satisfy condition (ii) of Definition 1, and therefore O′ 6∈
globalApx (OS ,LT ), which is a contradiction. The same conclusion can be reached
analogously for O′′.
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In other words, if the target language is closed, Lemma 2 guarantees that, up to
logical equivalence, the GSA is unique.

Definition 1 is non-constructive, in the sense that it does not provide any hint as to
how to compute the approximation in LT of an ontology OS . The following theorem
suggests more constructive conditions, equivalent to those in Definition 1, but first we
need to introduce the notion of entailment set [14] of a satisfiable ontology with respect
to a language.

Definition 2. Let ΣO be the set of predicate and constant symbols occurring inO, and
let L′ be a language. The entailment set ofO with respect to L′, denoted as ES(O,L′),
is the set of axioms from ΦL′ that only contain predicates and constant symbols from
ΣO and that are entailed by O.

In other words, we say that an axiom α belongs to the entailment set of an ontology
O with respect to a language L′, if α is an axiom in ΦL′ built over the signature of O
and for each interpretation I ∈Mod(O) we have that I |= α.

Clearly, given an ontologyO and a languageL′, the entailment set ofO with respect
to L′ is unique.

Theorem 1. Let OS be a satisfiable LS-ontology and let OT be a satisfiable LT -
ontology. We have that:

(a) Mod(OS) ⊆Mod(OT ) if and only if ES(OT ,LT ) ⊆ ES(OS ,LT );
(b) there is no LT -ontology O′ such that Mod(OS) ⊆ Mod(O′) ⊂ Mod(OT ) if

and only if there is no LT -ontology O′′ such that ES(OT ,LT ) ⊂ ES(O′′,LT ) ⊆
ES(OS ,LT ).

Proof. We start by focusing on the first statement. (⇐) Suppose, by way of contradic-
tion, that ES(OT ,LT ) ⊆ ES(OS ,LT ) and that Mod(OS) 6⊆ Mod(OT ). This means
that there exists at least one interpretation that is a model forOS but not forOT . There-
fore there exists an axiom α ∈ OT such that OS 6|= α. Since OT is an ontology in LT ,
then α is an axiom in ΦLT

. It follows that α ∈ ES(OT ,LT ) and that α 6∈ ES(OS ,LT ),
which leads to a contradiction.

(⇒) Towards a contradiction, suppose that Mod(OS) ⊆ Mod(OT ), but
ES(OT ,LT ) 6⊆ ES(OS ,LT ). This means that there exists at least one axiom α ∈
ES(OT ,LT ) such that α 6∈ ES(OS ,LT ). It follows that OT |= α while OS 6|= α,
which immediately implies that Mod(OS) 6⊆ Mod(OT ). Hence we have a contradic-
tion.

Now we prove the second statement. (⇐) By contradiction, suppose that there exists
an LT -ontologyO′ such thatMod(OS) ⊆Mod(O′) ⊂Mod(OT ), and that there does
not exist any LT -ontologyO′′ such that ES(OT ,LT ) ⊂ ES(O′′,LT ) ⊆ ES(OS ,LT ).
From what shown before, we have that Mod(OS) ⊆ Mod(O′) ⊆ Mod(OT ) implies
that ES(OT ,LT ) ⊆ ES(O′,LT ) ⊆ ES(OS ,LT ). Moreover, since both O′ and OT
are LT ontologies, Mod(O′) ⊂ Mod(OT ) implies that ES(OT ,LT ) 6= ES(O′,LT ).
Hence, ES(OT ,LT ) ⊂ ES(O′,LT ) ⊆ ES(OS ,LT ), which contradicts the hypothe-
sis.

(⇒) Suppose, by way of contradiction, that there exists an LT -ontology O′′ such
that ES(OT ,LT ) ⊂ ES(O′′,LT ) ⊆ ES(OS ,LT ) and there is no LT -ontology O′
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such that Mod(OS) ⊆ Mod(O′) ⊂ Mod(OT ). From property (a) we have that
Mod(OS) ⊆ Mod(O′′) ⊆ Mod(OT ). Since both O′′ and OT are LT ontologies,
then ES(OT ,LT ) ⊂ ES(O′′,LT ) implies that Mod(O′′) 6= Mod(OT ), which di-
rectly leads to a contradiction.

From Theorem 1 it follows that every ontology OT which is a GSA in LT of an
ontology OS is also an approximation in LT of OS according to [8], and, as we shall
show in the following section, for some languages, this corresponds to the approxima-
tion in [14].

As discussed in [8], the computation of a GSA can be a very challenging task even
when approximating into tractable fragments of OWL 2 [12]. This means that even
though a GSA is one that best preserves the semantics of the original ontology, it cur-
rently suffers from a significant practical setback: the outcome of the computation of the
approximation is tightly linked to the capabilities of the currently available reasoners
for LS-ontologies. This may lead, in practice, to the impossibility of computing GSAs
of very large or complex ontologies when the source language is very expressive.

We observe that the critical point behind these practical difficulties in computing
a GSA of an ontology is that, in current implementations, any reasoner for LS must
reason over the ontology as a whole. From this observation, the idea for a new notion
of approximation, in which we do not reason over the entire ontology but only over
portions of it, arises. At the basis of this new notion, which we call k-approximation, is
the idea of obtaining an approximation of the original ontology by computing the global
semantic approximation of each set of k axioms of the original ontology in isolation.
Below we give a formal definition of the k-approximation.

In what follows, given an ontology O and a positive integer k such that k ≤ |O|,
we denote with subsetk (O) the set of all the sets of cardinality k of axioms of O.

Definition 3. Let OS be a satisfiable LS-ontology and let ΣOS
be the set of predicate

and constant symbols occurring in OS . Let Uk = {Oji | O
j
i ∈ globalApx (Oi,LT ),

such that Oi ∈ subsetk (OS)}. An LT -ontology OT over ΣOS
is a k-approximation in

LT of OS if both the following statements hold:

–
⋂
Oj

i∈Uk
Mod(Oji ) ⊆Mod(OT );

– there is no LT -ontologyO′ overΣOS
such that

⋂
Oj

i∈Uk
Mod(Oji ) ⊆Mod(O′) ⊂

Mod(OT ).

The following theorem follows from Theorem 1 and provides a constructive condi-
tion for the k-approximation.

Theorem 2. Let OS be a satisfiable LS-ontology and let ΣOS
be the set of predi-

cate and constant symbols occurring in OS . An LT -ontology OT over ΣOS
is a k-

approximation in LT of OS if and only if:

(i) ES(OT ,LT ) ⊆ ES(
⋃
Oi∈subsetk (OS) ES(Oi,LT ),LT );

(ii) there is no LT -ontology O′ over ΣOS
such that ES(OT ,LT ) ⊂ ES(O′,LT ) ⊆

ES(
⋃
Oi∈subsetk (OS) ES(Oi,LT ),LT ).
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Proof. (sketch) The proof can be easily adapted from the proof of Theorem 1 by
observing that in order to prove the theorem one has to show that:
(a)

⋂
Oj

i∈Uk
Mod(Oji ) ⊆ Mod(OT ) if and only if ES(OT ,LT ) ⊆

ES(
⋃
Oi∈subsetk (OS) ES(Oi,LT ),LT );

(b) and that there is no LT -ontology O′ over ΣOS
such that

⋂
Oj

i∈Uk
Mod(Oji ) ⊆

Mod(O′) ⊂ Mod(OT ) if and only if there is no LT -ontology O′′ over ΣOS
such that

ES(OT ,LT ) ⊂ ES(O′′,LT ) ⊆ ES(
⋃
Oi∈subsetk (OS) ES(Oi,LT ),LT ).

We note that in the case in which k = |OS |, the k-approximation actually coincides
with the GSA. At the other end of the spectrum, we have the case in which k = 1.
Here we are treating each axiom α in the original ontology in isolation, i.e., we are
considering ontologies formed by a single axiom α. We refer to this approximation as
local semantic approximation (LSA).

We conclude this section with an example highlighting the difference between the
GSA and the LSA.

Example 1. Consider the following OWL 2 ontology O.

O = { A v B t C B v D A v ∃R.D
B u C v F C v D ∃R.D v E }.

The following ontology is a GSA in OWL 2 QL of O.

OGSA = { A v D B v D A v ∃R A v ∃R.D
A v E C v D D v F }.

Indeed, it is possible to show that, according to Theorem 1, each axiom entailed by
OGSA is also entailed byO, and that it is impossible to build an OWL 2 QL ontologyO′
such that ES(OGSA, OWL 2 QL) ⊂ ES(O′, OWL 2 QL) ⊆ ES(O, OWL 2 QL).

Computing the LSA in OWL 2 QL of O, i.e., its 1-approximation in OWL 2 QL,
we obtain the following ontology.

OLSA = { B v D A v ∃R
C v D A v ∃R.D }.

It is easy to see that Mod(O) ⊂ Mod(OGSA) ⊂ Mod(OLSA), which means that
the ontology OGSA approximates O better than OLSA. This expected result is a con-
sequence of the fact that reasoning over each single axiom in O in isolation does not
allow for the extraction all the OWL 2 QL consequences of O.

Moreover, from Lemma 2, it follows that every O′ ∈ globalApx (OS , OWL 2 QL)
is logically equivalent to OGSA. ut

4 Approximation in OWL 2 QL

In this section we deal with the problem of approximating ontologies in OWL 2 with
ontologies in OWL 2 QL.

Based on the characteristics of the OWL 2 QL language, we can give the following
theorem.
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Algorithm 1: computeKApx(O, k)

Input: a satisfiable OWL 2 ontology O, a positive integer k such that k ≤ |O|
Output: an OWL 2 QL ontology OApx

begin
OApx ← ∅;
foreach ontology Oi ∈ subsetk (OS)
OApx ← OApx ∪ ES(Oi, OWL 2 QL);

return OApx;
end

Theorem 3. Let OS be a satisfiable OWL 2 ontology. Then the OWL 2 QL ontology⋃
Oi∈subsetk (OS) ES(Oi, OWL 2 QL) is the k-approximation in OWL 2 QL of OS .

Proof. (sketch) To prove the claim, we observe that Lemma 1 holds for OWL 2 QL
ontologies, and this guarantees that for every OWL 2 ontology OS , there exists at least
one OWL 2 QL ontology which is its GSA, i.e., globalApx (OS , OWL 2 QL) 6= ∅.
Moreover, we have that since OWL 2 QL is closed, for Lemma 2, all ontologies in
ES(OS , OWL 2 QL) are pairwise logically equivalent. Another consequence of the
fact that OWL 2 QL is closed is that, whichever language the original ontology OS is
expressed in, ES(OS , OWL 2QL) is an OWL 2 QL ontology. Furthermore, given a set
of OWL 2 QL ontologies, the union of these ontologies is still an OWL 2 QL ontology.
From these observations, it is easy to see that, given an OWL 2 ontology OS and an
integer k ≤ |OS |, the set

⋃
Oi∈subsetk (OS) ES(Oi, OWL 2QL) satisfies conditions (i)

and (ii) of Theorem 2. Hence, we have the claim.

Notably, we observe that for k = |OS | the k-approximation OT in OWL 2 QL of
OS is unique and coincides with its entailment set in OWL 2 QL. This means thatOT is
also the approximation in OWL 2 QL of OS according to the notion of approximation
presented in [14]. Therefore, all the properties that hold for the semantics in [14] also
hold for the GSA. In particular, the evaluation of a conjunctive query q without non-
distinguished variables over OS coincides with the evaluation of q over OT (Theorem
5 in [14]).

From Theorem 3, one can easily come up with Algorithm 1 for computing the k-
approximation of an LS-ontology OS in OWL 2 QL. The algorithm first computes
every subset with size k of the original ontology OS . Then, it computes the ontology
which is the result of the k-approximation in OWL 2 QL of the ontology in input as the
union of the entailment sets with respect to OWL 2 QL of each such subset. A naive
algorithm for computing the entailment set with respect to OWL 2 QL can be easily
obtained from the one given in [14] for DL-Lite languages. We can summarize it as
follows. Let O be an ontology and let ΣO be the set of predicate and constant symbols
occurring inO. The algorithm first computes the set Γ of axioms in ΦOWL 2 QL which
can be built over ΣO, and then, for each axiom α ∈ Γ such that O |= α, adds α to the
set ES(O, OWL 2QL). In practice, to check ifO |= α one can use an OWL 2 reasoner.
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Since each invocation of the OWL 2 reasoner is N2EXPTIME, the computation of the
entailment set can be very costly [4].

A more efficient technique for its computation is given in [8], where the idea is to
limit the number of invocations to the OWL 2 reasoner by exploiting the knowledge
acquired through a preliminary exploration of the ontology. To understand the basic
idea behind this technique, consider, for example, an ontology O that entails the in-
clusions A1 v A2 and P1 v P2, where A1 and A2 are concepts and P1 and P2 are
roles. Exploiting these inclusions we can deduce the hierarchical structure of the gen-
eral concepts that can be built on these four predicates. For instance, we know that
∃P2.A2 v ∃P2, that ∃P2.A1 v ∃P2.A2, that ∃P1.A1 v ∃P2.A1, and so on. To obtain
the entailed inclusion axioms, we begin by invoking the OWL 2 reasoner, asking for
the children of the general concepts which are in the highest position in the hierarchy.
So we first compute the subsumees of ∃P2 through the OWL 2 reasoner. If there are
none, we avoid invoking the reasoner asking for the subsumees of ∃P2.A2 and so on.
Regarding the entailed disjointness axioms, we follow the same approach but starting
from the lowest positions in the hierarchy.

The following theorem establishes correctness and termination of algorithm
computeKApx.

Theorem 4. Let OS be a satisfiable OWL 2 ontology. computeKApx(OS , k) termi-
nates and computes the k-approximation in OWL 2 QL of OS .

Proof. (sketch) Termination of computeKApx(OS , k) directly follows from the
fact that OS is a finite set of axioms and that, for each Oi ∈ subsetk (OS),
ES(Oi, OWL 2 QL) can be computed in finite time. The correctness of the algorithm
directly follows from Theorem 3.

5 Experiments

In this section we present the experimental tests that we have performed for the approx-
imation of a suite of OWL 2 ontologies into OWL 2 QL through the two notions of
approximation we have introduced earlier.

We notice that by choosing a value for k different from |OS |, the computation of
the entailment set becomes easier. However, observing Algorithm 1, the number of
times that this step must be repeated can grow very quickly. In fact, the number of
sets of axioms in subsetk (OS) is equal to the binomial coefficient of |OS | over k, and
therefore for large ontologies this number can easily become enormous, and this can be
in practice a critical obstacle in the computation of the k-approximation.

For this reason, in these experiments we have focused on comparing the GSA (k-
approximation with k = |OS |) to the LSA (k-approximation with k = 1), and we
reserve the study of efficient techniques for k-approximation with 1 < k < |OS | for
future works. Furthermore, to provide a standard baseline against which to compare the
results of the GSA and LSA, we have compared both our approaches with a syntactic
sound approximation approach, consisting in first normalizing the axioms in the ontol-
ogy and then eliminating the ones that are not syntactically compliant with OWL 2 QL.
We will refer to this approach as “SYNT”.



Effective computation of maximal sound approximations of DL ontologies 11

Ontology Expressiveness Axioms Concepts Roles Attributes OWL2 QL Axioms
Homology ALC 83 66 0 0 83

Cabro ALCHIQ 100 59 13 0 99
Basic vertebrate anatomy SHIF 108 43 14 0 101

Fungal anatomy ALEI+ 115 90 5 0 113
Pmr ALU 163 137 16 0 159
Ma ALE+ 168 166 8 0 167

General formal Ontology SHIQ 212 45 41 0 167
Cog analysis SHIF(D) 224 92 37 9 213
Time event ALCROIQ(D) 229 104 28 7 170

Spatial ALEHI+ 246 136 49 0 155
Translational medicine ALCRIF(D) 314 225 18 6 298

Biopax SHIN (D) 391 69 55 41 240
Vertebrate skeletal anatomy ALER+ 455 314 26 0 434

Image S 548 624 2 0 524
Protein ALCF(D) 691 45 50 133 490
Pizza SHOIN 712 100 8 0 660

Ontology of physics for biology ALCHIQ(D) 954 679 33 3 847
Plant trait ALE+ 1463 1317 4 0 1461

Dolce SHOIN (D) 1667 209 313 4 1445
Ont. of athletic events ALEH 1737 1441 15 1 1722

Neomark ALCHQ(D) 1755 55 105 488 842
Pato SH 1979 2378 36 0 1779

Protein Modification ALE+ 1986 1338 8 0 1982
Po anatomy ALE+ 2128 1294 11 0 2064

Lipid ALCHIN 2375 716 46 0 2076
Plant S 2615 1644 16 0 2534

Mosquito anatomy ALE+ 2733 1864 5 0 2732
Idomal namespace ALER+ 3467 2597 24 0 3462

Cognitive atlas ALC 4100 1701 6 0 3999
Genomic ALCQ 4322 2265 2 0 3224

Mosquito insecticide resistance ALE+ 4413 4362 21 0 4409
Galen-A ALEHIF+ 4979 2748 413 0 3506
Ni gene SH 8835 4835 8 0 8834

Fyp SH 15105 4751 69 0 12924
Fly anatomy SH 20356 8064 72 0 20353

EL-Galen ALEH+ 36547 23136 950 0 25138
Galen full ALEHIF+ 37696 23141 950 0 25613

Pr reasoned S 46929 35470 14 0 40031
Snomed fragment for FMA ALER 73543 52635 52 0 35004

Gene SH 73942 39160 12 0 73940
FMA OBO ALE+ 119560 75139 2 0 119558

Table 1: Characteristics of the ontologies used in the GSA and LSA tests.
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The suite of ontologies used during testing contains 41 ontologies and was assem-
bled from the Bioportal ontology repository2. The ontologies that compose this suite
were selected to test the scalability of our approaches both to larger ontologies and to
ontologies formulated in more expressive languages. In Table 1 we present the most
relevant metrics of these ontologies.

All tests were performed on a DELL Latitude E6320 notebook with Intel Core
i7-2640M 2.8Ghz CPU and 4GB of RAM, running Microsoft Windows 7 Premium
operating system, and Java 1.6 with 2GB of heap space. Timeout was set at eight
hours, and execution was aborted if the maximum available memory was exhausted.
The tool used in the experiments and the suite of ontologies are available at http:
//diag.uniroma1.it/˜mora/ontology_approximation/iswc2014/.

As mentioned in Section 4, the computation of the entailment set involves the use of
an external OWL 2 reasoner. Therefore, the performance and the results of the computed
approximations are greatly effected by the choice of the reasoner. For our tests, we have
used the Pellet3 OWL 2 reasoner (version v.2.3.0.6).

In Table 2 we present the results of the evaluation. An analysis of these results leads
to the following observations.

Firstly, we were able to compute the GSA for 26 out of the 41 tested ontologies.
For the remaining fifteen, this was not possible, either due to the size of the ontology,
in terms of the number of its axioms, e.g., the FMA 2.0 or Gene ontologies, which have
more than seventy thousand and one hundred thousand axioms, respectively, or due to
its high expressivity, e.g., the Dolce ontology or the General formal ontology. The LSA
approach is instead always feasible, it is quicker than the GSA approach for all but one
of the tested ontologies, and it is overall very fast: no ontology took more than 250
seconds to approximate with the LSA.

Secondly, it is interesting to observe the comparison between the quality of the ap-
proximation that one can obtain through the LSA with respect to that obtained through
the GSA. This relationship answers the question of whether the ontology obtained
through the LSA (the “LSA ontology”) is able to capture a significant portion of the
one obtained through the GSA (the “GSA ontology”). Our tests in fact confirm that
this is the case: out of the 26 ontologies for which we were able to compute the GSA,
in only four cases the LSA ontology entails less than 60 percent of the axioms of the
GSA ontology, while in twenty cases it entails more than 90 percent of them. The av-
erage percentage of axioms in the original ontologies entailed by the GSA ontologies
is roughly 80 percent, and of the axioms of the GSA ontologies entailed by the LSA
ontologies is roughly 87 percent.

Furthermore, the LSA provides a good approximation even for those ontologies for
which the GSA is not computable. In fact, Table 3 shows the percentage of axioms of the
original ontology that are entailed by the LSA ontology. Out of the twelve ontologies
for which we were able to obtain this value (the remaining three ontologies caused
an “out of memory” error), only in three cases it was less than 60 percent, while in
four cases it was higher than 80 percent. These results are particularly interesting with
respect to those ontologies for which the GSA approach is not feasible due to their

2 http://bioportal.bioontology.org/
3 http://clarkparsia.com/pellet/

http://diag.uniroma1.it/~mora/ontology_approximation/iswc2014/
http://diag.uniroma1.it/~mora/ontology_approximation/iswc2014/
http://bioportal.bioontology.org/
http://clarkparsia.com/pellet/
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Ontology
GSA

axioms
GSA entails
original (%)

LSA
axioms

LSA entails
GSA (%)

SYNT
axioms

SYNT entails
GSA (%)

SYNT entails
LSA (%)

GSA
time (s)

LSA
time (s)

Homology 83 100 83 100 83 100 100 1 4
Cabro 233 96 121 100 100 100 100 4 2

Basic vertebrate anatomy 192 93 141 97 71 56 67 3 3
Fungal anatomy 318 98 140 69 113 69 100 2 2

Pmr 162 97 159 98 159 98 100 2 2
Ma 411 99 240 95 167 96 100 4 4

General formal ontology – – 286 – 177 – 100 – 6
Cog analysis 104407 75 474 46 215 1 82 36 7
Time event 93769 71 662 99 196 1 58 45 11

Spatial 510 63 371 86 155 42 52 9 4
Translational medicine 4089 86 505 99 275 30 64 19 7

Biopax 2182057 – 3217 – 251 – 81 – 11
Vertebrate skeletal anatomy 9488 95 581 92 434 57 99 27 5

Image 1016 95 596 98 571 98 100 178 5
Protein – – 10789 – 475 – 88 – 20
Pizza 2587 91 755 92 678 92 99 7 4

Ont. of physics for biology 1789821 – 1505 – 1241 – 100 – 7
Plant trait 2370 99 1496 99 1461 100 100 10 9

Dolce – – 2959 – 1555 – 100 – 8
Ontology of athletic events 5073 99 2392 99 1731 92 100 42 9

Neomark – – 39807 – 1723 – 63 – 50
Pato 4066 89 2209 100 1976 78 99 99 18

Protein Modification 2195 99 2001 100 1982 100 100 12 19
Po anatomy 11486 96 2783 77 2078 78 100 455 18

Lipid 14659 87 3165 97 2759 89 97 47 10
Plant 18375 96 3512 80 2574 81 100 929 15

Mosquito anatomy 21303 99 4277 43 2732 44 100 214 16
Idomal namespace 67417 99 4259 98 3461 59 100 496 16

Cognitive atlas 7449 97 5324 100 1364 26 30 162 17
Genomic – – 86735 – 85037 – 98 – 54

Mosquito insecticide res. 6794 99 4502 100 4409 100 100 86 14
Galen-A – – 8568 – 4971 – 90 – 26
Ni gene 46148 99 10415 90 8834 91 100 472 32

Fyp – – 19675 – 11800 – 82 – 43
Fly anatomy 460849 99 28436 67 20346 67 100 25499 45

EL-Galen – – 70272 – 43804 – 89 – 59
Galen full – – 72172 – 44279 – 89 – 61

Pr reasoned – – 56085 – 47662 – 100 – 93
Snomed fragment for FMA – – 140629 – 101860 – 76 – 250

Gene – – 86292 – 73940 – 100 – 178
FMA OBO – – 143306 – 119558 – 100 – 113

Table 2: Results of the GSA, LSA, and SYNT. The values represent, from left to right, the number
of axioms in the ontology obtained through the GSA, the percentage of axioms of the original
ontology that are entailed by the ontology obtained through the GSA, the number of axioms
in the ontology obtained through the LSA, the percentage of axioms of the ontology obtained
through the GSA that are entailed by the LSA, the number of axioms in the ontology obtained by
the SYNT, the percentage of axioms of the ontology obtained through the GSA that are entailed
by the ontology obtained through the SYNT, the percentage of axioms of the ontology obtained
through the LSA that are entailed by the ontology obtained through the SYNT, and finally the
GSA time and the LSA time (both in seconds).
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Ontology
Original
axioms

LSA
axioms

LSA entails
original (%)

LSA
time (s)

General formal ontology 212 264 67 6
Biopax 391 3204 53 11
Protein 691 10720 47 20

Ontology of physics for biology 954 1074 75 7
Dolce 1667 2914 78 8

Neomark 1755 38966 46 50
Genomic 4322 9844 65 54
Galen-A 4979 8568 70 26

Fyp 15105 19672 85 43
EL-Galen 36547 70272 – 59
Galen full 37696 72172 – 61

Pr reasoned 46929 55391 83 93
SNOMED fragment for FMA 73543 140629 – 250

Gene 73942 86289 99 178
FMA OBO 119560 143306 99 113

Table 3: LSA results for ontologies for which the GSA is not computable.

complexity, as is the case for example for the Dolce ontology, for Galen-A, and for the
Ontology of physics for biology. Indeed, even though these ontologies are expressed in
highly expressive DL languages, the structure of the axioms that compose them is such
that reasoning on each of them in isolation does not lead to much worse approximation
results than reasoning on the ontology as a whole: for the nine smallest ontologies in
Table 3, for which the GSA fails not because of the size of the ontology, the average
percentage is 68.6.

Finally, both the GSA and LSA compare favorably against the syntactic sound ap-
proximation approach. In fact, the average percentage of axioms in the LSA and GSA
ontologies that are entailed by the ontologies obtained through the SYNT approach are
respectively roughly 90 percent and 72 percent. While the latter result is to be expected,
the former is quite significant, even more so when one considers that the LSA is very
fast. Indeed, a “gain” of 10 percent of axiom entailments by the LSA with respect to
the SYNT in the case of large ontologies such as Galen and Snomed translates to tens
of thousands of preserved axioms in very little computation time.

In conclusion, the results gathered from these tests corroborate the usefulness of
both the global semantic approximation and the local semantic approximation ap-
proaches. The former provides a maximal sound approximation in the target language
of the original approach, and is in practice computable in a reasonable amount of time
for the majority of the tested ontologies. The latter instead represents a less optimal
but still very effective solution for those ontologies for which the GSA approach goes
beyond the capabilities of the currently-available ontology reasoners.
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6 Conclusions

In this paper we have addressed the problem of ontology approximation in Description
Logics and OWL, presenting (i) a parameterized semantics for computing sound ap-
proximations of ontologies, (ii) algorithms for the computation of approximations (the
GSA and the LSA) of OWL 2 ontologies in OWL 2 QL, and (iii) an extensive experi-
mental evaluation of the above techniques, which empirically proves the validity of our
approach.

The present work can be extended in several ways. First, while we have focused
on sound approximations, it would be interesting to also consider complete approxi-
mations of ontologies. Also, we would like to study the development of techniques for
k-approximations different from GSA and LSA, i.e., for k such that 1 < k < |OS |, as
well as to analyze the possibility of integrating ontology module extraction techniques
in our approach. Then, this work has not addressed the case when there are differences
in the semantic assumptions between the source and the target ontology languages. For
instance, differently from OWL 2 and its profiles, some DLs (e.g., DL-LiteA [15]) adopt
the Unique Name Assumption (UNA). This makes our approach not directly applica-
ble, for instance, if we consider OWL 2 as the source language and DL-LiteA as the
target language. The reason is that the UNA implies some axioms (inequalities between
individuals) that can be expressed in OWL 2 but cannot be expressed in DL-LiteA. We
aim at extending our approach to deal with the presence of such semantic discrepancies
in the ontology languages. Finally, we are very interested in generalizing our approach
to a full-fledged ontology-based data access scenario [15], in which data sources are
connected through declarative mappings to the ontology. In that context, it might be
interesting to use both the ontology and the mappings in the target OBDA specification
to approximate a given ontology in the source OBDA specification.
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