
Automated Phenotype-Based Clustering 
of Clinical Reports Using Large Language 

Models 

Martina Saletta1(B) , Andrea Bombarda1 , Matteo Bellini2, Lucrezia Goisis2, 
Paolo Cazzaniga1 , Maria Iascone2 , and Domenico Fabio Savo1 

1 University of Bergamo, Bergamo, Italy 
{martina.saletta,andrea.bombarda,paolo.cazzaniga, 

domenicofabio.savo}@unibg.it 
2 Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy 

{m.bellini,miascone}@asst-pg23.it, lucreziagoisis@hotmail.it 

Abstract. Large Language Models (LLMs) have shown significant 
potential in natural language processing tasks, including various appli-
cations in clinical and biomedical domains. This study explores the use 
of LLMs for analyzing a real dataset from Italian clinical reports and 
proposes a pipeline for automatically clustering these reports based on 
the described symptoms. The pipeline incorporates two approaches: (1) 
direct analysis of textual descriptions in the clinical reports, and (2) stan-
dardized processing through the automatic extraction of Human Phe-
notype Ontology terms using LLM-based methods. The obtained clus-
ters will serve as the foundation for further predictive analyses, such 
as estimating the likelihood of a patient carrying specific genetic muta-
tions. Our investigation compares the performance of direct text analysis 
against phenotype-standardized descriptions, highlighting the strengths 
and limitations of each approach. 
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1 Introduction 

Clinical reports written in natural language contain a wealth of valuable infor-
mation that can assist medical professionals in diagnosing conditions, identify-
ing patterns, and making informed decisions. However, the unstructured nature 
of these documents poses challenges for their automated analysis. Large Lan-
guage Models (LLMs) have recently emerged as powerful tools for processing 
and extracting meaningful insights from unstructured textual data, offering new 
possibilities for applications in clinical and biomedical domains [ 2, 3]. 

In this work, we aim to analyze genetic testing reports produced in a clini-
cal laboratory, by leveraging the k-means clustering algorithm to group reports 
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Fig. 1. Overview of the two approaches tested for document clustering. 

based on their content. Specifically, k-means is applied to the embedding gen-
erated by the MPNet model [ 12]. The ultimate goal is to provide actionable 
insights to geneticists by identifying patterns and trends within the data. 

To this end, we devise two approaches, which are outlined in Fig. 1: in the  
first one we work directly on the text as it appears in the document, by asking 
the LLM to embed the sentence describing the symptoms; the second one com-
prises an additional step aimed at recognizing and standardizing the described 
phenotypes according to the Human Phenotype Ontology (HPO) standard [ 5], 
and the LLM is asked to embed such phenotypes. 

By comparing these two approaches, we assess their ability to produce clin-
ically meaningful clusters and identify potential strengths and limitations. Our 
preliminary experiments, implemented in Python and discussed in Sect. 2, were 
conducted on a dataset of real medical reports, and the results show both 
approaches effectively cluster reports in clinically meaningful ways, despite some 
issues that will be discussed in Sect. 3. 

To facilitate reproducibility and further research, the source code, data, and 
detailed results are available online [ 11]. 

2 Proposed Approach 

In this work, we employed document clustering to analyze a dataset of medical 
reports comprising approximately 8, 000 fully anonymized clinical reports docu-
menting genetic tests performed at the Laboratory of Medical Genetics of ASST 
Papa Giovanni XXIII hospital in Bergamo, Italy. Each report is written in Ital-
ian and stored as a .docx file. They contain key information about the genetic 
test, including manifested symptoms, and test results. The semi-structured for-
mat of these files enabled us to preprocess the corpus into a collection of JSON 
instances. For our experiments, we focused on the specific sections of the reports 
describing the patient’s symptoms; therefore, the analysis refers to anonymized 
data, as the individuals are completely unidentifiable. 

As previously mentioned, our objective is to evaluate the clustering method 
using two distinct types of inputs: the content of each considered section in its 
original form, i.e., unstructured text in Italian, and the sets of HPO standardized 
phenotype names automatically extracted from it.
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To represent these textual contents in a way suitable for computational 
analyses, we used the MPNet model [ 12] to generate document embeddings. 
We specifically chose the MPNet model since it has been shown to outperform 
other state-of-the-art competitors; moreover, it is possible to run it on a laptop 
computer, thanks to its limited number of parameters (109M). The embeddings 
obtained with MPNet map each document section into a vector space, preserv-
ing semantic relationships and ensuring that documents with similar symptom 
descriptions are represented by vectors close to each other. 

The clustering process was performed using the k-means algorithm [ 6] applied 
to the document embeddings. This unsupervised machine learning technique 
allowed us to group documents based on their semantic similarity, facilitating 
the identification of meaningful patterns in the dataset. According to preliminary 
tests, the number of clusters was set to 58, as this value provided a good trade-off 
between the silhouette score and average cluster size. 

Clusters can be used for further statistical and predictive analysis. As an 
example, we computed the percentage of positive cases in each cluster. Results 
are available in our GitHub repository [ 11]. 

2.1 Phenotype Extraction Pipeline 

This section outlines the pipeline we developed for extracting HPO [ 5] phenotype 
names from the clinical reports. It is fed with the JSON file containing the 
sections of the medical report describing the patient’s symptoms, written in the 
natural language (Italian). It processes these files in three distinct steps, ending 
in the generation of a set containing the phenotypes described in the reports. 

Step 1: Translation to English. The texts are translated into English to 
ensure compatibility with the processing capabilities of LLMs. This step uses 
the Google Translate API via its Python package. While this step is optional, 
it is recommended due to the significantly higher performance of LLMs when 
working with English text compared to other languages [ 8,14]. 

Step 2: Extraction of phenotypes. The pipeline uses LLaMa 3.2 [ 9], an LLM 
with 70 billion parameters, to extract a JSON-encoded list of phenotypes from 
the translated description of the patient’s symptoms. During this step, which 
forms the core functionality of the data extraction process, our LLM is asked to 
remove from the list of symptoms all those that are not referred to the patient 
and to provide its response in JSON format, reporting the symptom extracted 
from the text and its possible mapping to HPO. 

Step 3: Phenotype standardization. To address the occasional output of 
synonyms or non-existent phenotypes by LLaMa, the extracted phenotypes are 
standardized using the HPO ontology [ 5], which provides a comprehensive set of 
phenotypes along with their hierarchical relationships.
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3 Discussion 

We engaged domain experts to assign labels to each cluster to semantically 
interpret the clusters and compare the two approaches. To this end, we generated 
the set of the most relevant words for each cluster by computing the average TF-
IDF [ 1] score of the words within it. The labeling procedure involved analyzing 
these top words and reviewing a sample of documents from each cluster. 

To assess the clustering quality, we calculated the silhouette score [ 10] for  
each cluster. This metric, ranging from −1 to 1, quantifies how cohesive and 
well-separated a cluster is, with higher values indicating better quality. Labels 
and silhouette scores are available in our GitHub repository [ 11]. 

Many of the clusters belong to one of these two macro-areas: heart diseases 
and neurodevelopmental disorders. This is because most of the patients in our 
cohort present with one of these two issues. The main difference, however, lies 
in the fact that while heart diseases are often related to specific clinical suspi-
cions (e.g., cardiomyopathies or Brugada syndrome), the descriptions for neu-
rodevelopmental disorders are more nuanced and varied: these encompass a wide 
range of partially overlapping phenotypes (e.g., psychomotor delay, autism, brain 
anomalies, intellectual disability, etc.), resulting in lower silhouette scores and 
clusters that should ideally be grouped into a single container. 

It has been observed that a silhouette score greater than 0.3 generally enables 
the clinical domain of a cluster to be defined. However, according to our exper-
iments, it has not always proven to be a reliable parameter for assessing cluster 
quality. In some cases, reports were grouped together based on purely syntactic 
aspects. For example, in a cluster with a silhouette score of 0.35, very different 
diseases were grouped together simply because they are defined as “disease of” 
(e.g., Caroli disease, Hirschsprung disease, Pompe disease). This issue deserves 
attention and suggests further experimentation: the use of bigger or more pow-
erful LLMs for the embedding could be explored, or modification to the prepro-
cessing phase could be considered. Clusters with a silhouette score close to 0 
or even with a negative value were also observed. In these clusters, points cor-
respond to highly heterogeneous descriptions. These clusters appear to capture 
outliers, as they encompass a wide range of phenotypes. 

Comparing the text-based clustering to the phenotype-based clustering, the 
latter appears to perform better, as indicated by the higher average silhou-
ette score. However, it should be noted that the second approach introduces an 
additional bias beyond the translation: associating phenotypes with their corre-
sponding HPO terms. In some cases, this seems to be a successful strategy, such 
as with RASopathies, which form a standalone cluster. 

4 Conclusion and Future Directions 

Although this work is still in the early stages, the results are promising and give 
many insights for future research steps. First, further predictive analyses can be 
conducted, such as estimating the likelihood of a patient carrying specific genetic
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mutations by assessing the percentage of positive cases across different clusters. 
Also, as suggested in the discussion, alternative models for embedding need to 
be tested so as to capture semantic similarities and differences better. Similarly, 
different clustering strategies (e.g., fuzzy [ 13], hierarchical [ 7], neural [ 4]) could 
be better suited to represent the semantics of this kind of dataset and deserve 
to be tested. Finally, we intend to assess the quality of the extraction of HPO 
concepts by LLaMa to eliminate any potential threats to our conclusions arising 
from inaccuracies or errors in the data extraction pipeline. 

In general, our approach is generalizable and applicable to other clinical 
datasets and has the potential to offer valuable support to pathologists in 
decision-making, diagnosis formulation, and in the search for clinically similar 
reports. 
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Phenotypes extraction from text: analysis and perspective in the llm era. In: 2024 
IEEE 12th International Conference on Intelligent Systems (IS), pp. 1–8. IEEE 
(2024) 

3. Bhattarai, K., et al.: Leveraging GPT-4 for identifying cancer phenotypes in elec-
tronic health records: a performance comparison between GPT-4, GPT-3.5-turbo, 
flan-t5, llama-3-8b, and spacy’s rule-based and machine learning-based methods. 
JAMIA Open 7(3), ooae060 (2024) 
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