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Controlled Query Evaluation (CQE) is a methodology designed to maintain confidentiality by 
either rejecting specific queries or adjusting responses to safeguard sensitive information. In this 
investigation, our focus centers on CQE within Description Logic ontologies, aiming to ensure 
that queries are answered truthfully as long as possible before resorting to deceptive responses, 
a cooperativity property which is called the ``longest honeymoon''. Our work introduces new 
semantics for CQE, denoted as MC-CQE, which enjoys the longest honeymoon property and 
outperforms previous methodologies in terms of cooperativity.

We study the complexity of query answering in this new framework for ontologies expressed in 
the Description Logic DL-Lite. Specifically, we establish data complexity results under different 
maximally cooperative semantics and for different classes of queries. Our results identify both 
tractable and intractable cases. In particular, we show that the evaluation of Boolean unions of 
conjunctive queries is the same under all the above semantics and its data complexity is in AC0. 
This result makes query answering amenable to SQL query rewriting. However, this favorable 
property does not extend to open queries, even with a restricted query language limited to 
conjunctions of atoms. While, in general, answering open queries in the MC-CQE framework is 
intractable, we identify a sub-family of semantics under which answering full conjunctive queries 
is tractable.

1. Introduction

Information systems often have to handle sensitive knowledge, such as medical records, personal details or financial data, which, if 
exposed without some protection, could compromise individuals’ privacy and confidentiality [1,2]. The objective of confidentiality

preserving query answering is to prevent unauthorized access to this information while maintaining a cooperative approach by 
providing honest answers to queries whenever possible. Controlled Query Evaluation (CQE) addresses this issue by refusing to respond 
to certain queries or altering answers when necessary to protect sensitive data. Initially studied for databases [3--5], CQE was then 
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investigated in the context of ontologies and Semantic Web applications [1,6,7], which have experienced a remarkable surge in 
popularity due to their ability to represent and interlink a wide range of information sources, encompassing both public organizations 
and private individuals. CQE over ontologies turned out to be particularly challenging, considering that the usage of ontologies enables 
the deduction of implicit information from explicit data, which further escalates the risk of information leakage. This scenario is the 
one considered in the present paper.

Clearly, the effectiveness of any confidentiality-preserving system in preventing information leakage depends greatly on the at

tacker’s background knowledge and capabilities. Following [8], in this paper, we assume that a potential attacker is aware of the 
intensional component of the ontology (a.k.a. TBox), the set of potential secrets, and the algorithm used to protect confidentiality. In 
other words, the only piece of information unknown to the attacker is the extensional data (a.k.a. ABox) and its logical consequences. 
These assumptions allow us to encompass a number of practical scenarios. Indeed, TBoxes are typically public ontologies utilized 
within specific classes of applications. Even if this is not the case, the attacker may still possess some familiarity with the application 
domain and partially reconstruct the employed TBox. Similarly, a malicious user might be aware of the type of information that 
the system aims to keep confidential. For instance, one can expect that the government would not want to disclose the occupation 
of an employee acting as a spy. Lastly, the assumption that the attacker knows how sensitive data are preserved is an analogue of 
Kerckhoffs’s principle for cryptoanalysis, the attacker could be an insider who knows or even designed the confidentiality-preserving 
system.

Under such assumptions, effective CQE is usually enforced by means of a data protection policy, i.e., a set of logic formulas that 
must be satisfied to ensure confidentiality, and by employing censors. These censors work by hiding information, while satisfying 
the policy, in a manner that makes it impossible to discern the actual knowledge from an alternative version devoid of any secrets. 
Various censors employ different techniques to obscure answers, making them generally not comparable with each other.

Several existing works propose static CQE methods, where a censor is pre-constructed or approximated, determining in advance 
which queries should be truthfully answered [1,6,7,9,10]. However, some of these approaches lack full cooperativeness, as they fail 
to consider the users’ interests when selecting the secure view of the data.

In contrast, inspired by the work of Biskup and Bonatti [11], this paper introduces a family of Maximally Cooperative CQE (MC

CQE) semantics that dynamically decide whether to provide truthful answers or employ deception based on the stream of user queries. 
Essentially, at each step a MC-CQE semantics aims at maximizing the chances of answering the next query honestly by committing 
only to the current answer, as opposed to adhering a priori to a single censor. At the same time, MC-CQE semantics are secure under 
the assumptions mentioned above.

In more detail, MC-CQE semantics capture two essential desiderata: (𝑖) indistinguishability-based confidentiality, and (𝑖𝑖) the 
so-called ``longest honeymoon'' property. Indistinguishability-based confidentiality [1,8,9] ensures security by mandating that the 
answers to a query are always obtainable by applying the censoring mechanism to the same query evaluated over an ontology 
without confidential information. This last ontology is thus indistinguishable from the original one for the users, preventing them from 
determining whether the underlying data contain sensitive information or not. Instead, the longest honeymoon [11] property states 
that, given a sequence of queries, the system returns the longest possible sequence of honest answers before resorting to deception. 
Several arguments support this property. Firstly, in the absence of specific knowledge about users’ intentions, the order in which 
queries are posed is assumed to reflect their relative importance. Secondly, since we cannot anticipate the nature or number of future 
queries, responding truthfully to the current query, if feasible, represents the most cooperative strategy at this time. Furthermore, we 
will prove that our approach is optimal in a more classical sense: the set of queries truthfully answered is always maximal under set 
containment.

We compare our approach with two other semantics from the literature: skeptical reasoning [7] and 𝖨𝖦𝖠 [12]. Our analysis 
reveals that skeptical reasoning fails to consistently guarantee indistinguishability-based privacy preservation. In contrast, our MC

CQE method demonstrates superior cooperativeness, comprehensively capturing all the answers that the compared methods provide.

More generally, we show that MC-CQE semantics cannot be replicated by a static CQE approach through data-independent mod

ifications of the TBox and the formulas representing the data protection policy. Consequently, specific techniques are necessary to 
implement our approach.

From a computational perspective, we investigate the data complexity of query answering in MC-CQE when working with ontolo

gies expressed in DL-Lite, which is the Description Logic fragment that underlies the OWL 2 QL profile [13]. In this context, our 
query language includes the union of conjunctive queries, and data-protection policies are defined using denial formulas, as described 
in [9,10,14].

In case of Boolean queries (those without free variables), our approach results in being first-order rewritable, implying that queries 
can be answered in AC0 in data complexity. When the framework is lifted to open queries, a query may have multiple maximally 
cooperative answers; thus, we introduce preference orderings to make a selection over these answers. Unfortunately, in such gener

alized setting, membership in AC0 does not hold, even when we restrict the query language to only include conjunctions of atoms 
(full CQs). More broadly, we show that the data complexity of answering open conjunctive queries is Δ𝑝

2[𝑂(log𝑛)]-hard for every 
MC-CQE semantics. Nevertheless, if we narrow our focus to a specific subset of MC-CQE defined by lexicographic preference orderings 
over answers, the data complexity of open query answering becomes PTime-complete for full CQs and Δ𝑝

2-complete for conjunctive 
queries.

The rest of the paper is organized as follows. In Section 2, we give some preliminary notions on Description Logics and Union 
of Conjunctive Queries. In Section 3, we introduce the MC-CQE semantics and compare it with skeptical reasoning and 𝖨𝖦𝖠. In 
Section 4, we focus on Boolean Unions of Conjunctive Queries (BUCQs) and prove that all possible MC-CQE semantics reduce to a 
single one, which we term 𝖽𝗒𝗇𝖢𝖰𝖤. Next, in Section 5, we provide a specialized query rewriting algorithm, illustrating that 𝖽𝗒𝗇𝖢𝖰𝖤
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query processing of BUCQs is first-order rewritable when ontologies are expressed in DL-Lite. In Section 6, we extend 𝖽𝗒𝗇𝖢𝖰𝖤 to 
the case of UCQs that may contain free variables. We particularly focus on lexicographic preferences and prove that answering a 
sequence of UCQs can be reduced to 𝖽𝗒𝗇𝖢𝖰𝖤 over the sequence of instantiations of the input queries. For the non-Boolean case, 
we also investigate in Section 7 and in Section 8 the data complexity of answering open queries under generic MC-CQE semantics, 
and analyze in Section 9 the same problem under lexicographic preferences. Finally, the paper concludes with Section 10 on related 
work and Section 11 providing final remarks that outline the significance of the MC-CQE framework and its potential for practical 
implementations.

This paper is an extended version of [14] and generalizes the results that appeared in its previous version in several directions. In 
particular, the entire treatment on open queries is a new contribution, being [14] only focused on dynamic CQE for Boolean queries.

2. Preliminaries

We assume that the reader is familiar with the basics of (function-free) first-order (FO) logic. To denote FO formulas we will use 
the Greek letters 𝜙 and 𝜓 . For the sake of readability, an FO formula 𝜙 may sometimes be denoted as 𝜙(𝑥⃗), where 𝑥⃗ is the sequence 
of the free variables occurring in 𝜙. An FO theory 𝔗 is a finite set of first-order sentences (i.e., closed FO formulas), and we say that 
𝔗 is consistent if it has at least one model (i.e., there exists an interpretation satisfying all the sentences in 𝔗), inconsistent otherwise. 
We will also use the terms query and Boolean query as synonyms of FO formula and closed FO formula, respectively.

For the technical treatment, we also resort to Description Logics (DLs), which are fragments of FO logic underpinning the OWL 2 
standard [15]. We introduce here the notions needed in this work and refer the reader to [16,17] for further details. The languages of 
our interest are built from an alphabet Γ that consists of countably infinite and mutually disjoint sets of unary predicates Γ𝐶 (a.k.a. 
atomic concepts), binary predicates Γ𝑅 (a.k.a. atomic roles), constants Γ𝐼 (a.k.a. individual names), and variables Γ𝑉 . An atom is a 
formula of the form 𝐴(𝑡) or 𝑃 (𝑡1, 𝑡2), where 𝐴 ∈ Γ𝐶 is an atomic concept, 𝑃 ∈ Γ𝑅 is an atomic role, and each term 𝑡, 𝑡1 and 𝑡2 is either 
a variable from Γ𝑉 or a constant from Γ𝐼 . A formula is ground if all its terms are constants. In particular, ground atoms are also called 
facts.

In this paper, a DL ontology  is an FO theory constituted by a TBox  and an ABox , where  contains the ground atoms of 
 describing the extensional knowledge of , whereas  describes the intensional knowledge of . A DL ontology  entails an FO 
sentence 𝜙, denoted  ⊧ 𝜙, if 𝜙 is true in every model of . Hereinafter, we denote with cl () the set of ground atoms entailed by 
 ∪. Also, we say that an FO sentence 𝜙 evaluates to true in an ABox  if the evaluation of 𝜙 in the least Herbrand model of  is 
true [18], otherwise 𝜙 evaluates to false in .

Given a sequence of variables 𝑥⃗ = ⟨𝑥1,… , 𝑥𝑘⟩, a substitution for 𝑥⃗ is a total mapping from the variables in 𝑥⃗ to terms in Γ𝐼 ∪ Γ𝑉 . 
The notation {𝑥1 ← 𝑡1,… , 𝑥𝑘 ← 𝑡𝑘}, where 𝑥𝑖 ≠ 𝑥𝑗 for every 𝑖, 𝑗 ∈ [1, 𝑘], refers to a substitution 𝜎 mapping each variable 𝑥𝑖 to the 
term 𝑡𝑖, for 𝑖 ∈ [1, 𝑘]. The substitution 𝜎 is called ground if all terms 𝑡𝑖 are constants in Γ𝐼 . Applying 𝜎 to an FO formula 𝜙 returns a 
formula 𝜎(𝜙) which is obtained by replacing in 𝜙 each free occurrence of 𝑥𝑖 with 𝑡𝑖, for 𝑖 ∈ [1, 𝑘]. Sometimes, it will be convenient 
to use the empty substitution 𝜖, i.e., the substitution that does not map any variable. Obviously, 𝜖(𝜙) = 𝜙 for any FO formula 𝜙.

Given an FO query 𝜙(𝑥⃗), an answer to 𝜙 is a ground substitution 𝜎 for 𝑥⃗ and 𝔊𝜙 denotes the set of all the answers to 𝜙. An answer 
𝜎 ∈𝔊𝜙 is a certain answer with respect to an ontology  iff the range of 𝜎 is contained in the signature of  and  ⊧ 𝜎(𝜙). We denote 
with cert(, 𝜙) the set of certain answers to 𝜙 with respect to . Note that cert(, 𝜙) is always finite and it applies to both open and 
closed formulas. In particular, for a sentence 𝜙, we have that cert(, 𝜙) = ∅ if  ̸⊧ 𝜙, and that cert(, 𝜙) = {𝜖} (i.e., the only certain 
answer is the empty substitution) otherwise.

While our definitions in the framework apply to every DL ontology, our complexity results focus on ontologies expressed in 
DL-Lite [19], which is the logical counterpart of OWL 2 QL [13]. In this DL, a role 𝑅 is an atomic role 𝑃 or its inverse 𝑃−, whereas 
a (basic) concept 𝐵 takes the form 𝐴, ∃𝑃 , or ∃𝑃−, where 𝐴 is an atomic concept, whereas ∃𝑃 and ∃𝑃− denote the domain and the 
range of a role 𝑃 , respectively. A DL-Lite TBox  is a set of positive inclusions of the form 𝐵1 ⊑ 𝐵2 or 𝑅1 ⊑𝑅2, and negative inclusions 
of the form 𝐵1 ⊑ ¬𝐵2 or 𝑅1 ⊑ ¬𝑅2. Each positive and negative inclusion of a DL-Lite TBox can be equivalently written using the 
FO syntax, as shown by Table 1.

We also concentrate on specific classes of FO formulas as query language. A conjunctive query (CQ) is an FO query of the form 
𝑞(𝑥⃗) = ∃𝑦 (conj(𝑥⃗, 𝑦)), where conj(𝑥⃗, 𝑦) is a conjunction 𝛼1 ∧…∧ 𝛼𝑛 of atoms where 𝑥⃗ and 𝑦 indicate all the variables occurring in it. A 
union of conjunctive queries (UCQ) is a disjunction 𝑞1(𝑥⃗) ∨…∨ 𝑞𝑛(𝑥⃗) of CQs. Closed CQs are called Boolean conjunctive queries (BCQs) 
and closed UCQs are called Boolean unions of conjunctive queries (BUCQs). CQs with no existentially quantified variables are called 
full CQs and, similarly, UCQs with no existentially quantified variables are called full UCQs. Sometimes we write 𝑞′ ∈ 𝑞 to indicate 
that the CQ 𝑞′ is one of the CQs of the UCQ 𝑞. Note that a ground atom can be seen as a BCQ with no variables, and that a BCQ is a 
BUCQ with only one disjunct.

Given a BUCQ 𝑞 and an ABox , an image of 𝑞 in  is a minimal subset ′ of  such that 𝑞 evaluates to true in ′. Furthermore, 
given a BUCQ 𝑞, a TBox  and an ABox , an image of 𝑞 in  with respect to  is a minimal subset ′ of  such that  ∪′ ⊧ 𝑞.

Given a CQ 𝑞, we denote by Atoms(𝑞) the set of atoms appearing in 𝑞, and call the cardinality of Atoms(𝑞) the length of 𝑞. Given 
two UCQs 𝑞1 = 𝑞11 ∨…∨ 𝑞𝑛1 and 𝑞2 = 𝑞12 ∨…∨ 𝑞𝑚2 , we denote by 𝑞1 ∧ 𝑞2 the UCQ

(𝑞11 ∧ 𝑞12) ∨…∨ (𝑞11 ∧ 𝑞𝑚2 ) ∨
⋮

(𝑞𝑛1 ∧ 𝑞12) ∨…∨ (𝑞𝑛1 ∧ 𝑞𝑚2 ) .
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Table 1
For both 𝑖 = 1 and 𝑖 = 2, if 𝑅𝑖 is an atomic role 𝑃 (i.e., 𝑅𝑖 = 𝑃 ), 
then 𝑅𝑖(𝑥1, 𝑥2) = 𝑃 (𝑥1, 𝑥2); otherwise (i.e., 𝑅𝑖 = 𝑃 − is the inverse of 
an atomic role), then 𝑅𝑖(𝑥1, 𝑥2) = 𝑃 (𝑥2, 𝑥1). Furthermore, for both 
𝑖 = 1 and 𝑖 = 2, if 𝐵𝑖 is an atomic concept 𝐴 (i.e., 𝐵𝑖 = 𝐴), then 
𝐵𝑖(𝑥) = 𝐴(𝑥); if 𝐵𝑖 is the domain of an atomic role 𝑃 (i.e., 𝐵𝑖 = ∃𝑃 ), 
then 𝐵𝑖(𝑥) = ∃𝑦 𝑃 (𝑥, 𝑦); if 𝐵𝑖 is the range of an atomic role 𝑃 (i.e., 
𝐵𝑖 = ∃𝑃 −), then 𝐵𝑖(𝑥) = ∃𝑦 𝑃 (𝑦, 𝑥).

DL-Lite inclusion assertion FO translation 
𝐵1 ⊑ ¬𝐵2 ∀𝑥 (𝐵1(𝑥)→𝐵2(𝑥))
𝐵1 ⊑ ¬𝐵2 ∀𝑥 (𝐵1(𝑥)→ ¬𝐵2(𝑥))
𝑅1 ⊑𝑅2 ∀𝑥1, 𝑥2 (𝑅1(𝑥1, 𝑥2)→𝑅2(𝑥1, 𝑥2))
𝑅1 ⊑ ¬𝑅2 ∀𝑥1, 𝑥2 (𝑅1(𝑥1, 𝑥2)→ ¬𝑅2(𝑥1, 𝑥2))

Table 2
Complexity classes used in the paper.

Δ𝑝

2 The class of decision problems decidable in polynomial time by a deterministic Turing machine using an oracle for a problem in NP.

Δ𝑝

2[𝑂(log𝑛)] The class of decision problems decidable by a deterministic Turing machine in polynomial time and using only a logarithmic (in the size of the 
input) number of queries to an oracle for a problem in NP.

Σ𝑝

2 The class of decision problems decidable in polynomial time by a non-deterministic Turing machine using an oracle for a problem in NP.

AC0 The class of decision problems decidable by a uniform family of circuits of constant depth and polynomial size, with unlimited fan-in AND gates 
and OR gates.

We recall that computing the set of certain answers to a UCQ in DL-Lite is FO rewritable, i.e., for every DL-Lite TBox 
and UCQ 𝑞, it is possible to effectively compute an FO query 𝑞𝑟, called the perfect reformulation of 𝑞 with respect to  , such that 
cert( ∪, 𝑞) = {𝜎 ∣ 𝜎(𝑞𝑟) evaluates to true in }, for each ABox  such that  ∪ is consistent. Intuitively, FO rewritability means 
that, for each ABox , the certain answers to 𝑞 with respect to  ∪ can be obtained by evaluating 𝑞𝑟 over  seen as a database.

Let us now formalize the form of policy considered in this paper. A policy  is a (finite) set of denials, i.e., sentences of the form 
𝑞 → ⊥, where 𝑞 is a BCQ. An interpretation satisfies a denial 𝑞 → ⊥ if it does not satisfy the BCQ 𝑞. We denote by 𝑞() the BUCQ ⋁

𝑞→⊥∈ 𝑞. An interpretation satisfies  if it does not satisfy 𝑞().
As anticipated in the introduction, our complexity results refer to data complexity, i.e., the complexity computed with respect to 

the size of the ABox only [20]. We expect the reader to be familiar with the basic complexity classes PTime, NP, and coNP [21]. 
Additionally, we will refer to the complexity classes described in Table 2. Finally, we recall that the problems that are shown to be 
FO rewritable fall into the complexity class AC0, with respect to data complexity.

3. Controlled query evaluation framework

3.1. MC-CQE semantics

We now introduce our formal framework for CQE. All definitions and properties given in this section apply to any DL language.

A CQE specification is a pair ⟨ ,⟩, where  is a TBox and  is a policy, such that  ∪ is consistent. A CQE instance is a triple 
 = ⟨ , ,⟩, where ⟨ ,⟩ is a CQE specification, and  is an ABox such that  ∪ is consistent. The intended meaning of a CQE 
specification ⟨ ,⟩ is that, for any possible CQE instance  = ⟨ , ,⟩, every BCQ 𝑞 occurring in a denial contained in  must 
always result as non-entailed by  ∪, even though it might actually be. Given a DL language , an  CQE specification is a CQE 
specification whose TBox is expressed in . The same notation extends to CQE instances.

Specifically, we assume to have a single user asking a sequence of queries to the CQE system.1 Such queries are evaluated one after 
the other, and each such evaluation provides the user with new information. The semantics for query answering adopted by a CQE 
system must ensure that, even by collecting such information, it is impossible for the user to discover data protected by the policy 
(i.e., to infer a query mentioned in the policy). The distinguishing feature of our framework is that the query answering semantics 
that we propose takes specifically into account which information has been acquired by the user thanks to the queries she asked 
previously. In other terms, unlike other proposals, we do not assume that a user asking a query may have asked in the past any query 
and in any order, but take a trace of what she really asked. As we will see in formal terms, this choice allows our framework to 
increase the data that can be communicated to a user, provided that secrets are not divulged.

To this aim, we introduce the notion of protection state, which captures the history of queries asked by the user over a CQE 
instance.

1 Multiple users may be assimilated into one single user asking a sequence of queries that incorporates the queries asked by each user.
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Definition 1 (State). Let  = ⟨ , ,⟩ be a CQE instance. A protection state of  (or simply state of ) is a pair  = ⟨ ,⟩, where 
 = ⟨𝑞1,… , 𝑞𝑛⟩ (with 𝑛 ≥ 1) is a sequence of queries.

We are now ready to provide the notion of CQE semantics, which represents a minimal requirement for safeguarding private 
information.

Definition 2 (CQE semantics). A CQE semantics is a function cqe that associates to each protection state  = ⟨⟨ , ,⟩, ⟨𝑞1,… , 𝑞𝑛⟩⟩
a sequence of answer sets cqe() = ⟨𝑅1,… ,𝑅𝑛⟩ such that:

(i) 𝑅𝑖 ⊆ cert( ∪, 𝑞𝑖), for each 𝑖 ∈ [1, 𝑛], and

(ii)  ∪ ∪
⋃𝑛

𝑖=1{𝜎(𝑞𝑖) ∣ 𝜎 ∈𝑅𝑖} is consistent.

For each 𝑖 ∈ [1, 𝑛], we shall denote 𝑅𝑖, with cqe( , 𝑞𝑖).

Intuitively, a CQE semantics provides an answer to a query 𝑞𝑖 in  only if that answer is a certain answer to 𝑞𝑖 with respect to the 
ontology  ∪, i.e., without considering the protection policy (Condition (i)). Moreover, the overall set of answers provided by the 
system to the queries in  must not violate, along with the TBox, the policy (Condition (ii)).

As anticipated in the introduction, we adopt the following attack model: we assume that a potential attacker is aware of the CQE 
specification ⟨ ,⟩ as well as the actual CQE semantics cqe which is employed to conceal sensitive information. The only piece of information 
unknown to the attacker is the ABox .

As the following example shows, not all CQE semantics can protect private data from malicious users effectively.

Example 1. Consider a CQE specification ⟨ ,⟩, where the TBox  is empty, i.e.,  = ∅, and the policy  is intended to hide 
the secret 𝐶(𝑜), i.e.,  = {𝐶(𝑜)→ ⊥}. Moreover, consider the sequence  = ⟨𝑞1, 𝑞2⟩ of queries, where 𝑞1 = ∃𝑥 𝐶(𝑥) and 𝑞2 = 𝐶(𝑥). 
Consider now the CQE instance  = ⟨ , ,⟩, where  = {𝐶(𝑜)}, and a CQE semantics cqe based on the principle of maximizing 
the answers that can be provided to the user as long as they satisfy Definition 2. Based on this principle, since  ∪  ∪ {∃𝑥 𝐶(𝑥)} is 
consistent as required by Definition 2, cqe returns {𝜖} (i.e., it answers true) to the query 𝑞1. From this answer, a user knows that 
∃𝑥 𝐶(𝑥) holds. Conversely, the only certain answer in cert( ∪, 𝑞2) is {𝑥← 𝑜}, which, however, reveals the secret 𝐶(𝑜), hence cqe

returns ∅ to the query 𝑞2.

From the assumptions that we already mentioned in the introduction, an attacker has perfect knowledge of both the CQE specifi

cation ⟨ ,⟩ and the rules governing the behavior of the underlying CQE semantics. Thus, knowing that the TBox is empty and that 
the cqe lies only when forced in order to keep a secret, the attacker can tell, on the basis of the answer to query 𝑞2 , that 𝐶(𝑜) is true. 
The secret is thus revealed.

Let us now consider a slightly different case in which we have the new CQE instance  ′ = ⟨ , ,′⟩, where  and  are as 
above, while ′ is the new ABox ′ = {𝐶(𝑜),𝐶(𝑜′)}. Moreover, let us consider again the same CQE semantics cqe and sequence 
of queries. Applying cqe on the state  ′ = ⟨ ′,⟩ leads us to the following answers:

cqe( ′, 𝑞1) = {𝜖} ⊆ cert( ∪′, 𝑞1);

cqe( ′, 𝑞2) = {{𝑥← 𝑜′}} ⊆ cert( ∪′, 𝑞2).

In this case, since the answer to query 𝑞1 is justified by the answer to query 𝑞2, an attacker cannot tell whether the CQE semantics 
is hiding information. In fact, in the eyes of the attacker, the ABox ′, which contains the secret 𝐶(𝑜), is indistinguishable from the 
ABox ′′ = {𝐶(𝑜′)}, which does not contain any secret. □

Roughly speaking, the example above shows that in those cases where a CQE semantics succeeds in confusing an attacker by 
behaving as if it is acting on data that does not contain secrets, it turns out to be more secure. This property goes by the name of 
indistinguishability [22]. Clearly, in order for a CQE semantics to fully satisfy the indistinguishability property, it must be able to 
perform the simulation for every possible ABox underhand. Therefore, returning to the example, it is clear that the semantics cqe

does not enjoy the property of indistinguishability since for the case of the ABox  there exists no secret-free ABox on which cqe

would behave in the same way.

Towards a characterization of a CQE semantics that does not suffer from the problem exhibited by the previous example, we 
introduce the notion of censor as defined in [10, Definition 1]. Intuitively, a censor specifies which consequences of an ontology can 
be disclosed without violating the policy.

Definition 3 (Censor). Let  = ⟨ , ,⟩ be a CQE instance, a censor for  is a subset  of cl () such that  ∪ ∪  is consistent.

Example 2. Consider the following CQE instance  = ⟨ , ,⟩:
 = {𝗆𝗂𝗇𝗈𝗋 ⊑ 𝗉𝖾𝗋𝗌𝗈𝗇, 𝗁𝖺𝗌𝖢𝖱 ⊑ 𝗉𝖾𝗋𝗌𝗈𝗇};

 = {∃𝑥 (𝗆𝗂𝗇𝗈𝗋(𝑥) ∧ 𝗁𝖺𝗌𝖢𝖱(𝑥))→ ⊥};
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 = {𝗆𝗂𝗇𝗈𝗋(𝑏𝑜𝑏),𝗁𝖺𝗌𝖢𝖱(𝑏𝑜𝑏)}.

In words, the TBox  states that both those who are minors and those who have criminal records are persons, while the policy  is 
intended to hide the existence of minors who have criminal records. Moreover,  states that 𝑏𝑜𝑏 is a minor having criminal records.

The following are censors for  according to Definition 3:

1 = {𝗆𝗂𝗇𝗈𝗋(𝑏𝑜𝑏),𝗉𝖾𝗋𝗌𝗈𝗇(𝑏𝑜𝑏)};

2 = {𝗁𝖺𝗌𝖢𝖱(𝑏𝑜𝑏),𝗉𝖾𝗋𝗌𝗈𝗇(𝑏𝑜𝑏)};

3 = {𝗉𝖾𝗋𝗌𝗈𝗇(𝑏𝑜𝑏)};

4 = ∅. □

As demonstrated in the preceding example, a CQE instance  may give rise to multiple censors. Hereafter, Cens() denotes the 
set of all censors for  . We observe that the empty set is a censor for any CQE instance  , and thus we always have that Cens() ≠ ∅.

Censors for a given CQE instance  = ⟨ , ,⟩ enjoy some notable properties: (i) they are ABoxes that do not contain any secrets 
according to the policy  , and (ii) they exclusively contain information that is entailed by  ∪ . Therefore, as long as a CQE 
semantics mimics the behavior of a censor  (making  and  indistinguishable) we can be assured of obtaining correct answers 
while simultaneously thwarting attempts by malicious users to deduce a secret. Building upon these observations, we use the concept 
of censors as the foundation for formulating our notion of secure CQE semantics, rooted in the indistinguishability property.

Definition 4 (Secure CQE semantics). A CQE semantics cqe is secure if for each protection state  = ⟨⟨ , ,⟩,⟩, with  =⟨𝑞1,… , 𝑞𝑛⟩, there exists a censor  ∈ Cens() such that cqe( , 𝑞𝑖) = cqe(⟨⟨ , ,⟩,⟩, 𝑞𝑖), for all 𝑖 ∈ [1, 𝑛].

It is worth noting that a CQE semantics that consistently yields no answers (i.e., cqe( , 𝑞𝑖) = ∅ for any possible state  =⟨⟨ , ,⟩,⟩) trivially satisfies Definition 4. To ensure the practicality of CQE semantics, it is then necessary to establish a no

tion of cooperativeness. In practical applications, queries are typically submitted sequentially, and the system is unaware of which 
queries, if any, will follow at each step. In this scenario, it is reasonable to adopt the so-called longest honeymoon approach: ``one must 
keep telling the whole truth as long as it is possible''.

The following notion of maximally cooperative censor formally captures our idea of longest honeymoon.

Definition 5 (Maximally cooperative censor). Let  = ⟨ , ,⟩ be a CQE instance and let  = ⟨𝑞1,… , 𝑞𝑛⟩ be a sequence of queries 
over  , with 𝑛 ≥ 1. If 1,2 are two censors for  , we shall say that 2 is more cooperative than 1 with respect to  if there exists a 
natural number 𝑚 ∈ [0, 𝑛− 1] such that:

(i) cert( ∪ 1, 𝑞𝑖) = cert( ∪ 2, 𝑞𝑖) for each 𝑖 ∈ [1,𝑚];
(ii) cert( ∪ 1, 𝑞𝑚+1) ⊂ cert( ∪ 2, 𝑞𝑚+1).

Finally, we shall say that a censor  for  is maximally cooperative with respect to  if there is no other censor for  which is more 
cooperative than  with respect to .

Example 3. Consider the CQE instance  = ⟨ , ,⟩ and the censors 1 and 2 for  of Example 2. Then, consider the sequence 
 = ⟨𝑞1, 𝑞2, 𝑞3⟩ of queries, where:

𝑞1 = 𝗉𝖾𝗋𝗌𝗈𝗇(𝑥);

𝑞2 =𝗆𝗂𝗇𝗈𝗋(𝑏𝑜𝑏);

𝑞3 = 𝗁𝖺𝗌𝖢𝖱(𝑏𝑜𝑏).

We have that both cert( ∪ 1, 𝑞1) and cert( ∪ 2, 𝑞1) are equal to {{𝑥← 𝑏𝑜𝑏}}. Moreover, cert( ∪ 1, 𝑞2) is equal to {𝜖}, i.e., 
true, whereas cert( ∪ 1, 𝑞3) = ∅, i.e., false. Conversely, cert( ∪ 2, 𝑞2) returns false and cert( ∪ 2, 𝑞3) returns true.

Then, according to Definition 5, 1 is maximally cooperative with respect to  while 2 is not. However, it is straightforward to 
see that, if we consider ′ = ⟨𝑞1, 𝑞3, 𝑞2⟩, the situation is just the opposite. □

We are now ready to provide our definition of maximally cooperative CQE semantics.

Definition 6 (MC-CQE semantics). A CQE semantics cqe is maximally cooperative (MC) if, for each protection state  = ⟨ ,⟩, with 
 = ⟨ , ,⟩ and  = ⟨𝑞1,… , 𝑞𝑛⟩, there exists a maximally cooperative censor  for  with respect to  such that cqe( , 𝑞𝑖) =
cert( ∪ , 𝑞𝑖), for all 𝑖 ∈ [1, 𝑛].

Clearly, if a censor  is maximally cooperative for  with respect to a sequence of queries  = ⟨𝑞1,… , 𝑞𝑛⟩, then, for each censor 
′ that contains  and 𝑖 ∈ [1, 𝑛], we have by monotonicity that cert( ∪, 𝑞𝑖) = cert( ∪′, 𝑞𝑖). Consequently, we will assume without 
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loss of generality that every censor  in Definition 6 is optimal, i.e., maximal w.r.t. set inclusion. Hereafter, we denote with OptCens()
the set of optimal censors, given a CQE instance  .

Definition 6 would be ineffective without the capacity to safeguard secrets; however, it is noteworthy that MC-CQE semantics do, 
in fact, ensure security, as defined in Definition 4. Preliminarily, we show that if an ABox is harmless (i.e.,  ∪ ∪ is consistent), 
then no MC-CQE semantics unnecessarily conceals a certain answer.

Proposition 1. Let cqe be an MC-CQE semantics. Then, for each CQE instance  = ⟨ , ,⟩ such that  ∪  ∪ is consistent and each 
sequence of queries  = ⟨𝑞1,… , 𝑞𝑛⟩, cqe(⟨ ,⟩, 𝑞𝑖) = cert( ∪, 𝑞𝑖), for all 𝑖 ∈ [1, 𝑛].

Proof. By Definition 6 we know that there exists a maximally cooperative censor  w.r.t.  such that cqe(⟨ ,⟩, 𝑞𝑖) = cert( ∪, 𝑞𝑖), 
for all 𝑖 ∈ [1, 𝑛]. Then the thesis directly derives from the fact that cl () is the only optimal censor and, by monotonicity, cert( ∪
cl (), 𝑞𝑖) = cert( ∪ , 𝑞𝑖). Consequently, it follows that cqe(⟨ ,⟩, 𝑞𝑖) = cert( ∪ cl (), 𝑞𝑖) = cert( ∪, 𝑞𝑖). ■

Then, the fact that every MC-CQE semantics ensures security directly derives from the observation that, by Definition 3,  ∪ ∪

is consistent for any censor  of  .

Corollary 1. Let cqe be an MC-CQE semantics, then cqe is a secure CQE semantics.

Finally, we say that a CQE semantics cqe is static when it can be designed as follows: given a CQE instance  , select an optimal 
censor  for  . Subsequently, for any query sequence , the semantics returns cqe( , 𝑞𝑖) = cert( ∪ , 𝑞𝑖) for all 𝑖 ∈ [1, 𝑛]. While a 
static CQE semantics is inherently secure by construction, it may not be maximally cooperative in general.

Example 4. Consider two static CQE semantics cqe𝑐1 and cqe𝑐2 and assume that on the CQE instance  = ⟨ , 𝐴⟩ of Example 2

cqe𝑐1( , 𝑞𝑖) = cert( ∪ 1, 𝑞𝑖) for all 𝑖 ∈ [1,3]

cqe𝑐2( , 𝑞𝑖) = cert( ∪ 2, 𝑞𝑖) for all 𝑖 ∈ [1,3]

Then, cqe𝑐1 behaves as 1 which we know from Example 3 to be maximally cooperative w.r.t.  but not w.r.t. ′. Conversely, cqe𝑐2
behaves as 2 which is maximally cooperative w.r.t. ′ but it is not w.r.t. . Therefore, according to Definition 6, neither cqe𝑐1 nor 
cqe𝑐2 are MC-CQE semantics. □

3.2. Decision problem associated with the framework

Given the general framework presented so far, we are now ready to define the recognition problem associated with the query 
answering problem under MC-CQE semantics. Formally, we define REC[,cqe,′] as the following decision problem, which is para

metric with respect to a DL language , an MC-CQE semantics cqe, and a query language ′:

Input: (𝑖) A state  = ⟨ ,⟩, where  = ⟨ , ,⟩ is an  CQE instance and  = ⟨𝑞1,… , 𝑞𝑛⟩ is a sequence of queries formulated 
in ′, and (𝑖𝑖) 𝜎 ∈𝔊𝑞𝑛
Question: Does 𝜎 ∈ cqe( , 𝑞𝑛)?

Obviously, if ′ is a query language involving only Boolean queries, then the problem makes sense only when 𝜎 is set to 𝜖.

As the ABox  of the CQE instance  is typically significantly larger than the other components, we are interested in the data 
complexity [20] version of the above problem, which is the complexity where only the ABox  is regarded as the input while all the 
other components are assumed to be fixed.

In the following sections, we analyze the data complexity of the above decision problem, focusing on the following query languages 
′: BUCQ, FullCQ, CQ, FullUCQ, and UCQ. Furthermore, we point out that all the upper bound results we will provide in this paper 
are with respect to the DL language  = DL-Lite, while all the lower bound results are shown already for empty TBoxes. Thus, to 
simplify the presentation, from now we simply write REC[cqe,′] to implicitly refer to REC[DL-Lite,cqe,′].

3.3. Comparison with other CQE semantics

We conclude this section by providing a comparison of MC-CQE semantics with other relevant CQE semantics from the literature. 
As in Example 4, a first strategy may consist in arbitrarily choosing an optimal censor among the ones for a CQE instance  [23,9,24]. 
However, as the following proposition shows, this way may lead to going against the longest-honeymoon approach.

Proposition 2. Let  = ⟨ , ,⟩ be a CQE instance such that |OptCens()| > 1 and let  ∈ OptCens(). Then, there exists a sequence 
for which  is not maximally cooperative with respect to .
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Proof. By assumption, OptCens() contains at least two optimal censors. Then, other than , there must exist another optimal censor 
′ for  . By definition, it follows that there is at least one ground atom 𝛼 ∈ ′ that is not contained in . Now, let  = ⟨𝑞⟩, where 
𝑞 = 𝛼. Since cert( ∪, 𝑞) ⊂ cert( ∪′, 𝑞), then ′ is more cooperative than  w.r.t. , and therefore  is not maximally cooperative 
w.r.t. . ■

Other two notable CQE semantics proposed in the literature are:

• skeptical reasoning [9,7], where the set of certain answers to a query 𝑞 with respect to a CQE instance  , denoted by cert𝖲𝖪( , 𝑞), 
is 
⋂

∈OptCens() cert( ∪ , 𝑞);
• its approximation, called 𝖨𝖦𝖠 semantics [12], under which the set of certain answers to a query 𝑞 with respect to a CQE instance 
 , denoted by cert𝖨𝖦𝖠( , 𝑞), is cert( ∪ 𝖨𝖦𝖠, 𝑞), where 𝖨𝖦𝖠 =

⋂
∈OptCens() .

The following example shows that skeptical reasoning is not a secure CQE semantics (see Definition 4).

Example 5. Let  = ⟨ , ,⟩ be a CQE instance where  = ∅ whereas  and  are defined as follows:

 = {∃𝑥 (𝐴(𝑥) ∧𝐵(𝑥))→ ⊥};

 = {𝐴(𝑎),𝐵(𝑎)}.

The optimal censors are 1 = {𝐴(𝑎)} and 2 = {𝐵(𝑎)}. Then, consider the sequence  = ⟨𝑞1, 𝑞2, 𝑞3⟩ of queries, where:

𝑞1 =𝐴(𝑎) ∨𝐵(𝑎);

𝑞2 =𝐴(𝑎);

𝑞3 =𝐵(𝑎).

We have that:

• The answer to the query 𝑞1 is true:

cert𝖲𝖪( , 𝑞1) = cert( ∪ 1, 𝑞1) ∩ cert( ∪ 2, 𝑞1) = {𝜖} ∩ {𝜖} = {𝜖}.

Therefore, the user knows that all censors satisfy 𝐴(𝑎) ∨𝐵(𝑎).
• The answer to the query 𝑞2 is false:

cert𝖲𝖪( , 𝑞2) = cert( ∪ 1, 𝑞2) ∩ cert( ∪ 2, 𝑞2) = {𝜖} ∩ ∅ = ∅.

Consequently, the user knows that there is at least one censor in which 𝐴(𝑎) does not hold, we call it Clue1.

• The answer to the query 𝑞3 is also false:

cert𝖲𝖪( , 𝑞3) = cert( ∪ 1, 𝑞3) ∩ cert( ∪ 2, 𝑞3) = ∅ ∩ {𝜖} = ∅.

Therefore, the user knows that there is at least one censor in which 𝐵(𝑎) does not hold, we call it Clue2.

So, thanks to the answer to 𝑞1 we know that in all censors 𝐴(𝑎) ∨𝐵(𝑎) must hold. In Clue1, there exists a censor  where 𝐴(𝑎) does 
not hold, but 𝐴(𝑎) ∨𝐵(𝑎) must hold. Therefore, 𝐵(𝑎) holds in . Vice versa, according to Clue2, there exists a censor ′ such that 𝐵(𝑎)
does not hold, but 𝐴(𝑎) ∨ 𝐵(𝑎) must hold. Therefore, 𝐴(𝑎) holds in ′. Since censors contain only facts that are entailed by  ∪, 
the secret ∃𝑥 (𝐴(𝑥) ∧𝐵(𝑥)) is unveiled.

Observe that, according to Definition 6, 1 is the only maximally cooperative censor for  . Therefore, under MC-CQE semantics, 
the first two queries evaluate to true, whereas the third query evaluates to false. □

The following proposition shows that both above CQE semantics turn out to be always a sound approximation of any MC-CQE 
semantics.

Proposition 3. Let  = ⟨ , ,⟩ be a CQE instance, let  be a non-empty sequence of queries, let 𝑞 ∈ , and let cqe be an MC-CQE 
semantics. Then, cert𝖨𝖦𝖠( , 𝑞) ⊆ cert𝖲𝖪( , 𝑞) ⊆ cqe(⟨ ,⟩, 𝑞). The inclusions in the other direction do not necessarily hold.

Proof. Suppose that 𝜎 ∈ cert𝖨𝖦𝖠( , 𝑞), i.e.,  ∪ 𝖨𝖦𝖠 ⊧ 𝜎(𝑞). By [12, Proposition 1], we already know that  ∪  ⊧ 𝜎(𝑞) for every 
 ∈ OptCens(), which means that 𝜎 ∈ cert𝖲𝖪( , 𝑞). Now, let  the censor for  that is maximally cooperative with respect to , i.e., 
such that cert( ∪, 𝑞𝑖) = cqe( , 𝑞𝑖) for all 𝑖 ∈ [1, 𝑛] (cf. Definition 6). Since  ∈ OptCens(), then we trivially have that cert𝖲𝖪( , 𝑞) ⊆
cert( ∪ , 𝑞𝑖).

As for the converse, consider the CQE instance  = ⟨ , ,⟩ and the sequence  = ⟨𝑞1, 𝑞2, 𝑞3⟩ of queries of Example 5. It is 
straightforward to verify that the censor 1 = {𝐴(𝑎)} is the only maximal cooperative censor for  with respect to . So, an MC-CQE 
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semantics cqe is such that cert( ∪1, 𝑞𝑖) = cqe( , 𝑞𝑖), for all 𝑞𝑖 ∈. So, with  = ⟨ ,⟩, we have that: cqe( , 𝑞1) = cert( ∪1, 𝑞1) =
cert𝖲𝖪( , 𝑞1), but we know from Example 5 that cqe( , 𝑞2) = cert( ∪1, 𝑞2) = {𝜖} whereas cert𝖲𝖪( , 𝑞2) = ∅, from which we have the 
thesis.

Finally, note that cert𝖨𝖦𝖠( ∪ 1, 𝑞1) = ∅ ⊂ {𝜖} = cert𝖲𝖪( ∪ 1, 𝑞1), i.e., the answers under the 𝖨𝖦𝖠 semantics are a strict subset 
of the ones under skeptical reasoning. ■

4. Dynamic CQE for Boolean queries

In this section, we show how the notion of MC-CQE semantics specializes in the case of Boolean queries.

Recall that, given an ontology  and a Boolean query 𝑞, then the entailment of 𝑞 is expressed in terms of certain answers as 
follows:

cert(, 𝑞) =

{
{𝜖} if  ⊧ 𝑞

∅ otherwise,

where 𝜖 is the empty substitution [18]. Consequently, the notion of cooperativeness in Definition 5 specializes to: given two censors 
1,2 for a CQE instance  = ⟨ , ,⟩, 2 is more cooperative than 1 with respect to a sequence of Boolean queries  = ⟨𝑞1,… , 𝑞𝑛⟩
if there exists a natural number 0 ≤𝑚< 𝑛 such that:

(i)  ∪ 1 ⊧ 𝑞𝑖 ⟺  ∪ 2 ⊧ 𝑞𝑖 for each 𝑖 ∈ [1,𝑚];
(ii)  ∪ 2 ⊧ 𝑞𝑚+1 and  ∪ 1 ̸⊧ 𝑞𝑚+1.

Similarly, Definition 6 can be reformulated as follows: a function cqe is an MC-CQE semantics if, for each protection state  =⟨ ,⟩, where  = ⟨𝑞1,… , 𝑞𝑛⟩ is a sequence of Boolean queries, there exists a maximally cooperative censor  for  with respect to 
 such that  ∪  ⊧ 𝑞𝑖 if and only if cqe( , 𝑞𝑖) = {𝜖}, for all 𝑖 ∈ [1, 𝑛].

We now provide an MC-CQE semantics, named 𝖽𝗒𝗇𝖢𝖰𝖤, which results in being unique, in the sense that any other MC-CQE 
semantics is equivalent to it in the case of Boolean queries.

First, we introduce for each Boolean query a preference relation over censors.

Definition 7. Let  = ⟨ , ,⟩ be a CQE instance and 𝑞 be a Boolean query, then the preference relation ⪯𝑞 is a weak order (i.e., a 
total and transitive relation) defined as follows: for each 1,2 ∈ Cens(),

1 ⪯𝑞 2 iff  ∪ 1 ⊧ 𝑞 implies  ∪ 2 ⊧ 𝑞 .

In particular, 1 and 2 are equivalent (1 ∼𝑞 2) just in the case they return the same answer to the query 𝑞. Conversely, if 
 ∪ 1 ̸⊧ 𝑞 whereas  ∪ 2 ⊧ 𝑞, this means that  ∪ ⊧ 𝑞 and 2 can safely and correctly answer 𝑞. Therefore, 2 is strictly more 
preferable than 1.

Definition 7 identifies a preference relation ⪯𝑞 for each Boolean query 𝑞, we use such a family of preferences to dynamically 
choose maximally cooperative optimal censors given a sequence  = ⟨𝑞1,… , 𝑞𝑛⟩ of Boolean queries. To this end, 𝑖 = ⟨𝑞1,… , 𝑞𝑖⟩, 
with 𝑖 ≤ 𝑛, denotes the subsequence of the first 𝑖 queries. Analogously, given a CQE instance  , 𝑖 refers to the state ⟨ ,𝑖⟩. Moreover, 
for the sake of readability, we also utilize in the following definition a fictitious state 0 = ⟨ , ⟨⟩⟩ as base case of induction.

Definition 8. Let  = ⟨ ,⟩ be a protection state, where  = ⟨ , ,⟩ is a CQE instance and  = ⟨𝑞1,… , 𝑞𝑛⟩ is a sequence of Boolean 
queries. The set StCens(𝑖) of censors of the state 𝑖, with 𝑖 ∈ [0, 𝑛], is inductively defined as follows:

• StCens(0) = OptCens();
• StCens(𝑖) = max⪯𝑞𝑖

StCens(𝑖−1).

Informally speaking, each set StCens(𝑖) (with 𝑖 ∈ [1, 𝑛]) in the above definition progressively selects the optimal censors for 
that maximize the preference relation ⪯𝑞𝑖

. Note that, being ⪯𝑞𝑖
a weak order, StCens(𝑖) may include multiple censors. However, all 

these censors are by construction mutually equivalent, in the sense that they provide the same answer to the query 𝑞𝑖 .
The following lemma shows that StCens() in Definition 8 coincides with Definition 3 in [14] (the conference version of the 

present paper).

Lemma 1. Let  = ⟨ , ,⟩ be a CQE instance, and let  = ⟨𝑞1,… , 𝑞𝑛⟩ (with 𝑛 ≥ 1) be a sequence of Boolean queries. Then, the set 
StCens(𝑖) of censors of 𝑖, with 𝑖∈ [0, 𝑛], in Definition 8 can be reformulated as follows:

• StCens(0) = OptCens()

• StCens(𝑖) =

{
StCens(𝑖−1) if { ∈ StCens(𝑖−1) ∣  ∪  ⊧ 𝑞𝑖} = ∅,
{ ∈ StCens(𝑖−1) ∣  ∪  ⊧ 𝑞𝑖} otherwise.
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Proof. The thesis directly derives from the fact that a censor  in StCens(𝑖−1) is maximal w.r.t. ⪯𝑞𝑖
iff  ∪  ⊧ 𝑞𝑖 or for all censors 

′ in StCens(𝑖−1),  ∪ ′ ̸⊧ 𝑞𝑖. ■

The next lemma states additional properties that will be subsequently used.

Lemma 2. Let  = ⟨ , ,⟩ be a CQE instance, and let  = ⟨𝑞1,… , 𝑞𝑛⟩ (with 𝑛 ≥ 1) be a sequence of Boolean queries. Then we have that, 
for all 𝑖 ∈ [1, 𝑛],

• StCens(𝑖−1) ⊇ StCens(𝑖) ⊃ ∅;

• for all 𝑗 ∈ [𝑖, 𝑛],  ∈ StCens(𝑖) and ′ ∈ StCens(𝑗 ),  ∪  ⊧ 𝑞𝑖 iff  ∪ ′ ⊧ 𝑞𝑖.

Proof. The first property is a direct consequence of Definition 8.

Based on Lemma 1, we know that either all censors in StCens(𝑖) satisfy 𝑞𝑖 or none of them do. As a result, the second property 
holds when 𝑖 = 𝑗, and it also holds when 𝑖 < 𝑗 due to the inclusion StCens(𝑗 ) ⊆ StCens(𝑖). ■

We are now ready to define our dynamic CQE semantics 𝖽𝗒𝗇𝖢𝖰𝖤 as follows.

Definition 9 (Dynamic CQE − 𝖽𝗒𝗇𝖢𝖰𝖤). Let  = ⟨ ,⟩ be a protection state, where  = ⟨ , ,⟩ is a CQE instance and  =⟨𝑞1,… , 𝑞𝑛⟩ (with 𝑛 ≥ 1) a sequence of Boolean queries. We define 𝖽𝗒𝗇𝖢𝖰𝖤( , 𝑞𝑖) = cert( ∪ , 𝑞𝑖), for every  ∈ StCens(). Then, 
EntQ() denotes the set of queries 𝑞𝑖 in  such that 𝖽𝗒𝗇𝖢𝖰𝖤( , 𝑞𝑖) = {𝜖}.

Example 6. Certain pharmaceutical products can accurately identify the specific disease afflicting an individual. For example, med

ications containing phenytoin or those categorized as anti-seizure drugs are indicative of epilepsy.

Let  = ⟨ , ,⟩ be a CQE instance, where:

 = {𝖠𝖻𝖼 ⊑ 𝖠𝗇𝗍𝗂𝗌𝖾𝗂𝗓𝗎𝗋𝖾};

 = {∃𝑥, 𝑦 (𝖻𝗎𝗒(𝑥, 𝑦) ∧𝖠𝗇𝗍𝗂𝗌𝖾𝗂𝗓𝗎𝗋𝖾(𝑦))→ ⊥,

∃𝑥, 𝑦 (𝖻𝗎𝗒(𝑥, 𝑦) ∧ 𝖼𝗈𝗇𝗍𝖺𝗂𝗇(𝑦,𝗉𝗁𝖾𝗇𝗒𝗍𝗈𝗂𝗇))→ ⊥};

 = {𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎),𝖠𝖻𝖼(𝗆𝑎),𝖻𝗎𝗒(𝖺𝗅𝗂𝖼𝖾,𝗆𝑏), 𝖼𝗈𝗇𝗍𝖺𝗂𝗇(𝗆𝑏,𝗉𝗁𝖾𝗇𝗒𝗍𝗈𝗂𝗇)}.

In words, the TBox states that 𝖠𝖻𝖼 is an anti-seizure medication, while the policy conceals the presence of patients suffering from 
epilepsy.

Let us start by considering an empty sequence of BCQs. By definition, we have that StCens(⟨ , ⟨⟩⟩) coincides with the set of the 
optimal censors for  (i.e., its ⊆-maximal censors). Note that -- in this example -- cl () is a finite set of ground atoms, therefore the 
optimal censors are finitely many; the reader may verify that OptCens() consists of the following sets:

1 = {𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎),𝖻𝗎𝗒(𝖺𝗅𝗂𝖼𝖾,𝗆𝑏)};

2 = {𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎), 𝖼𝗈𝗇𝗍𝖺𝗂𝗇(𝗆𝑏,𝗉𝗁𝖾𝗇𝗒𝗍𝗈𝗂𝗇)};

3 = {𝖠𝖻𝖼(𝗆𝑎),𝖠𝗇𝗍𝗂𝗌𝖾𝗂𝗓𝗎𝗋𝖾(𝗆𝑎),𝖻𝗎𝗒(𝖺𝗅𝗂𝖼𝖾,𝗆𝑏)};

4 = {𝖠𝖻𝖼(𝗆𝑎),𝖠𝗇𝗍𝗂𝗌𝖾𝗂𝗓𝗎𝗋𝖾(𝗆𝑎), 𝖼𝗈𝗇𝗍𝖺𝗂𝗇(𝗆𝑏,𝗉𝗁𝖾𝗇𝗒𝗍𝗈𝗂𝗇)}.

Let 𝑞1 = 𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎) be the first query. The censors 1 and 2 agree with answering {𝜖} to this query. All the censors that 
disagree with such an answer are then removed, obtaining StCens(⟨ , ⟨𝑞1⟩⟩) = { ∈ StCens(⟨ , ⟨⟩⟩) ∣  ∪  ⊧ 𝑞1} = {1,2}. Then, let 
𝑞2 = 𝖠𝖻𝖼(𝗆𝑎) be a new query in the sequence. Since neither  ∪1 nor  ∪2 entail 𝑞2, then StCens(⟨ , ⟨𝑞1, 𝑞2⟩⟩) = StCens(⟨ , ⟨𝑞1⟩⟩). 
Now, consider adding 𝑞3 = ∃𝑥 𝖻𝗎𝗒(𝑥,𝗆𝑏) to the sequence. Since  ∪ 1 ⊧ 𝑞3 while  ∪ 2 ̸⊧ 𝑞3, we have StCens() = {1}, where 
 = ⟨ ,⟩ with  = ⟨𝑞1, 𝑞2, 𝑞3⟩. Clearly, we have that 𝖽𝗒𝗇𝖢𝖰𝖤( , 𝑞1) = 𝖽𝗒𝗇𝖢𝖰𝖤( , 𝑞3) = {𝜖} while 𝖽𝗒𝗇𝖢𝖰𝖤( , 𝑞2) = ∅. □

We now show that the notion of secure and maximally cooperative semantics reduces to 𝖽𝗒𝗇𝖢𝖰𝖤 when we restrict to Boolean 
queries. First, the following intermediate result shows that a state of a CQE instance cannot discriminate between two optimal censors 
if they have answered all the queries posed so far in the same way.

Lemma 3. Let  = ⟨ , ,⟩ be a CQE instance,  = ⟨𝑞1,… , 𝑞𝑛⟩ (with 𝑛 ≥ 1) be a sequence of Boolean queries, and  and ′ be two 
optimal censors for  such that  ∪  ⊧ 𝑞𝑖 ⟺  ∪ ′ ⊧ 𝑞𝑖, for all 𝑖 ∈ [1, 𝑛]. Then,  ∈ StCens(⟨ ,⟩) iff ′ ∈ StCens(⟨ ,⟩).
Proof. The proof is by induction on the length of .

Case 𝑛 = 1. By construction StCens(⟨ ,⟩) = max⪯𝑞1
OptCens(). Then, since  ∼𝑞1

′, by Definition 8 we have the thesis.

Artiϧcial Intelligence 348 (2025) 104402 

10 



P. Bonatti, G. Cima, D. Lembo et al. 

Case 𝑛 > 1. By assumption, we have that  ∪  ⊧ 𝑞𝑖 iff  ∪ ′ ⊧ 𝑞𝑖, for all 𝑖 ∈ [1, 𝑛− 1], and  ∪  ⊧ 𝑞𝑛 iff  ∪ ′ ⊧ 𝑞𝑛. Then, by the 
inductive hypothesis,  ∈ StCens(⟨ ,′⟩) iff ′ ∈ StCens(⟨ ,′⟩), with ′ = ⟨𝑞1,… , 𝑞𝑛−1⟩. Moreover, since  ∼𝑞𝑛

′, by Definition 8
we have the thesis. ■

Secondly, we prove that for every CQE instance  and every sequence of Boolean queries , the set StCens(⟨ ,⟩) contains all 
and only the optimal censors for  that are maximally cooperative with respect to .

Lemma 4. Let  = ⟨ , ,⟩ be a CQE instance, and = ⟨𝑞1,… , 𝑞𝑛⟩ (with 𝑛 ≥ 1) be a sequence of Boolean queries. An optimal censor 
for  is maximally cooperative with respect to  iff  ∈ StCens(⟨ ,⟩).
Proof. We start by showing that every  ∈ StCens(⟨ ,⟩) is maximally cooperative with respect to . Assume that, for some  ∈
StCens(⟨ ,⟩), there exists a more cooperative censor ′. This means that, for some 𝑚 ∈ [0, 𝑛− 1], (𝑖)  ∪  ⊧ 𝑞𝑖 ⟺  ∪ ′ ⊧ 𝑞𝑖, for 
each 𝑖 ≤𝑚, and (𝑖𝑖)  ∪  ̸⊧ 𝑞𝑚+1 and  ∪ ′ ⊧ 𝑞𝑚+1, i.e.,  ≺𝑞𝑚+1

′.
By assumption  ∈ StCens(𝑛), which means by Lemma 2 that  occurs also in StCens(𝑚) and StCens(𝑚+1). From  ∈ StCens(𝑚), 

condition (𝑖), and Lemma 3, we have that ′ belongs to StCens(𝑚) too. Then, from (𝑖𝑖) and Definition 8,  is not in StCens(𝑚+1), a 
contradiction.

Conversely, assume that an optimal censor  for  is maximally cooperative w.r.t. , then we show that  ∈ StCens(⟨ ,⟩). For 
the sake of contradiction, assume that  ∉ StCens(⟨ ,⟩). So, there exists in  = ⟨𝑞1,… , 𝑞𝑛⟩ a query 𝑞𝑖 such that  ∈ StCens(𝑖−1) ⧵
StCens(𝑖), with 𝑖 = ⟨ , ⟨𝑞1, ..., 𝑞𝑖⟩⟩. Hence,  ∪  ̸⊧ 𝑞𝑖 and there exists a censor ′ ∈ StCens(𝑖) such that  ∪ ′ ⊧ 𝑞𝑖 and  ∪ ′ ⊧
𝑞𝑗 ⟺  ∪  ⊧ 𝑞𝑗 for every 𝑗 ∈ [1, 𝑖− 1]. This means that ′ is more cooperative than  w.r.t. , a contradiction. ■

Finally, the following proposition shows that, when  is a sequence of Boolean queries, any MC-CQE semantics is equivalent to 
𝖽𝗒𝗇𝖢𝖰𝖤.

Proposition 4. Let cqe be an MC-CQE semantics, then for every protection state  = ⟨ ,⟩, where  is a CQE instance and = ⟨𝑞1,… , 𝑞𝑛⟩
is a non-empty sequence of Boolean queries, we have that cqe( , 𝑞𝑖) = {𝜖} iff 𝖽𝗒𝗇𝖢𝖰𝖤( , 𝑞𝑖) = {𝜖} for every 𝑖∈ [1, 𝑛].

Proof. The thesis derives from the following equivalences: cqe( , 𝑞𝑖) = {𝜖} iff there exists a maximally cooperative censor  for 
w.r.t.  such that  ∪  ⊧ 𝑞𝑖 (by definition) iff  ∈ StCens() (by Lemma 4). Then, since all optimal censors in StCens() agree on 𝑞𝑖, 
by Definition 9, we have the thesis. ■

5. BUCQ evaluation under 𝗱𝘆𝗻𝗖𝗤𝗘 semantics in DL-Lite

In this section, we characterize the precise data complexity of the decision problem REC[𝖽𝗒𝗇𝖢𝖰𝖤,BUCQ]. Observe that, due to 
Proposition 4, REC[𝖽𝗒𝗇𝖢𝖰𝖤,BUCQ] is equivalent to the decision problem REC[cqe,BUCQ], for any MC-CQE semantics cqe.

In our discussion about the complexity of BUCQ entailment, we will make extensive use of the algorithm PerfectRef presented 
in [19], which takes as input a UCQ 𝑞 and a DL-Lite TBox  and computes a UCQ 𝑞𝑟 that is the perfect reformulation of 𝑞 with 
respect to  . This is stated in the following proposition from [19].

Proposition 5. Let  =  ∪  be a consistent DL-Lite ontology, let 𝑞 be a UCQ, and let 𝜎 be an answer to 𝑞, i.e., 𝜎 ∈ 𝔊𝑞 . Then, 
𝜎 ∈ cert(, 𝑞) if and only if 𝜎(PerfectRef (𝑞, )) evaluates to true in .

The next proposition follows from the definition of satisfaction of a denial and from Proposition 5. We recall that 𝑞() is the BUCQ ⋁
𝑞→⊥∈ 𝑞, and we observe that PerfectRef (𝑞(), ) is a BUCQ as well.

Proposition 6. Let  ∪  be a consistent DL-Lite ontology and let  be a policy. Then,  ∪  ∪  is a consistent FO theory iff 
PerfectRef (𝑞(), ) evaluates to false in .

We are now ready to examine the problem of BUCQ entailment under 𝖽𝗒𝗇𝖢𝖰𝖤. A first approach to face it might consist in finding a 
reduction to the stateless CQE approach, for which algorithms are already known. It turns out, however, that the behavior of 𝖽𝗒𝗇𝖢𝖰𝖤
cannot be intensionally simulated by a stateless CQE approach, independent of query history.

We show that, given a DL-Lite CQE specification ⟨ ,⟩ and a sequence of BUCQs , in general it is not possible to find a DL-Lite
CQE specification ⟨ ′, ′⟩ that fully captures the semantics of the secure state ⟨⟨ , ,⟩,⟩ for every ABox  (i.e., independently 
from the data).

Proposition 7. There exist a DL-LiteCQE specification ⟨ ,⟩ and a BCQ 𝑞 such that there exists no DL-Lite CQE specification ⟨ ′, ′⟩
such that, for every ABox , OptCens(⟨ ′, ′,⟩) = StCens(), where  = ⟨⟨ , ,⟩, ⟨𝑞⟩⟩.
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Proof. Let  = ∅, let  = {𝐶(𝑥) ∧𝐷(𝑥)→ ⊥}, and let 𝑞 = ∃𝑥 𝐶(𝑥). Suppose that there exist a DL-Lite TBox  ′ and a policy  ′ such 
that, for every ABox , OptCens(⟨ ′, ′,⟩) = StCens(), where  = ⟨⟨ , ,⟩, ⟨𝑞⟩⟩.

Now consider the ABox  = {𝐶(𝑎1),𝐶(𝑎2),𝐷(𝑎1),𝐷(𝑎2)}, where 𝑎1, 𝑎2 are individual names that do not appear in  ′ . The optimal 
censors for ⟨ , ,⟩ are 1 = {𝐶(𝑎1),𝐶(𝑎2)}, 2 = {𝐶(𝑎1),𝐷(𝑎2)}, 3 = {𝐷(𝑎1),𝐶(𝑎2)}, 4 = {𝐷(𝑎1),𝐷(𝑎2)}. Among such optimal 
censors, only 4 does not satisfy 𝑞. Therefore, StCens() = {1,2,3}. Since by hypothesis StCens() = OptCens(⟨ ′, ′,⟩), it follows 
that  ′ ∪ ′ ∪4 is inconsistent and  ′ ∪ ′ ∪3 is consistent. Consequently, by Proposition 6, PerfectRef (𝑞( ′), ′) evaluates to true 
in 4 and evaluates to false in 3.

On the other hand, it is immediate to see that, for every BUCQ 𝑞 that does not mention individual names in , 𝑞 evaluates to true 
in 4 only if 𝑞 evaluates to true in 3. Consequently, since by construction  does not include any individual name occurring in  ′, 
PerfectRef (𝑞( ′), ′) evaluates to true in 4 only if PerfectRef (𝑞( ′), ′) evaluates to true in 3. A contradiction. ■

Moreover, we prove that, given a DL-Lite CQE specification ⟨ ,⟩ and a sequence of BUCQs , in general it is not possible 
to find a DL-Lite CQE specification ⟨ ′, ′⟩ that, for every ABox , fully captures the 𝖽𝗒𝗇𝖢𝖰𝖤 semantics over the secure state ⟨⟨ , ,⟩,⟩ by skeptically reasoning over the optimal censors for ⟨ ′, ′,⟩.
Proposition 8. There exist a DL-Lite CQE specification ⟨ ,⟩ and a BCQ 𝑞 such that there exists no DL-Lite CQE specification ⟨ ′, ′⟩
such that, for every ABox  and for every BUCQ 𝑞′,  ′ ∪  ⊧ 𝑞′ for every  ∈ OptCens(⟨ ′, ′,⟩) iff 𝖽𝗒𝗇𝖢𝖰𝖤( , 𝑞′) = {𝜖}, where 
 = ⟨⟨ , ,⟩, ⟨𝑞, 𝑞′⟩⟩.
Proof. We consider  ,  , and 𝑞 as in the proof of Proposition 7. Suppose there exist a DL-Lite TBox  ′ and a policy  ′ such that, 
for every ABox  and for every BUCQ 𝑞′,  ∪  ⊧ 𝑞′ for every  ∈ OptCens(⟨ ′, ′,⟩) iff  ∪  ⊧ 𝑞′ for every  ∈ StCens(). Now 
let , 1, 2, 3, and 4 be as in the proof of Proposition 7. First, observe that the ground BUCQ corresponding to the set of optimal 
censors StCens() must be entailed by every  ∈ OptCens(⟨ ′, ′,⟩), while no BUCQ more specific than this should be entailed. 
Consequently, there must exist a bijection between StCens() and the projection on the predicates 𝐶 and 𝐷 of OptCens(⟨ ′, ′,⟩). 
This implies that there must exist an optimal censor ′

3 of ⟨ ′, ′,⟩ whose projection on the predicates 𝐶 and 𝐷 coincides with 3. 
Moreover,  ′ ∪ ′ ∪4 must be inconsistent (otherwise, there would be an optimal censor for ⟨ ′, ′,⟩ containing 4, contradicting 
the existence of the above bijection). But again, as explained in the proof of Proposition 7, if  ′ ∪  ′ ∪ 4 is inconsistent, then 
 ′ ∪  ′ ∪ 3 (and hence  ′ ∪  ′ ∪ ′

3) is also inconsistent because  ′ does not mention the individual names occurring in . 
Consequently, the above bijection cannot exist, thus proving the thesis. ■

In the remainder of this section, we study the complexity of REC[𝖽𝗒𝗇𝖢𝖰𝖤,BUCQ]. We start by showing a fundamental property 
of 𝖽𝗒𝗇𝖢𝖰𝖤 query entailment, which holds for all DLs.

Proposition 9. Let  = ⟨ , ,⟩ be a CQE instance, = ⟨𝑞1,… , 𝑞𝑛⟩ be a sequence of BUCQs, and let  = ⟨ ,⟩. For every 𝑖∈ [1, 𝑛], we 
have that 𝑞𝑖 ∈ EntQ() iff there exists a censor  for  such that

 ∪  ⊧
( ⋀

𝑞∈EntQ(𝑖−1)
𝑞
)
∧ 𝑞𝑖

where we set EntQ(0) = ∅.

Proof. (⇐:) Suppose there exists a censor  for  such that  ∪  ⊧ (
⋀

𝑞∈EntQ(𝑖−1) 𝑞) ∧ 𝑞𝑖. Then it follows immediately that there 
exists an optimal censor ′ for  such that ′ ⊇ , consequently  ∪ ′ ⊧ (

⋀
𝑞∈EntQ(𝑖−1) 𝑞) ∧ 𝑞𝑖. Hence, by Lemma 1 we have that 

′ ∈ StCens(⟨ , ⟨𝑞1,… , 𝑞𝑖⟩⟩), which implies 𝑞𝑖 ∈ EntQ().
(⇒:) Suppose 𝑞𝑖 ∈ EntQ(). Now, let ′ be an optimal censor for  such that ′ ∈ StCens(). We have that  ∪′ ⊧ 𝑞 for every 𝑞 ∈

EntQ(), and since 𝑞𝑖 ∈ EntQ() and EntQ(𝑖−1) ⊆ EntQ(), it follows that  ∪ ′ ⊧ (
⋀

𝑞∈EntQ(𝑖−1) 𝑞) ∧ 𝑞𝑖, thus proving the thesis. ■

We are now ready to prove the next result.

Proposition 10. Let  = ⟨ , ,⟩ be a DL-Lite CQE instance and  = ⟨𝑞1,… , 𝑞𝑛⟩ (with 𝑛 ≥ 0) be a sequence of BUCQs. For every 
𝑖 ∈ [1, 𝑛], we have that 𝑞𝑖 ∈ EntQ() iff there exists an image I of PerfectRef ((

⋀
𝑞∈EntQ(𝑖−1) 𝑞)∧𝑞𝑖, ) in cl () such that PerfectRef (𝑞(), )

evaluates to false in I.

Proof. First note that, from the definition of censor for a CQE instance and the definition of image of a BUCQ 𝑞 it straightforwardly 
follows that there exists a censor  for  such that  ∪  ⊧ 𝑞 iff there exists an image I of 𝑞 in cl () with respect to  such that 
 ∪ ∪ I is consistent.

By Proposition 5, Proposition 6 and from what above, it follows that there exists a censor  for  such that  ∪ ⊧ 𝑞 iff there exists 
an image I of PerfectRef (𝑞, ) in cl () such that PerfectRef (𝑞(), ) evaluates to false in I. This property, along with Proposition 9, 
immediately implies the thesis. ■
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Now observe that: (𝑖) cl () can be computed in PTime in data complexity; (𝑖𝑖) every image of a BUCQ 𝑞 has a size that is not 
larger than the length of the longest BCQ in 𝑞; (𝑖𝑖𝑖) such a maximum length is a constant in data complexity; (𝑖𝑣) all the conditions 
in the proposition can be verified in PTime in data complexity [19]. This implies that REC[𝖽𝗒𝗇𝖢𝖰𝖤,BUCQ] is in PTime in data 
complexity.

In the following, we provide a tighter upper bound, showing that this entailment problem is in AC0 in data complexity. We do 
so by proving that the problem is FO rewritable. In fact, given a DL-Lite CQE specification ⟨ ,⟩ and a sequence  = ⟨𝑞1,… , 𝑞𝑛⟩
of BUCQs, every query 𝑞𝑖 in  can be translated into an FO sentence 𝑞′𝑖 such that, for all ABoxes , 𝑞′𝑖 evaluates to true in  iff 
𝑞𝑖 ∈ EntQ(), where  = ⟨⟨ , ,⟩,⟩.

To this purpose, we will find an FO query that depends on the intensional part of the state, i.e., the TBox, the policy, and the 
sequence of queries, and such that its evaluation on the ABox is true if and only if the condition expressed in Proposition 10 holds 
(Proposition 13). Towards this result, we will make the following two intermediate steps:

• first (Proposition 11), given a query 𝑞 on a DL-Lite CQE specification ⟨ ,⟩, we will find a query whose evaluation on cl ()
corresponds to checking the existence of an optimal censor  for the CQE instance ⟨ , ,⟩ such that  ∪  ⊧ 𝑞;

• then (Corollary 2), we will find an FO query such that its evaluation on cl () is true if and only if the condition expressed in 
Proposition 10 holds.

Given two BCQs 𝑞 and 𝑞′, a mapping of 𝑞′ into 𝑞 is a function ℎ ∶ Atoms(𝑞′)→ Atoms(𝑞) such that there exists a substitution 𝜎ℎ such 
that (i) 𝜎ℎ(𝛼) = 𝜎ℎ(ℎ(𝛼)) for every atom 𝛼 ∈ Atoms(𝑞′); (ii) 𝜎ℎ replaces variables occurring either in 𝑞′ or in 𝑞 with either variables of 
𝑞 or constants. Hereafter, we assume that 𝜎ℎ is the most general substitution such that (i) and (ii) hold, and we denote by Map(𝑞′, 𝑞)
the set of all mappings of 𝑞′ into 𝑞.

Furthermore, we denote by 𝜎ℎ[𝑞] the restriction of 𝜎ℎ that replaces only the variables of 𝑞. For example, if 𝑞 = ∃𝑥, 𝑦, 𝑧 (𝐶(𝑥) ∧
𝑅(𝑦, 𝑧)) and 𝑞′ = ∃𝑥′ (𝐶(𝑥′) ∧𝑅(𝑥′, 𝑎)) (where 𝑎 is a constant and all other terms are variables), then 𝜎ℎ = {𝑥′← 𝑥, 𝑦← 𝑥, 𝑧← 𝑎} and 
𝜎ℎ[𝑞] = {𝑦← 𝑥, 𝑧← 𝑎}.

Given two BCQs 𝑞 and 𝑞′, we denote by Unify(𝑞′, 𝑞) the formula:⋁
ℎ∈Map(𝑞′ ,𝑞)

( ⋀
𝑥←𝑡 ∈𝜎ℎ[𝑞]

𝑥 = 𝑡
)

Definition 10 (BraveRef ). Given a BUCQ 𝑞, a DL-Lite TBox  and a policy  , we define BraveRef (𝑞, ,) as the FO sentence:⋁
𝑞𝑟∈PerfectRef (𝑞, )

∃𝑥⃗𝑟
(

conj𝑟(𝑥⃗𝑟) ∧
( ⋀

𝑞𝑑∈PerfectRef (𝑞(), )
¬Unify(𝑞𝑑 , 𝑞𝑟)

))
(where we assume 𝑞𝑟 = ∃𝑥⃗𝑟 (conj𝑟(𝑥⃗𝑟))).

Example 7. Consider the DL-Lite CQE instance  = ⟨ , ,⟩ and the query sequence  = ⟨𝑞1, 𝑞2, 𝑞3⟩ of Example 6. We show the 
output of BraveRef for the BCQs 𝑞′ = 𝑞1 ∧ 𝑞2 and 𝑞′′ = 𝑞1 ∧ 𝑞3, which will be useful later on.

We first point out that, for the given TBox  , PerfectRef has no impact on 𝑞′ or 𝑞′′ (i.e., PerfectRef (𝑞′, ) = 𝑞′ and PerfectRef (𝑞′′, ) =
𝑞′′), implying that their rewriting formulas will have only one disjunct. Moreover, we have that:

PerfectRef (𝑞(), ) =∃𝑥, 𝑦 (𝖻𝗎𝗒(𝑥, 𝑦) ∧𝖠𝗇𝗍𝗂𝗌𝖾𝗂𝗓𝗎𝗋𝖾(𝑦)) ∨

∃𝑥, 𝑦 (𝖻𝗎𝗒(𝑥, 𝑦) ∧ 𝖼𝗈𝗇𝗍𝖺𝗂𝗇(𝑦,𝗉𝗁𝖾𝗇𝗒𝗍𝗈𝗂𝗇)) ∨

∃𝑥, 𝑦 (𝖻𝗎𝗒(𝑥, 𝑦) ∧𝖠𝖻𝖼(𝑦)).

Now, according to the definition of BraveRef , we have to consider Unify(𝑞𝑑 , 𝑞′), where 𝑞𝑑 is any query in PerfectRef (𝑞(), ). For 
this, we consider all mappings ℎ in Map(𝑞𝑑 , 𝑞′), and the only resulting unifier 𝜎ℎ is {𝑥← 𝗃𝗈𝗁𝗇, 𝑦← 𝗆𝑎}. However, the restriction 
𝜎ℎ[𝑞′] is empty since 𝑞1 and 𝑞2 are ground, so Unify(𝑞𝑑 , 𝑞′) is an empty conjunction, i.e., 𝑡𝑟𝑢𝑒. Hence:

BraveRef (𝑞′, ,) = 𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎) ∧𝖠𝖻𝖼(𝗆𝑎) ∧ ¬𝑡𝑟𝑢𝑒.

Obviously, the above BCQ evaluates to false on any given ABox. Note that there does not exist any optimal censor  for  (actually, 
for any CQE instance ⟨ , ,′⟩) such that  ∪  ⊧ 𝑞′.

On the other hand, 𝑞′′ alone does not unify with any body of any (rewritten) denial. We hence have that:

BraveRef (𝑞′′, ,) = 𝑞′′ = ∃𝑥 (𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎) ∧ 𝖻𝗎𝗒(𝑥,𝗆𝑏)).

One can see that this last BCQ evaluates to true in . As we are going to show, it is not a coincidence that there exists an optimal 
censor for  (in particular, the censor 1) which, together with  , entails 𝑞′′. □

Example 7 illustrates how BraveRef can be used to verify the existence of an optimal censor for a given CQE instance that entails 
a specific BUCQ. To formally prove that this holds in general, we first demonstrate the following property of Unify.
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Lemma 5. Let 𝑞 = ∃𝑥⃗ conj(𝑥⃗) be a BCQ, 𝑞′ be a BUCQ, and  be an ABox. There exists an image I of 𝑞 in  such that 𝑞′ evaluates to false 
in I iff the following sentence evaluates to true in :

∃𝑥⃗
(

conj(𝑥⃗) ∧
⋀
𝑞𝑑∈𝑞′

¬Unify(𝑞𝑑 , 𝑞)
)
.

Proof. We show that, if 𝑞′ = ∃𝑦 conj ′(𝑦) is a BCQ, then there exists an image I of 𝑞 in  such that 𝑞′ evaluates to false in I iff 
∃𝑥⃗ (conj(𝑥⃗) ∧¬Unify(𝑞′, 𝑞)) evaluates to true in . The extension to BUCQs is a direct consequence. Moreover, we assume w.l.o.g. that 
𝑥⃗ and 𝑦 are disjoint.

(⇒:) Let I be an image of 𝑞 in  such that 𝑞′ evaluates to false in I, then there exists an answer substitution 𝜎I of the variables 
in 𝑥⃗ such that I = Atoms(𝜎I(𝑞)), which also implies that 𝜎I (conj(𝑥⃗)) evaluates to true in . It remains to show that 𝜎I (Unify(𝑞′, 𝑞))
evaluates to false in . By contradiction, assume ℎ to be a mapping from 𝑞′ to 𝑞 such that 𝜎I(

⋀
𝑥←𝑡 ∈𝜎ℎ[𝑞] 𝑥 = 𝑡) evaluates to true in 

. This implies that 𝜎I is a specialization of 𝜎ℎ[𝑞], i.e., 𝜎I ◦ 𝜎ℎ[𝑞] = 𝜎I . Then, for each atom 𝛽 ∈ Atoms(𝑞′), we have by construction 
that

[𝜎I ◦ 𝜎ℎ](𝛽) = 𝜎I(𝜎ℎ(𝛽)) = 𝜎I(𝜎ℎ(ℎ(𝛽))) = [𝜎I ◦ 𝜎ℎ[𝑞]](ℎ(𝛽)) = 𝜎I(ℎ(𝛽)).

Since ℎ(𝛽) is an atom in 𝑞 and I is equal to Atoms(𝜎I(𝑞)), [𝜎I ◦ 𝜎ℎ](𝛽) occurs in I, for each 𝛽 ∈ Atoms(𝑞′). But this means that 𝑞′
evaluates to true in I, against the hypothesis.

(⇐:) Assume that ∃𝑥⃗
(
conj(𝑥⃗) ∧ ¬Unify(𝑞′, 𝑞)

)
evaluates to true in . This means that there exists an answer 𝜎 to 𝑞 such that (𝑖)

Atoms(𝜎(𝑞)) ⊆ , and (𝑖𝑖) 𝜎(Unify(𝑞′, 𝑞)) evaluates to false in . Let I = Atoms(𝜎(𝑞)). From (𝑖) we know that I is an image of 𝑞 in 
. Then, assume by contradiction that 𝑞′ evaluates to true in I. This means that, for some answer 𝜎′ to 𝑞′, Atoms(𝜎′(𝑞′)) ⊆ I. From 
Atoms(𝜎′(𝑞′)) ⊆ I we know that there exists a mapping ℎ of 𝑞′ into 𝑞 such that, for every 𝛽 ∈ Atoms(𝑞′), 𝜎′(𝛽) = 𝜎(ℎ(𝛽)). Therefore, 
the corresponding MGU 𝜎ℎ generalizes both 𝜎 and 𝜎′ when restricted, respectively, to the variables 𝑥⃗ and 𝑦. In other words, there 
exists a ground substitution 𝜎′′ such that:

• 𝜎(𝑥) = [𝜎′′ ◦ 𝜎ℎ](𝑥) for every 𝑥 occurring in 𝑥⃗;

• 𝜎′(𝑦) = [𝜎′′ ◦ 𝜎ℎ](𝑦) for every 𝑦 occurring in 𝑦;

However, this is possible only if, for every {𝑥← 𝑡} ⊆ 𝜎ℎ[𝑞], it holds that 𝜎(𝑥) = 𝜎′′(𝜎ℎ(𝑥)) = 𝜎′′(𝑡) = 𝜎′′(𝜎ℎ(𝑡)) = 𝜎(𝑡),2 i.e., the sentence 
𝜎(𝑥 = 𝑡) is valid. This implies that 𝜎(Unify(𝑞′, 𝑞)) contains at least one valid disjunct and, consequently, that it evaluates to true in , 
thus contradicting point (𝑖𝑖). ■

We use the above lemma to establish the fundamental property of the above query reformulation function BraveRef .

Proposition 11. Let ⟨ ,⟩ be a DL-Lite CQE specification and let 𝑞 be a BUCQ. For every ABox , there exists an optimal censor  for ⟨ , ,⟩ such that  ∪  ⊧ 𝑞 iff BraveRef (𝑞, ,) evaluates to true in cl ().

Proof. Let us call  = ⟨ , ,⟩. First, from Proposition 5 it follows that there exists an optimal censor  for  such that  ∪  ⊧ 𝑞

iff there exists an optimal censor  for  such that PerfectRef (𝑞, ) evaluates to true in .

Now, since  ⊆ cl (), and since every subset ′ of cl () such that  ∪ ∪′ is consistent is contained in some optimal censor 
for  , it follows that there exists an optimal censor  for  such that PerfectRef (𝑞, ) evaluates to true in  iff there exists an image 
𝐼 of PerfectRef (𝑞, ) in cl () such that  ∪ ∪ 𝐼 is consistent. Now, by Proposition 6,  ∪ ∪ 𝐼 is consistent iff PerfectRef (𝑞(), )
evaluates to false in 𝐼 . Consequently, Lemma 5 implies the thesis. ■

Then, we use BraveRef to define the new query reformulation function StateRef as follows.

Definition 11 (StateRef ). Let  = ⟨ , ,⟩ be a DL-Lite CQE instance,  = ⟨𝑞1,… , 𝑞𝑛⟩ (with 𝑛 ≥ 0) be a sequence of BUCQs, let 𝑖
be such that 𝑖 ∈ [1, 𝑛], and let 𝐼 ⊆ {1,… , 𝑖 − 1}: 𝐼 represents a set of indexes of the queries that precede query 𝑞𝑖 in  and that are 
assumed to be true in the state  = ⟨ ,⟩. We define StateRef ( , 𝑖, 𝐼) as the FO sentence:( ⋀

𝑗∈[1,𝑖−1]
∧ 𝑗∉𝐼

¬BraveRef
(
(

⋀
𝓁∈𝐼 ∧ 𝓁<𝑗

𝑞𝓁) ∧ 𝑞𝑗 , ,
))

∧ BraveRef
(
(
⋀
𝓁∈𝐼

𝑞𝓁) ∧ 𝑞𝑖, ,
)

Example 8. Consider the DL-Lite CQE instance  = ⟨ , ,⟩ and the query sequence = ⟨𝑞1, 𝑞2, 𝑞3⟩ introduced in Example 6, and 
recall the reformulations illustrated in Example 7. By setting 𝑖 = 3 and 𝐼 = {1}, we have:

2 In particular, 𝜎′′(𝑡) = 𝜎′′(𝜎ℎ(𝑡)) holds because 𝜎ℎ(𝑡) = 𝑡, since the MGU 𝜎ℎ is idempotent.
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StateRef ( , 𝑖, 𝐼) =¬BraveRef (𝑞1 ∧ 𝑞2, ,) ∧ BraveRef (𝑞1 ∧ 𝑞3, ,)

=¬(𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎) ∧𝖠𝖻𝖼(𝗆𝑎) ∧ ¬true)∧

∃𝑥 (𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎) ∧ 𝖻𝗎𝗒(𝑥,𝗆𝑏)). □

The function StateRef is characterized by the following lemma.

Lemma 6. Let  = ⟨ , ,⟩ be a DL-Lite CQE instance, let  = ⟨𝑞1,… , 𝑞𝑛⟩ be a sequence of BUCQs, let  = ⟨ ,⟩, let 𝑖 be such that 
𝑖 ∈ [1, 𝑛], and let 𝐼 ⊆ {1,… , 𝑖− 1}. Then, the FO sentence StateRef ( , 𝑖, 𝐼) evaluates to true in cl () iff the following two conditions hold:

• 𝑞𝑖 ∈ EntQ() and

• for each 𝑗 ∈ [1, 𝑖− 1], 𝑞𝑗 ∈ EntQ() iff 𝑗 ∈ 𝐼

Proof. (⇐∶) First, suppose that StateRef ( , 𝑖, 𝐼) evaluates to false in cl (). We have two cases:

(i) The sentence BraveRef ((
⋀

𝓁∈𝐼 𝑞𝓁)∧𝑞𝑖, ,) (i.e., the last conjunct of StateRef ( , 𝑖, 𝐼)) evaluates to false in cl (). Then, Proposi

tion 11 implies that there exists no optimal censor  for  such that  ∪ ⊧ (
⋀

𝓁∈𝐼 𝑞𝓁)∧𝑞𝑖, which implies that either 𝑞𝑖 ∉ EntQ()
or there exists 𝑗 ∈ 𝐼 such that 𝑞𝑗 ∉ EntQ(), thus proving the thesis.

(ii) The sentence BraveRef ((
⋀

𝓁∈𝐼 𝑞𝓁) ∧ 𝑞𝑖, ,) evaluates to true in cl () and, for some 𝑗 such that 𝑗 ∈ [1, 𝑖 − 1] and 𝑗 ∉ 𝐼 , 
the conjunct ¬BraveRef ((

⋀
𝓁∈𝐼 ∧ 𝓁<𝑗 𝑞𝓁) ∧ 𝑞𝑗 , ,)) evaluates to false in cl (). Let us assume that 𝑗 is the least index such 

that the above property holds. Then, Proposition 11 implies that there exists an optimal censor  for  such that  ∪  ⊧
(
⋀

𝓁∈𝐼 ∧ 𝓁<𝑗 𝑞𝓁) ∧ 𝑞𝑗 , which implies that 𝑞𝑗 ∈ EntQ(), thus proving the thesis.

(⇒∶) Suppose that StateRef ( , 𝑖, 𝐼) evaluates to true in cl (). Then, also its last conjunct BraveRef ((
⋀

𝓁∈𝐼 𝑞𝓁) ∧ 𝑞𝑖, ,) does. 
Therefore, by Proposition 11 there exists an optimal censor  for  such that  ∪  ⊧ (

⋀
𝓁∈𝐼 𝑞𝓁) ∧ 𝑞𝑖, i.e., such that  ∪  ⊧ 𝑞𝓁 for 

every 𝓁 ∈ 𝐼 ∪ {𝑖}.

We now prove by induction that every 𝑗 ∈ [1, 𝑖− 1] is such that 𝑞𝑗 ∈ EntQ() iff 𝑗 ∈ 𝐼 .

• Base case: 𝑗 = 1. We prove that 1 ∈ 𝐼 iff 𝑞1 ∈ EntQ():

(i) Suppose that 1 ∈ 𝐼 . Then, for what above, there exists an optimal censor  for  such that  ∪  ⊧ 𝑞1. Thus, we have that 
𝑞1 ∈ EntQ( , ⟨𝑞1⟩), which by Lemma 2 implies that 𝑞1 ∈ EntQ().

(ii) Suppose that 1 ∉ 𝐼 . In this case, ¬BraveRef (𝑞1, ,) is one of the conjuncts of StateRef ( , 𝑖, 𝐼). Since the latter evaluates to 
true in cl (), also ¬BraveRef (𝑞1, ,) does. Hence, BraveRef (𝑞1, ,) evaluates to false in cl (), which by Proposition 11

implies that there exists no optimal censor  for  such that  ∪  ⊧ 𝑞1. Thus, it holds that 𝑞1 ∉ EntQ().

• Inductive case: 𝑗 ≤ 𝑖 − 1 and, for each 𝓁 ∈ [1, 𝑗 − 1], 𝓁 ∈ 𝐼 iff 𝑞𝓁 ∈ EntQ(). We prove that 𝑗 ∈ 𝐼 iff 𝑞𝑗 ∈ EntQ(). First observe 
that, since EntQ(𝑘) ⊆ EntQ() for every 𝑘 < 𝑖, then every 𝑞𝓁 ∈ EntQ() such that 𝓁 ∈ [1, 𝑗 − 1] belongs to 𝑞𝓁 ∈ EntQ(𝑗−1) too. 
Then, we can assume w.l.o.g. that, for each 𝓁 ∈ [1, 𝑗 − 1], 𝓁 ∈ 𝐼 iff 𝑞𝓁 ∈ EntQ(𝑗−1). Now, two cases are possible:

(i) 𝑗 ∈ 𝐼 . As claimed above, there exists an optimal censor  for  such that  ∪ ⊧ 𝑞𝓁 for every 𝓁 ∈ 𝐼 ∪{𝑖} and, in particular, 
for every 𝓁 ≤ 𝑗 belonging to 𝐼 . Observe that  ∪  ⊧ 𝑞𝓁 holds for 𝓁 = 𝑗 and, by the above assumption, for every 𝑞𝓁 ∈
EntQ(𝑗−1). Consequently, there exists an optimal censor  for  such that  ∪ ⊧ (

⋀
𝑞∈EntQ(𝑗−1) 𝑞) ∧ 𝑞𝑗 , which implies that 

 ∈ StCens(𝑗 ), therefore 𝑞𝑗 ∈ EntQ(𝑗 ), and hence 𝑞𝑗 ∈ EntQ().
(ii) 𝑗 ∉ 𝐼 . In this case, since StateRef ( , 𝑖, 𝐼) evaluates to true in cl (), also its conjunct ¬BraveRef ((

⋀
𝓁∈𝐼 ∧ 𝓁<𝑗 𝑞𝓁) ∧ 𝑞𝑗 , ,)

evaluates to true in cl (). Then, by the above assumption, we have that BraveRef ((
⋀

𝑞∈EntQ(𝑗−1) 𝑞) ∧ 𝑞𝑗 , ,) evaluates to 
false in cl (). By Proposition 11, this implies that there exists no optimal censor  for  such that  ∪ ⊧ (

⋀
𝑞∈EntQ(𝑗−1) 𝑞)∧

𝑞𝑗 , which implies that 𝑞𝑗 ∉ EntQ().

Then, since for each 𝑗 ∈ [1, 𝑖 − 1], 𝑞𝑗 ∈ EntQ() iff 𝑗 ∈ 𝐼 , and since BraveRef ((
⋀

𝑗∈𝐼 𝑞𝑗 ) ∧ 𝑞𝑖, ,) evaluates to true in cl (), 
Proposition 11 implies that there exists an optimal censor  for  such that  ∪  ⊧ (

⋀
𝑞∈EntQ(𝑖−1) 𝑞) ∧ 𝑞𝑖, which implies that  ∈

StCens(𝑖), therefore 𝑞𝑖 ∈ EntQ(𝑖), and hence 𝑞𝑖 ∈ EntQ(), thus proving the thesis. ■

A direct consequence of Lemma 6 is that the function StateRef allows for reducing 𝖽𝗒𝗇𝖢𝖰𝖤 query entailment to evaluating an FO 
query.

Corollary 2. Let  = ⟨ , ,⟩ be a DL-Lite CQE instance,  = ⟨𝑞1,… , 𝑞𝑛⟩ (with 𝑛 ≥ 0) be a sequence of BUCQs and  = ⟨ ,⟩. For 
every 𝑖 ∈ [1, 𝑛] we have that 𝖽𝗒𝗇𝖢𝖰𝖤( , 𝑞𝑖) = {𝜖} iff the following FO sentence evaluates to true in cl ():⋁

𝐼∈℘({1,…,𝑖−1})
StateRef ( , 𝑖, 𝐼),
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where ℘({1,… , 𝑖− 1}) denotes the powerset of {1,… , 𝑖− 1}.

The last two results show the FO rewritability of the problems studied on cl (). We now modify the respective reformulations 
to evaluate them directly on the ABox  and thus produce ``genuine'' FO rewritability results.

In what follows, we will make use of the algorithm AtomRewr provided in [9], which we now briefly describe. Given an FO sentence 
𝜙 and a DL-Lite TBox  , AtomRewr(𝜙, ) computes the FO sentence obtained from 𝜙 by replacing every atom 𝛼 = 𝑝(𝑥⃗) (where 𝑥⃗
are all the variables occurring in 𝛼) with the disjunction of atoms corresponding to the perfect rewriting of the non-Boolean atomic 
query 𝑞𝛼 = {𝑥⃗ ∣ 𝑝(𝑥⃗)} with respect to  .

For our purposes, we recall the key property of AtomRewr provided in [9].

Proposition 12. For every FO sentence 𝜙, DL-Lite TBox  , and ABox , 𝜙 evaluates to true in cl () iff AtomRewr(𝜙, ) evaluates to 
true in .

Now, Proposition 12 and Corollary 2 immediately imply the next property.

Proposition 13. Let  = ⟨ , ,⟩ be a DL-Lite CQE instance,  = ⟨𝑞1,… , 𝑞𝑛⟩ be a sequence of BUCQs. For every 𝑖 ∈ [1, 𝑛], we have 
that 𝑞𝑖 ∈ EntQ() iff the following FO sentence evaluates to true in :

AtomRewr(
⋁

𝐼∈℘({1,…,𝑖−1})
StateRef ( , 𝑖, 𝐼), ).

Example 9. Let  and  = ⟨𝑞1, 𝑞2, 𝑞3⟩ be as in Example 6. According to Proposition 13, the query 𝑞3 = ∃𝑥 𝖻𝗎𝗒(𝑥,𝗆𝑏) belongs to 
EntQ(⟨ ,⟩) if and only if the FO sentence below evaluates to true in  (𝑓𝐼 denotes the sub-formula considering the guess 𝐼 of the 
indexes of the queries that precede the query 𝑞3):

AtomRewr(
⋁

𝐼∈℘({1,2}) StateRef (⟨ ,⟩, 𝑖, 𝐼), ) =
𝑓𝐼=∅ ¬BraveRef (𝑞1, ,) ∧ ¬BraveRef (𝑞2, ,) ∧ BraveRef (𝑞3, ,)∨
𝑓𝐼={1} ¬BraveRef (𝑞1 ∧ 𝑞2, ,) ∧ BraveRef (𝑞1 ∧ 𝑞3, ,)∨
𝑓𝐼={2} ¬BraveRef (𝑞1, ,) ∧ BraveRef (𝑞2 ∧ 𝑞3, ,)∨
𝑓𝐼={1,2} BraveRef (𝑞1 ∧ 𝑞2 ∧ 𝑞3, ,) =
𝑓𝐼=∅ ¬𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎) ∧ ¬𝖠𝖻𝖼(𝗆𝑎) ∧ ∃𝑥 𝖻𝗎𝗒(𝑥,𝗆𝑏)∨
𝑓𝐼={1} ¬(𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎) ∧𝖠𝖻𝖼(𝗆𝑎) ∧ ¬𝑡𝑟𝑢𝑒) ∧ ∃𝑥 (𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎) ∧ 𝖻𝗎𝗒(𝑥,𝗆𝑏))∨
𝑓𝐼={2} ¬(𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎)) ∧ (∃𝑥 (𝖠𝖻𝖼(𝗆𝑎) ∧ 𝖻𝗎𝗒(𝑥,𝗆𝑏)))∨
𝑓𝐼={1,2} ∃𝑥 (𝖻𝗎𝗒(𝗃𝗈𝗁𝗇,𝗆𝑎) ∧𝖠𝖻𝖼(𝗆𝑎) ∧ 𝖻𝗎𝗒(𝑥,𝗆𝑏)) ∧ ¬𝑡𝑟𝑢𝑒

which, indeed, evaluates to true in  thanks to 𝑓𝐼={1}. □

The following result is a direct consequence of Proposition 13.

Theorem 1. REC[𝖽𝗒𝗇𝖢𝖰𝖤,BUCQ] is FO rewritable, and therefore in AC0 in data complexity.

6. Dynamic CQE for open UCQs

We now extend dynamic CQE to accommodate queries with free variables. Proposition 4 proved that all MC-CQE semantics collapse 
to 𝖽𝗒𝗇𝖢𝖰𝖤 when dealing with Boolean queries. In particular, a Boolean query always divides censors into two distinct sets (those 
that satisfy the query and those that do not), consequently, maximal cooperativity induces a single preference that favors censors in 
the former set (see Definition 7).

Extending 𝖽𝗒𝗇𝖢𝖰𝖤 to UCQs essentially means extending the notion of preference over censors. However, an open query 𝑞 can 
yield multiple sets of certain answers. Then, any such set that qualifies as a secure answer and is not contained in any other secure 
answer (since providing more information is inherently more cooperative) represents a legitimate preference. This leads to a family 
of possible extensions of 𝖽𝗒𝗇𝖢𝖰𝖤.3

In this regard, we initially consider a wide range of preferences that involve the comparison of finite sets of certain answers as a 
whole. Subsequently, we narrow our focus to preferences derived from lexicographic orders induced by single answers. As we will 
show, this specific class of preferences enables us to reduce the problem of evaluating an open query to the Boolean case.

3 Consider, for example, two drugs that are commonly prescribed individually, but whose combination provides strong evidence of a specific disease we intend 
to keep confidential. In such a case, disclosing that a patient is taking both drugs would compromise privacy. However, in the interest of cooperativeness, it may 
be acceptable to reveal only one. Both choices are legitimate and should be made based on the specific context. This scenario will be formalized in greater detail in 
Example 11.
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6.1. General preferences

For each UCQ 𝑞, let ≤𝑞 be a total order on Fin(𝔊𝑞) (the set of all finite subsets of 𝔊𝑞), which extends set inclusion. In particular, 
requiring each ≤𝑞 to be a total order means that, given any finite collection of Fin(𝔊𝑞), there is always a single preferred one.

We use the total order ≤𝑞 to select the preferred censors among the available ones to answer 𝑞. To this end, we define the following 
weak order between censors.

Definition 12 (Preference between censors). Let 1,2 ∈ Cens() and let 𝑞 be a UCQ, we define:

1 ⪯𝑞 2 iff 𝑐𝑒𝑟𝑡( ∪ 1, 𝑞) ≤𝑞 𝑐𝑒𝑟𝑡( ∪ 2, 𝑞).

As usual, in what follows, we use ∼𝑞 and ≺𝑞 to denote the symmetric and asymmetric parts of ⪯𝑞 , respectively.

By the fact that ≤𝑞 is a total order and extends set inclusion, it is straightforward to see that ⪯𝑞 refines the notion of maximal 
cooperativity, specifically:

cert( ∪ 1, 𝑞) ⊆ cert( ∪ 2, 𝑞) implies 1 ⪯𝑞 2, (1)

cert( ∪ 1, 𝑞) ⊂ cert( ∪ 2, 𝑞) implies 1 ≺𝑞 2, (2)

𝑐𝑒𝑟𝑡( ∪ 1, 𝑞) = 𝑐𝑒𝑟𝑡( ∪𝐶2, 𝑞) iff 1 ∼𝑞 2. (3)

Hereafter, we assume to fix a set of total orders {≤𝑞}𝑞∈UCQ, which induces a family ⪯= {⪯𝑞}𝑞∈UCQ according to Definition 12.

We can now use this family of preferences between censors to extend Definition 8 to the case of open UCQs as follows.

Definition 13. Let  = ⟨ , ,⟩ be a CQE instance, and let  = ⟨𝑞1,… , 𝑞𝑛⟩ (with 𝑛 ≥ 1) be a sequence of UCQs. The set StCens[⪯](𝑖)
of censors of 𝑖, with 𝑖 ∈ [1, 𝑛], is inductively defined as follows:

• StCens[⪯](0) = OptCens();
• StCens[⪯](𝑖) = max

⪯𝑞𝑖

StCens[⪯](𝑖−1).

Analogously to the Boolean case, being each ⪯𝑞𝑖
a weak order, the set StCens[⪯](𝑖) may include multiple censors. However, by 

construction, all these censors provide the same set of certain answers for the query 𝑞𝑖 , which is indeed the set of certain answers 
that is maximal with respect to the fixed total order ≤𝑞𝑖

. As a special case, if none of the optimal censors  in StCens[⪯](𝑖−1) satisfies 
(together with  ) a query 𝑞𝑖 (i.e., cert( ∪ , 𝑞𝑖)) = ∅, for all  ∈ StCens[⪯](𝑖−1)), then no censor prevails and hence StCens[⪯](𝑖) =
StCens[⪯](𝑖−1). From this observation, it is straightforward to see that Lemma 2 can be generalized to the case of open queries, for 
any family ⪯ of preferences over censors.

Then, we define a CQE semantics as follows:

Definition 14 (Dynamic CQE for UCQ -- 𝖽𝗒𝗇𝖢𝖰𝖤[⪯]). Let  = ⟨ ,⟩ be a protection state, where  = ⟨ , ,⟩ is a CQE instance and 
 = ⟨𝑞1,… , 𝑞𝑛⟩ (with 𝑛 ≥ 1) a sequence of UCQs. We define 𝖽𝗒𝗇𝖢𝖰𝖤[⪯]( , 𝑞𝑖) = cert( ∪, 𝑞𝑖), where  is any censor in StCens[⪯]().

Moreover, EntQ[⪯]() denotes the set of instantiated queries entailed by  :

EntQ[⪯]() =
𝑛 ⋃

𝑖=1 
{𝜎(𝑞𝑖) ∣ 𝜎 ∈ 𝖽𝗒𝗇𝖢𝖰𝖤[⪯]( , 𝑞𝑖)} .

Example 10. A European e-gov facility aims to conceal the identity of underage people who serves a sentence of imprisonment.

Let  = ⟨ , ,⟩ be a CQE instance, where:

 = ∅;

 = {∃𝑥 (𝖤𝖴𝖼𝗂𝗍𝗂𝗓𝖾𝗇(𝑥) ∧𝖴𝗇𝖽𝖾𝗋𝖺𝗀𝖾(𝑥) ∧𝖢𝗈𝗇𝗏𝗂𝖼𝗍(𝑥))→ ⊥};

 = {𝖤𝖴𝖼𝗂𝗍𝗂𝗓𝖾𝗇(𝗃𝗈𝗁𝗇),𝖴𝗇𝖽𝖾𝗋𝖺𝗀𝖾(𝗃𝗈𝗁𝗇),𝖢𝗈𝗇𝗏𝗂𝖼𝗍(𝗃𝗈𝗁𝗇)}.

Let us start by considering an empty sequence of UCQs. By definition, we have that StCens(⟨ , ⟨⟩⟩) coincides with the set of optimal 
censors for  :

1 = {𝖤𝖴𝖼𝗂𝗍𝗂𝗓𝖾𝗇(𝗃𝗈𝗁𝗇),𝖴𝗇𝖽𝖾𝗋𝖺𝗀𝖾(𝗃𝗈𝗁𝗇)};

2 = {𝖤𝖴𝖼𝗂𝗍𝗂𝗓𝖾𝗇(𝗃𝗈𝗁𝗇),𝖢𝗈𝗇𝗏𝗂𝖼𝗍(𝗃𝗈𝗁𝗇)};

3 = {𝖴𝗇𝖽𝖾𝗋𝖺𝗀𝖾(𝗃𝗈𝗁𝗇),𝖢𝗈𝗇𝗏𝗂𝖼𝗍(𝗃𝗈𝗁𝗇)}.
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Let 𝑞1 = 𝖤𝖴𝖼𝗂𝗍𝗂𝗓𝖾𝗇(𝑥) be the first query. We have that cert(1, 𝑞1) = cert(2, 𝑞1) = {{𝑥← 𝗃𝗈𝗁𝗇}} whereas cert(3, 𝑞1) = ∅. Note that 
any ≤𝑞1

which extends set inclusion induces a preference over censors such that 3 ≺𝑞1
1 ∼𝑞1

2. As a result, StCens(⟨ , ⟨𝑞1⟩⟩) consists 
of the censors 1 and 2 and returns the fact that John is an EU citizen.

Then, let 𝑞2 = 𝖴𝗇𝖽𝖾𝗋𝖺𝗀𝖾(𝑥) ∧𝖢𝗈𝗇𝗏𝗂𝖼𝗍(𝑥). Neither 1 nor 2 can answer this query, i.e., cert(1, 𝑞1) = cert(2, 𝑞1) = ∅. Moreover, by 
(3), 1 and 2 are both ⪯𝑞2

-maximal; this implies that StCens(⟨ , ⟨𝑞1, 𝑞2⟩⟩) = StCens(⟨ , ⟨𝑞1⟩⟩). □

Let us show that 𝖽𝗒𝗇𝖢𝖰𝖤[⪯] is an MC-CQE semantics.

Theorem 2. For each protection state  = ⟨ ,⟩ with  = ⟨𝑞1,… , 𝑞𝑛⟩, there exists a censor  ∈ Cens() such that  is maximally cooper

ative with respect to  and 𝖽𝗒𝗇𝖢𝖰𝖤[⪯]( , 𝑞𝑖) = cert( ∪ , 𝑞𝑖), for all 𝑖∈ [1, 𝑛].

Proof. Let  = ⟨ ,⟩ be a protection state with  = ⟨𝑞1,… , 𝑞𝑛⟩ and let  be any optimal censor for  that belongs to StCens[⪯](). 
By definition of 𝖽𝗒𝗇𝖢𝖰𝖤[⪯], it directly follows that for all 𝑖 ∈ [1, 𝑛], 𝖽𝗒𝗇𝖢𝖰𝖤[⪯]( , 𝑞𝑖) = cert( ∪ , 𝑞𝑖). It remains to prove that  is 
maximally cooperative with respect to . Assume, by contradiction, that there exists a censor ′ ∈ Cens() which is more cooperative 
than  with respect to , i.e., there exists a natural number 𝑚 such that:

(i) cert( ∪ , 𝑞𝑖) = cert( ∪ ′, 𝑞𝑖), for all 𝑖 ∈ [1,𝑚];
(ii) cert( ∪ , 𝑞𝑚+1) ⊂ cert( ∪ ′, 𝑞𝑚+1).

It is straightforward to see that Lemma 3 can be extended to 𝖽𝗒𝗇𝖢𝖰𝖤[⪯] over UCQs (the proof is essentially the same), therefore 
Condition (i) implies that for all 𝑖 ∈ [1,𝑚],  ∈ StCens[⪯](𝑖) iff ′ ∈ StCens[⪯](𝑖). Then, given that  ∈ StCens[⪯](), we have that 
 ∈ StCens[⪯](𝑚) and ′ ∈ StCens[⪯](𝑚) too. Now, by assumption, ≤𝑞𝑚+1

extends set inclusion, therefore Condition (ii) implies that 
 ≺𝑞𝑚+1

′. By construction this means that  ∉ StCens[⪯](𝑚+1), which contradicts that  ∈ StCens[⪯](). ■

A direct consequence of Theorem 2 and Proposition 4 is that any 𝖽𝗒𝗇𝖢𝖰𝖤[⪯] behaves as 𝖽𝗒𝗇𝖢𝖰𝖤 over Boolean queries.

Corollary 3. Let  = ⟨ ,⟩, where  = ⟨𝑞1,… , 𝑞𝑛⟩ is a sequence of BUCQs. For each family ⪯ of preferences over censors, 𝖽𝗒𝗇𝖢𝖰𝖤[⪯
]( , 𝑞𝑖) = 𝖽𝗒𝗇𝖢𝖰𝖤( , 𝑞𝑖), for all 𝑖 ∈ [1, 𝑛].

6.2. Lexicographic preferences

A way to obtain a preference relation is to consider a total order on the single answers of a given UCQ 𝑞 and then use such an 
order to compare finite sets of answers lexicographically. In what follows, we show that every preference relation defined in this 
way is a total order over Fin(𝔊𝑞), which extends set inclusion. Moreover, we shall also show that with such preference relations the 
problem of evaluating a sequence of open queries can be reduced to evaluating a sequence of Boolean queries.

Definition 15. Let ⊴𝑞 be a total order over 𝔊𝑞 . For each 𝑅,𝑆 ∈ Fin(𝔊𝑞), we consider the symmetric difference of 𝑅 and 𝑆 : 𝐷(𝑅,𝑆) =
(𝑅 ∪𝑆) ⧵ (𝑅 ∩ 𝑆) and we say that 𝑅 ≤𝑞 𝑆 iff 𝑅 = 𝑆 or max⊴𝑞

𝐷(𝑅,𝑆) ∈ 𝑆 .

Proposition 14. Let 𝑞 be a UCQ, let ⊴𝑞 be a total order on 𝔊𝑞 , then the binary relation ≤𝑞 on Fin(𝔊𝑞) obtained from Definition 15 is a 
total order which extends set inclusion.

Proof. We start by observing that, for each 𝑅,𝑆 ∈ Fin(𝔊𝑞) the set 𝐷(𝑅,𝑆) has the following properties: 𝑅 = 𝑆 iff 𝐷(𝑅,𝑆) = ∅, 
𝐷(𝑅,𝑆) =𝐷(𝑆,𝑅) and moreover, 𝐷(𝑅,𝑆) ⊆ 𝑅 ∪ 𝑆 , therefore 𝐷(𝑅,𝑆) is finite. This in turn means that since ⊴𝑞 is a total order, if 
𝐷(𝑅,𝑆) ≠ ∅, then it has a maximum. Now, let us prove that ≤𝑞 is a total order over Fin(𝔊𝑞):

• Reflexivity: let 𝑅 ∈ Fin(𝔊𝑞), then by definition it directly follows that 𝑅 ≤𝑞 𝑅 holds.

• Antisymmetry: Let 𝑅,𝑆 ∈ Fin(𝔊𝑞) such that 𝑅 ≤𝑞 𝑆 and 𝑆 ≤𝑞 𝑅. If 𝑅 ≠ 𝑆 , then by our previous observation, max⊴𝑞
𝐷(𝑅,𝑆) ∈𝑅

and max⊴𝑞
𝐷(𝑆,𝑅) ∈ 𝑆 , but 𝐷(𝑅,𝑆) =𝐷(𝑆,𝑅) and so this means that max⊴𝑞

𝐷(𝑅,𝑆) ∈𝑅∩𝑆 . But by definition of 𝐷(𝑅,𝑆), none 
of its elements can be contained both in 𝑅 and 𝑆 , so we have a contradiction. Hence, 𝑅 = 𝑆 .

• Transitivity: Let 𝑅,𝑆,𝑇 ∈ Fin(𝔊𝑞) such that 𝑅 ≤𝑞 𝑆 and 𝑆 ≤𝑞 𝑇 . If 𝑅 = 𝑆 or 𝑆 = 𝑇 or 𝑅 = 𝑇 , then, we directly get 𝑅 ≤𝑞 𝑇 . So, 
we can assume that 𝑅,𝑆 and 𝑇 are pairwise distinct. Then, there exist 𝜎1 = max⊴𝑞

𝐷(𝑅,𝑆) and 𝜎2 = max⊴𝑞
𝐷(𝑆,𝑇 ) such that 

𝜎1 ∈ 𝑆 ⧵𝑅 and 𝜎2 ∈ 𝑇 ⧵𝑆 . Clearly since 𝜎1 ∈ 𝑆 and 𝜎2 ∉ 𝑆 , 𝜎1 ≠ 𝜎2. Now, let 𝜎 =max⊴𝑞
{𝜎1, 𝜎2} and let us prove that 𝜎 ∈ 𝑇 ⧵𝑅. 

We distinguish two cases:

– if 𝜎 = 𝜎1, then 𝜎2 ⊲𝑞 𝜎1 and so 𝜎1 ∉𝐷(𝑆,𝑇 ). Since 𝜎1 ∈ 𝑆 , then 𝜎1 ∈ 𝑇 as well. Hence 𝜎 = 𝜎1 ∈ 𝑇 . ⧵𝑅.

– if 𝜎 = 𝜎2, then 𝜎1 ⊲𝑞 𝜎2 and so 𝜎2 ∉𝐷(𝑅,𝑆). Since 𝜎2 ∉ 𝑆 , 𝜎2 ∉𝑅 as well. Hence 𝜎 = 𝜎2 ∈ 𝑇 ⧵𝑅.

Finally, we prove that for each 𝜏 ∈ 𝐷(𝑅,𝑇 ), if 𝜎 ⊲𝑞 𝜏 , then 𝜏 ∈ 𝑇 ⧵ 𝑅. Assume by contradiction that there exists 𝜏 ∈ 𝑅 ⧵ 𝑇
such that 𝜎 ⊲𝑞 𝜏 , then 𝜎1 ⊲𝑞 𝜏 and 𝜎2 ⊲𝑞 𝜏 . This means that 𝜏 ∉ 𝐷(𝑅,𝑆) and 𝜏 ∉ 𝐷(𝑆,𝑇 ). Now, since 𝜏 ∈ 𝑅 and 𝜏 ∈ 𝐷(𝑅,𝑆), 
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we have that 𝜏 ∈ 𝑆 too. At the same time, since 𝜏 ∉ 𝑇 and 𝜏 ∉ 𝐷(𝑆,𝑇 ), we have that 𝜏 ∉ 𝑆 , a contradiction. This proves that 
max⊴𝑞

𝐷(𝑅,𝑇 ) ∈ 𝑇 .

• Totality: Let 𝑅,𝑆 ∈ Fin(𝔊𝑞), we want to prove that either 𝑅 ≤𝑞 𝑆 or 𝑆 ≤𝑞 𝑅, but, by Definition 15, this is equivalent to proving 
that either 𝑅 = 𝑆 or 𝐷(𝑅,𝑆) has maximum w.r.t. ⊴𝑞 . But from our observations above, we have that if 𝑅 ≠ 𝑆 , 𝐷(𝑅,𝑆) has 
maximum w.r.t. ⊴.

Finally, we prove that ≤𝑞 extends set inclusion. Let 𝑅,𝑆 ∈ Fin(𝔊𝑞) such that 𝑅 ⊆ 𝑆 . By definition, 𝐷(𝑅,𝑆) ⊆ 𝑅 ∪ 𝑆 , but 𝑅 ⊆ 𝑆 , so 
𝐷(𝑅,𝑆) ⊆ 𝑆 . Hence, if 𝑅 ≠ 𝑆 , 𝐷(𝑅,𝑆) has a maximum that is necessarily contained in 𝑆 and so 𝑅 ≤𝑞 𝑆 . ■

Example 11. Interferon and ribavirin are both antiviral medications that are used to treat hepatitis C. Interferon is a protein that 
helps the body’s immune system fight infection. Ribavirin is a synthetic drug that inhibits the replication of viruses. Taking both 
interferon and ribavirin was a strong indicator that a patient is affected by hepatitis C.

Then, consider the CQE instance  = ⟨ , ,⟩, where:

 = ∅;

 = {∃𝑥 (𝗍𝖺𝗄𝖾(𝑥, 𝗋𝗂𝖻𝖺𝗏𝗂𝗋𝗂𝗇) ∧ 𝗍𝖺𝗄𝖾(𝑥, 𝗂𝗇𝗍𝖾𝗋𝖿𝖾𝗋𝗈𝗇))→ ⊥};

 = {𝗍𝖺𝗄𝖾(𝗃𝗈𝗁𝗇, 𝗋𝗂𝖻𝖺𝗏𝗂𝗋𝗂𝗇), 𝗍𝖺𝗄𝖾(𝗃𝗈𝗁𝗇, 𝗂𝗇𝗍𝖾𝗋𝖿𝖾𝗋𝗈𝗇)}

The optimal censors for  are 1 = {𝗍𝖺𝗄𝖾(𝗃𝗈𝗁𝗇, 𝗋𝗂𝖻𝖺𝗏𝗂𝗋𝗂𝗇)} and 2 = {𝗍𝖺𝗄𝖾(𝗃𝗈𝗁𝗇, 𝗂𝗇𝗍𝖾𝗋𝖿𝖾𝗋𝗈𝗇)}. Now, given the query 𝑞 = 𝗍𝖺𝗄𝖾(𝗃𝗈𝗁𝗇, 𝑦), 1
returns a single answer 𝜎1 = {𝑦← 𝗋𝗂𝖻𝖺𝗏𝗂𝗋𝗂𝗇}, whereas 2 returns 𝜎2 = {𝑦← 𝗂𝗇𝗍𝖾𝗋𝖿𝖾𝗋𝗈𝗇}. Since interferon is more commonly used than 
ribavirin, we can prefer to disclose a generic drug with respect to a more specific one; we can express such preference by imposing 
𝜎1 ⊲𝑞 𝜎2, which implies that 1 ≺𝑞 2, as required. □

The following example shows that lexicographic preferences can be uniformly defined for any query, starting from an ordering 
over single individual names.

Example 12. Assume that there is a total order ≤⋅ over the individual names of the alphabet. We now define, for each UCQ 𝑞, a total 
order ⊴𝑞 over 𝔊𝑞 as the lexicographic order induced by ≤⋅. Let 𝑞(𝑥1,… , 𝑥𝑛) be an open 𝑛-ary UCQ (with 𝑛 > 0) and let 𝜎1, 𝜎2 ∈ 𝔊𝑞 , 
we say that 𝜎1 ⊴𝑞 𝜎2 iff 𝜎1 = 𝜎2 or there exists 𝑖 ∈ [0, 𝑛− 1] such that:

• 𝜎1(𝑥𝑗 ) = 𝜎2(𝑥𝑗 ), for each 𝑗 ∈ [0, 𝑖];
• 𝜎1(𝑥𝑖+1) ⋖ 𝜎2(𝑥𝑖+1). □

Hereafter, with a slight abuse of notation, we shortly write 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴] to refer to a 𝖽𝗒𝗇𝖢𝖰𝖤[⪯] semantics where ⪯ results from 
Definition 15 and a collection ⊴ of ⊴𝑞 for each UCQ 𝑞. Similarly, StCens[⪯] is replaced by StCens𝑠𝑒𝑞[⊴] and EntQ[⪯] is replaced by 
EntQ𝑠𝑒𝑞[⊴].

A family of preferences of this kind induces, for each protection state  = ⟨ ,⟩, a corresponding finite sequence of BUCQs 
BoolInst[⊴]( ,) as follows.

Definition 16. Let  = ⟨ , ,⟩ be a CQE instance and let 𝑞 be a UCQ, we define the sequence of BUCQs generated by ⊴:

BoolInst[⊴]( , 𝑞) = ⟨𝜎1(𝑞),… , 𝜎𝑘(𝑞)⟩
where 𝜎1,… , 𝜎𝑘 are the elements of cert( ∪ , 𝑞) ordered decreasingly with respect to ⊴𝑞 . Furthermore, if  = ⟨𝑞1,… , 𝑞𝑛⟩ is a 
sequence of UCQs, we define

BoolInst[⊴]( ,) = BoolInst[⊴]( , 𝑞1) ◦⋯ ◦ BoolInst[⊴]( , 𝑞𝑛),

where ◦ denotes the concatenation of tuples.

Using this construction, we now prove that evaluating a sequence of UCQs  under a 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴] semantics is equivalent to 
evaluating a sequence of BUCQs.

Proposition 15. Let ⊴ = {⊴𝑞}𝑞∈UCQ be a family of total orders over certain answers. For each protection state  = ⟨ ,⟩, we have that

EntQ𝑠𝑒𝑞[⊴]() = EntQ(BoolState[⊴]()),

where BoolState[⊴]() = ⟨ ,BoolInst[⊴]( ,)⟩.
Proof. First, note that all the BUCQs that occur in EntQ𝑠𝑒𝑞[⊴]() or EntQ(BoolState[⊴]()) also occur in BoolInst[⊴]( ,).
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Assume by contradiction that EntQ𝑠𝑒𝑞[⊴]() ≠ EntQ(BoolState[⊴]()). Then, there exists a BUCQ 𝜎(𝑞𝑖) that is the first BUCQ in 
BoolInst[⊴]( ,) contained in EntQ(BoolState[⊴]()) or EntQ𝑠𝑒𝑞[⊴](), but not in both sets. We have two cases:

If 𝜎(𝑞𝑖) ∈ EntQ𝑠𝑒𝑞[⊴]() and 𝜎(𝑞𝑖) ∉ EntQ(BoolState[⊴]()), then let  ∈ StCens𝑠𝑒𝑞[⊴]() and ′ ∈ StCens(BoolState[⊴]()), we 
have that:

•  ∪  ⊧ 𝑞 iff  ∪ ′ ⊧ 𝑞, for each 𝑞 that precedes 𝜎(𝑞𝑖) in BoolInst[⊴]( ,);
•  ∪  ⊧ 𝜎(𝑞𝑖) but  ∪ ′ ̸⊧ 𝜎(𝑞𝑖).

This means that  is more cooperative with respect to BoolInst[⊴]( ,) than ′; but by Lemma 4, ′ is maximally cooperative with 
respect to BoolInst[⊴]( ,), so we get a contradiction.

On the other hand, if 𝜎(𝑞𝑖) ∈ EntQ(BoolState[⊴]()) and 𝜎(𝑞𝑖) ∉ EntQ𝑠𝑒𝑞[⊴](), then let  ∈ StCens(BoolState[⊴]()) and ′ ∈
StCens𝑠𝑒𝑞[⊴](), we have that:

(i) for each 𝑗 < 𝑖, cert( ∪ , 𝑞𝑗 ) = cert( ∪ ′, 𝑞𝑗 );
(ii) for each 𝜏 such that 𝜎 ⊲𝑞𝑖

𝜏 ,  ∪  ⊧ 𝜏(𝑞𝑖) iff  ∪ ′ ⊧ 𝜏(𝑞𝑖)
(iii)  ∪  ⊧ 𝜎(𝑞𝑖) and  ∪ ′ ̸⊧ 𝜎(𝑞𝑖)

Condition (i) implies that for each 𝑗 < 𝑖, ′ ∼𝑞𝑗
, while Conditions (ii) and Conditions (iii), by Definition 15, imply that ′ ≺𝑞𝑖

. 
Therefore, by construction ′ ∉ StCens[⪯](), which is a contradiction. ■

6.3. Not every MC-CQE semantics is an instance of 𝖽𝗒𝗇𝖢𝖰𝖤[⪯]

We conclude this section by showing that there exists an MC-CQE semantics that cannot be simulated by 𝖽𝗒𝗇𝖢𝖰𝖤[⪯], for any 
family ⪯ of preferences.

Let ⊴ be a family of total orders as in Section 6.2 and consider a new family of total orders ⊴′ defined as follows: for each UCQ 𝑞
and for each 𝜎, 𝜏 ∈𝔊𝑞 , we set 𝜎 ⊴′

𝑞 𝜏 iff 𝜏 ⊴𝑞 𝜎.

Now, given  = ⟨ , ,⟩, we define the following function:

cqe(⟨ ,⟩) ={
𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴′](⟨ ,⟩) if || is even,

𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴](⟨ ,⟩) otherwise

Proposition 16. cqe is an MC-CQE semantics.

Proof. Let  = ⟨ , ,⟩ be a CQE instance, = ⟨𝑞1,… , 𝑞𝑛⟩ a sequence of UCQs and  the protection state ⟨ ,⟩; we want to prove 
that there exists a censor  ∈ Cens() which is maximally cooperative with respect to  and such that cqe( , 𝑞𝑖) = cert( ∪ , 𝑞𝑖) for 
all 𝑖 ∈ [1, 𝑛]. By definition of cqe, we have two cases: if  has an even number of ABox assertions, then cqe() = 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴′](); 
otherwise, cqe() = 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴](). In both cases, by Theorem 2, there exists  ∈ Cens() which is maximally cooperative with 
respect to  such that cqe( , 𝑞𝑖) = cert( ∪ , 𝑞𝑖) for all 𝑖 ∈ [1, 𝑛], hence we have the thesis. ■

Finally, we show that the semantics we have just defined is not a semantics of the 𝖽𝗒𝗇𝖢𝖰𝖤[⪯] family.

Proposition 17. There exists no family of total orders ⪯ such that for each protection state ⟨ ,⟩, cqe(⟨ ,⟩) = 𝖽𝗒𝗇𝖢𝖰𝖤[⪯](⟨ ,⟩).
Proof. Consider the CQE instances 1 = ⟨∅, ,1⟩ and 2 = ⟨∅, ,2⟩, where:

 = {𝑃 (𝑎) ∧ 𝑃 (𝑏)→ ⊥};

1 = {𝑃 (𝑎), 𝑃 (𝑏),𝑄(𝑐)};

2 = {𝑃 (𝑎), 𝑃 (𝑏)}.

Consider also the query 𝑞(𝑥) = 𝑃 (𝑥) and, without loss of generality, assume that

{𝑥← 𝑎}⊲𝑞 {𝑥← 𝑏}.

Then, by construction, we have:

cqe(1, 𝑞) = 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴](1, 𝑞) = {{𝑥← 𝑏}},

cqe(2, 𝑞) = 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴′](2, 𝑞) = {{𝑥← 𝑎}},

where 1 = ⟨1, ⟨𝑞⟩⟩ and 2 = ⟨2, ⟨𝑞⟩⟩. Therefore, cqe(1) ≠ cqe(2).
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It remains to show that, for any family of total orders ⪯, 𝖽𝗒𝗇𝖢𝖰𝖤[⪯]( ,) behaves the same on 1 and 2. The optimal censors 
for 1 are the following:

1 = {𝑃 (𝑎),𝑄(𝑐)}

2 = {𝑃 (𝑏),𝑄(𝑐)}

while the optimal censors for 2 are the following:

′
1 = {𝑃 (𝑎)}

′
2 = {𝑃 (𝑏)}.

Observe that cert(1, 𝑞) = cert(′
1, 𝑞) and cert(2, 𝑞) = cert(′

2, 𝑞), therefore, by Definition 12, 1 ⪯𝑞 2 iff ′
1 ⪯𝑞 

′
2. Subsequently, 

𝖽𝗒𝗇𝖢𝖰𝖤[⪯](1) = 𝖽𝗒𝗇𝖢𝖰𝖤[⪯](2). ■

7. Open query evaluation under any MC-CQE semantics

In this section, we provide general data complexity lower bounds for the decision problems REC[cqe,FullCQ] and REC[cqe,CQ], 
which hold for any MC-CQE semantics cqe (Definition 6).

We start by proving that we can never recover FO rewritability for open queries, even when the query language is reduced to 
FullCQ. Then, we give a proof of intractability for the case of CQs (and thus even for UCQs). Note that in both cases lower bounds 
hold even if the TBox is assumed to be empty, and thus the results hold for every DL.

7.1. Data complexity for full CQs

To prove the following result, we need some preliminary notions from descriptive complexity.4 Given an FO signature Σ, we 
denote by STRUCT[Σ] the set of finite FO interpretations over Σ. Let  ∈ STRUCT[Σ], we denote by dom()  ’s domain. As usual, 
given a predicate symbol 𝑃 or a constant symbol 𝑐 in Σ, we denote with 𝑃  and 𝑐 the interpretation of 𝑃 and 𝑐 according to . Let 
𝑘 be a positive natural number, 𝜑(𝑥1,… , 𝑥𝑘) a FO formula over the signature Σ and let 𝑎1,… , 𝑎𝑘 ∈ dom(), we shall use the notation 
 ⊧ 𝜑[𝑎1,… , 𝑎𝑘] to mean that the tuple ⟨𝑎1,… , 𝑎𝑘⟩ satisfies 𝜑 in . Moreover, we denote by 𝜑() the set of all 𝑘-ples 𝑣 of elements 
of dom() that satisfy 𝜑 in . Let 𝑋 be a subset of dom()𝑘, we say that 𝑋 is FO definable in  by 𝜑 if 𝑋 = 𝜑(). Additionally, given 
an element 𝑣 of dom()𝑘, we say that 𝑣 is FO definable in  by 𝜑 if {𝑣} is FO definable in  by 𝜑. From now on, as done in [25], we 
assume that every signature Σ contains the constant symbols 0̄, 1̄,𝑚𝑎𝑥 and the binary predicates ≤ and 𝐵𝐼𝑇 . Furthermore, for every 
signature Σ, we only consider FO interpretations  ∈ STRUCT[Σ] such that dom() = {0,… , 𝑛}, for some positive natural number 𝑛, 
≤ is the canonical total order over natural numbers, the constant symbols 0̄ and 1̄ are interpreted as the natural numbers 0 and 1
respectively, and 𝑚𝑎𝑥 is interpreted as the natural number 𝑛 (the maximum according to ≤). Moreover, the binary predicate 𝐵𝐼𝑇 is 
interpreted as follows: (𝑎, 𝑏) ∈ 𝐵𝐼𝑇  iff the 𝑏-th digit (starting from the least significant bit) in the binary representation of 𝑎 is 1.

Now we consider a notion of reducibility between decision problems over FO interpretations. Let Σ1,Σ2 be two signatures and 
let 𝐷1 ⊆ STRUCT[Σ1] and 𝐷2 ⊆ STRUCT[Σ2], a first-order reduction from 𝐷1 to 𝐷2 is a function 𝑅 ∶ STRUCT[Σ1]→ STRUCT[Σ2] such 
that there exist:

• a FO formula 𝜑𝑅
dom

over Σ1 with 𝑘 free variables,

• a FO formula 𝜑𝑅
𝑃

over Σ1 with 𝑘 ⋅ 𝑟 free variables for each predicate symbol 𝑃 of arity 𝑟 in Σ2,

• a FO formula 𝜑𝑅
𝑐 over Σ1 with 𝑘 free variables for each constant symbol 𝑐 in Σ2,

such that for each  ∈ STRUCT[Σ1]:

•  ∈𝐷1 iff 𝑅() ∈𝐷2;

• the domain of 𝑅() is FO definable in  by 𝜑𝑅
dom

, and so:

dom(𝑅()) = {𝑣 ∈ dom()𝑘 ∣  ⊧ 𝜑𝑅
dom

[𝑣1,… , 𝑣𝑘]}

• for each predicate symbol 𝑃 of arity 𝑟 in Σ2, its interpretation 𝑃𝑅() according to 𝑅() is defined as follows

𝑃𝑅() = {(𝑣1,… , 𝑣𝑟) ∈ dom(𝑅())𝑟 ∣  ⊧ 𝜑𝑅
𝑃 [𝑣11,… , 𝑣1𝑘,… , 𝑣𝑟1,… , 𝑣𝑟𝑘]}

• for each constant symbol 𝑐 in Σ2, its interpretation 𝑐𝑅() according to 𝑅() is FO definable in  by 𝜑𝑅
𝑐 .

To prove the next theorem, we shall use the decision problem MAJORITY, which is defined as follows:

4 For an in-depth discussion, refer to [25].
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Input: A binary string 𝐵
Question: Is the number of occurrences of the zero bit greater than or equal to the number of occurrences of the one bit in 𝐵?

Theorem 3. There exists no MC-CQE semantics cqe such that REC[cqe,FullCQ] is in AC0 in data complexity, even in the case the TBox is 
empty.

Proof. We start by proving that for each MC-CQE semantics cqe, we can reduce MAJORITY to REC[cqe,FullCQ] using a fixed policy 
and a fixed sequence of queries.

Given a binary string 𝐵 of length 𝑛, we denote by 𝐵 the set of all positions in which the digit 1 occurs in 𝐵 and by 𝐵 the set of 
all positions in which the digit 0 occurs in 𝐵. Then, for each 𝑖 ∈ [1, 𝑛], we consider an individual 𝗂 representing the 𝑖-th position inside 
the string. Moreover, we use a role 𝗇𝗈𝗍𝖾𝗊 to encode the binary inequality predicate between positions and a role 𝖤 that will yield 
at the end of the query processing a (possibly partial) injective function from 𝐵 to 𝐵 . Finally, we use the concept 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽 to 
mark the positions 𝐵 that are not contained in the domain of 𝖤 and the ground atom 𝗆𝖺𝗃𝗈𝗋𝗂𝗍𝗒(1) to signal whether the string being 
encoded in the ABox is an instance of MAJORITY. More specifically, we define an ABox 𝐵 containing the following assertions:

• 𝖤(𝗂, 𝗃), for each position 𝑖 ∈𝐵 and 𝑗 ∈𝐵 ;

• 𝗇𝗈𝗍𝖾𝗊(𝗂, 𝗃) for all positions 𝑖, 𝑗 such that 𝑖 ≠ 𝑗;
• 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽(𝗂) for each position 𝑖 ∈𝐵 ;

• 𝗆𝖺𝗃𝗈𝗋𝗂𝗍𝗒(1).

Now, we define the following fixed policy  :

1. ∃𝑥, 𝑦, 𝑧 (𝖤(𝑥, 𝑦) ∧ 𝖤(𝑥, 𝑧) ∧ 𝗇𝗈𝗍𝖾𝗊(𝑦, 𝑧))→ ⊥
2. ∃𝑥, 𝑦, 𝑧 (𝖤(𝑥, 𝑧) ∧ 𝖤(𝑦, 𝑧) ∧ 𝗇𝗈𝗍𝖾𝗊(𝑥, 𝑦))→ ⊥
3. ∃𝑥, 𝑦 (𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽(𝑥) ∧ 𝖤(𝑥, 𝑦))→ ⊥
4. ∃𝑥 (𝗆𝖺𝗃𝗈𝗋𝗂𝗍𝗒(1) ∧ 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽(𝑥))→ ⊥

The first denial requires that the role 𝖤 be a function, whereas the second denial states that 𝖤 is injective. The third denial enforces 
that the positions satisfying 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽 are only those not in the domain of 𝖤, and finally, the last denial requires that 𝗆𝖺𝗃𝗈𝗋𝗂𝗍𝗒(1) holds 
iff there is no individual for which 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽 holds.

Then, consider the fixed sequence of queries , where:

𝑞1(𝑥, 𝑦) = 𝗇𝗈𝗍𝖾𝗊(𝑥, 𝑦)

𝑞2(𝑥, 𝑦) = 𝖤(𝑥, 𝑦)

𝑞3(𝑥) = 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽(𝑥)

𝑞4 =𝗆𝖺𝗃𝗈𝗋𝗂𝗍𝗒(1)

Given any MC-CQE semantics cqe, let us prove that for each binary string 𝐵, 𝐵 ∈ MAJORITY iff 𝑞4 is a consequence of the state 
 = ⟨⟨∅,𝐵,⟩,⟩ under cqe.

Assume that 𝐵 is a binary string such that 𝐵 ∈ MAJORITY. Let  be any maximally cooperative censor for . Since query 𝑞1 does 
not trigger any denial, maximal cooperativity forces  to contain all the facts regarding 𝗇𝗈𝗍𝖾𝗊. Then, when considering query 𝑞2, 
because of Denials 1 and 2, the facts regarding 𝖤 contained in  will represent a partial injective function 𝑓 from elements of 𝐵 to 
elements of 𝐵 . Let us prove that 𝑓 is total. Assume by contradiction that there exists a position 𝑖 ∈𝐵 which is not in the domain of 
𝑓 , 𝑑𝑜𝑚(𝑓 ). This means that the cardinality of 𝑑𝑜𝑚(𝑓 ) is strictly smaller than the cardinality of 𝐵 . By assumption, 𝐵 ∈ MAJORITY, 
hence the cardinality of 𝐵 is less than or equal to the cardinality of 𝐵 , therefore we can deduce that the cardinality of 𝑑𝑜𝑚(𝑓 ) is 
strictly smaller than the cardinality of 𝐵 . This means that there exists a position 𝑗 ∈𝐵 which does not appear in the range of 𝑓 . 
So, if 𝗂 and 𝗃 are the individuals respectively representing the two positions 𝑖 and 𝑗, ( ⧵ {𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽(𝗂)}) ∪ {𝖤(𝗂, 𝗃)} is still a censor and 
is more cooperative than  with respect to . This is absurd. Therefore, 𝑓 is total and hence cert(, 𝑞3) = ∅ by Denial 3. Then, by 
maximal cooperativity, we have that  satisfies 𝑞4 =𝗆𝖺𝗃𝗈𝗋𝗂𝗍𝗒(1).

Finally, let cqe be an MC-CQE semantics, by Definition 6, there exists a maximally cooperative censor  for  such that for each 
𝑞𝑖 in , cqe(⟨⟨∅,𝐵,⟩,⟩, 𝑞𝑖) = cert(, 𝑞𝑖). By what we proved above, cqe( , 𝑞4) = cert(, 𝑞4) = {𝜖}.

For the other way round, assume that 𝑞4 is a consequence of the state  under an MC-CQE semantics cqe. By Denial 4 and the 
fact that cqe is secure, we have that cqe( , 𝑞3) must be empty. On the other hand, maximal cooperativity and Denial 3 imply that 
the answer set cqe( , 𝑞2) represents a total injective function from 𝐵 to 𝐵 and therefore, the cardinality of 𝐵 is less than or equal 
to the cardinality of 𝐵 , i.e., 𝐵 ∈ MAJORITY.

We can now prove our thesis. First, observe that an ABox can be naturally represented as its least Herbrand model, which is a 
finite FO interpretation. Conversely, every finite FO interpretation is the least Herbrand model of an ABox in a canonical way. So, 
we can see REC[cqe,FullCQ] as a decision problem over a class of FO interpretations. We can do the same with MAJORITY too. 
A binary string can be represented as an FO interpretation over the signature Σ𝐵 containing a unary predicate 𝑂 marking which 
positions in the string contain the bit 1. Now we prove that MAJORITY is first-order reducible to REC[cqe,FullCQ]. Given a binary 

Artiϧcial Intelligence 348 (2025) 104402 

22 



P. Bonatti, G. Cima, D. Lembo et al. 

string 𝐵 ∈ STRUCT[Σ𝐵], we can define the FO interpretation 𝐵 over a signature containing the role names 𝖤 and 𝗇𝗈𝗍𝖾𝗊, and the 
concept names 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽 and 𝗆𝖺𝗃𝗈𝗋𝗂𝗍𝗒 as follows:

• The domain of 𝐵 is the same as the domain of 𝐵, so it is FO definable in 𝐵 by the following formula:

𝜑dom(𝑖) ∶= (𝑖 = 𝑖)

• 𝖤 is FO definable in 𝐵 by the following formula:

𝜑𝖤(𝑖, 𝑗) ∶= ¬𝑂(𝑖) ∧𝑂(𝑗)

• 𝗇𝗈𝗍𝖾𝗊 is FO definable in 𝐵 by the following formula:

𝜑𝗇𝗈𝗍𝖾𝗊(𝑖, 𝑗) ∶= ¬(𝑖 = 𝑗)

• 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽 is FO definable in 𝐵 by the following formula:

𝜑𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽(𝑖) ∶=𝑂(𝑖)

• 𝗆𝖺𝗃𝗈𝗋𝗂𝗍𝗒 is FO definable in 𝐵 by the following formula:

𝜑𝗆𝖺𝗃𝗈𝗋𝗂𝗍𝗒(𝑖) ∶= (𝑖 = 1̄)

Observe that 𝐵 is the least Herbrand model of 𝐵 . Therefore, combining this observation with what we have proved above, we 
have defined a first-order reduction from MAJORITY to REC[cqe,FullCQ]. To conclude, we use the following property of AC0 proved 
in [25]: Let Σ1,Σ2 be two FO signatures, let 𝐷1 ⊆ STRUCT[Σ1] and 𝐷2 ⊆ STRUCT[Σ2] two decision problems. If 𝐷1 is first-order 
reducible to 𝐷2 and 𝐷2 ∈ AC0, then 𝐷1 ∈ AC0 too. Moreover, in [25] it is proved that MAJORITY is not in AC0, therefore, we deduce 
that REC[cqe,FullCQ] is not in AC0. ■

7.2. Data complexity for CQs and full UCQs

In the following theorem, we will use the problem PARITY(SAT), which is defined as follows:

Input: A sequence of 𝑚 Boolean formulas Φ= ⟨𝜙1,…𝜙𝑚⟩ in 3-CNF 
Question: Is the number of satisfiable formulas occurring in Φ even?

The problem is Δ𝑝
2[𝑂(log𝑛)]-complete even if we assume that the formulas of the input sequence do not have any common variable 

and that the input sequence is such that the unsatisfiability of 𝜙𝑖 implies the unsatisfiability of every 𝜙𝑗 such that 𝑗 > 𝑖 [26].5 So, we 
will make such assumptions on Φ.

Theorem 4. Let cqe be an MC-CQE semantics, then REC[cqe,CQ] is Δ𝑝
2[𝑂(log𝑛)]-hard in data complexity, even in case the TBox is empty.

Proof. Since Δ𝑝
2[𝑂(log𝑛)] is closed by complement, the complementary problem of PARITY(SAT), called coPARITY(SAT), is still 

Δ𝑝
2[𝑂(log𝑛)]-complete, so we prove the theorem by reducing coPARITY(SAT) to REC[cqe,CQ] using a fixed policy and a fixed sequence 

of queries.

Let Φ= ⟨𝜙1,… , 𝜙𝑚⟩ be a sequence of 3-CNF formulas. As we noted above, we can assume that the formulas of Φ don’t have any 
common variable and that the unsatisfiability of 𝜙𝑖 implies the unsatisfiability of every 𝜙𝑗 such that 𝑗 > 𝑖.

Let us define an ABox Φ. First we add to Φ the facts:

• NextF(𝗂, 𝗃), for each 𝑖, 𝑗 such that 1 ≤ 𝑖 < 𝑗 ≤𝑚 and 𝑗 = 𝑖+ 1;

• Even(𝗂), for each even 𝑖;

using the concept Even and the role NextF and using for each natural number 𝑖 ∈ [1,𝑚] an individual name 𝗂.
Then, let the 3-CNF formula 𝜑𝑗 =

⋀𝑘𝑗
𝑖=1 𝑐

𝑗
𝑖 be the 𝑗-th formula of the input sequence. We encode 𝜑𝑗 in a set of facts as follows: 

Each clause 𝑐𝑗𝑖 in 𝜑𝑗 is referred to by an individual name 𝖼𝑗𝑖 and each variable 𝑥 appearing in 𝜑𝑗 corresponds to an individual name 
𝗑. Then, we use the roles 𝖼𝗏𝖺𝗋1, 𝖼𝗏𝖺𝗋2, 𝖼𝗏𝖺𝗋3 to express the variables contained in each clause, and the roles 𝖼𝗇𝖾𝗀1, 𝖼𝗇𝖾𝗀2, 𝖼𝗇𝖾𝗀3 to 
encode where the negations appear in the clause. Furthermore, given a literal 𝑙, we denote with 𝑣𝑎𝑟(𝑙) the individual representing 
the variable occurring in 𝑙. Moreover, we use the individual name 1 to refer to the true truth value and the individual name 0 to refer 
to the false truth value, and a function 𝑛𝑒𝑔𝑎𝑡𝑒𝑑(𝑙) indicating whether 𝑙 is negated or not, that is, 𝑛𝑒𝑔𝑎𝑡𝑒𝑑(𝑙) yields the individual 0 if 
𝑙 is positive, and the individual 1 otherwise. Note that 𝑛𝑒𝑔𝑎𝑡𝑒𝑑(𝑙) returns the truth assignment of 𝑣𝑎𝑟(𝑙) that makes 𝑙 false.

5 Note that this assumption requires checking only that the index of the last satisfiable formula is even, rather than counting the total number of satisfiable formulas.
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For each clause 𝑐𝑗𝑖 = 𝑙1𝑖,𝑗 ∨ 𝑙2𝑖,𝑗 ∨ 𝑙3𝑖,𝑗 , we add the following facts to Φ:

• 𝖲𝖾𝗊(𝗃, 𝖼𝑗𝑖 )
• 𝖼𝗏𝖺𝗋𝑠(𝖼

𝑗
𝑖 , 𝑣𝑎𝑟(𝑙

𝑠
𝑖,𝑗 ))

• 𝖼𝗇𝖾𝗀𝑠(𝖼
𝑗
𝑖 , 𝑛𝑒𝑔𝑎𝑡𝑒𝑑(𝑙

𝑠
𝑖,𝑗 ))

where 𝑠 ∈ {1,2,3}.

As we observed above, if 𝖼𝗇𝖾𝗀𝑠(𝖼
𝑗
𝑖 , 𝑡) has been added to Φ, then 𝑡 (either 0 or 1) represents the truth value we should assign to 

𝑣𝑎𝑟(𝑙𝑠𝑖,𝑗 ) to make 𝑙𝑠𝑖,𝑗 false.

Then, for each 𝑗 ∈ [1,𝑚] and for each variable 𝑥 occurring in 𝜑𝑗 we include in Φ the following facts:

• V(𝗑,1),V(𝗑,0)
• 𝖴𝗇𝖽𝖾𝖿 (𝗃,𝗑),𝖲𝖺𝗍(𝗃)

The first two facts encode the two possible truth assignments for each variable. While the atom 𝖴𝗇𝖽𝖾𝖿 (𝗃,𝗑) represents the fact that 
it was not possible to consistently assign a truth value for 𝑥 in 𝜑𝑗 , vice versa the atom 𝖲𝖺𝗍(𝗃) represents the fact that 𝜑𝑗 is satisfiable.

Lastly, we include the following fact:

• parity-sat(0)

which is used to represent the fact that the input sequence of formulas is not an instance of PARITY(SAT).

Now, we define the following fixed policy  :

1. ∃𝑣 (V(𝑣,1) ∧ V(𝑣,0))→ ⊥

2. ∃𝑐, 𝑣1, 𝑣2, 𝑣3, 𝑡1, 𝑡2, 𝑡3 (
⋀3

𝑖=1(𝖼𝗏𝖺𝗋𝑖(𝑐, 𝑣𝑖) ∧ 𝖼𝗇𝖾𝗀𝑖(𝑐, 𝑡𝑖) ∧ V(𝑣𝑖, 𝑡𝑖)))→ ⊥

3. ∃𝑗, 𝑣, 𝑡 (𝖴𝗇𝖽𝖾𝖿 (𝑗, 𝑣) ∧ V(𝑣, 𝑡))→ ⊥

4. ∃𝑗, 𝑣 (𝖴𝗇𝖽𝖾𝖿 (𝑗, 𝑣) ∧ 𝖲𝖺𝗍(𝑗))→ ⊥

5. ∃𝑗, 𝑗′, 𝑥 (𝖲𝖺𝗍(𝑗) ∧ NextF(𝑗, 𝑗′) ∧𝖴𝗇𝖽𝖾𝖿 (𝑗′, 𝑥) ∧ Even(𝑗) ∧ parity-sat(0))→ ⊥

Informally, the first denial will be used to force a choice between V(𝗑,1) and V(𝗑,0), for each variable individual 𝗑, which corresponds 
to assigning either true or false to each propositional variable 𝑥 in the corresponding formula of the sequence (remember that by 
assumption each variable occurs in at most one formula). The second denial allows us to restrict the attention only to those assignments 
that do not falsify any of the clauses 𝑐 in the input formulas. Furthermore, the third denial expresses the fact that if an assignment 
has been found for a variable of a formula 𝜑𝑗 then it cannot be considered undefined. The fourth denial asserts that a formula 𝜑𝑗

is satisfiable iff it does not contain undefined variables. Finally, the fifth denial will be used to enforce that parity-sat(0) holds only 
when the last satisfiable formula in the input sequence Φ is odd.

Then, we define the following fixed sequence of CQs :

𝑞1(𝑐, 𝑣) = 𝖼𝗏𝖺𝗋1(𝑐, 𝑣)

𝑞2(𝑐, 𝑣) = 𝖼𝗏𝖺𝗋2(𝑐, 𝑣)

𝑞3(𝑐, 𝑣) = 𝖼𝗏𝖺𝗋3(𝑐, 𝑣)

𝑞4(𝑐, 𝑡) = 𝖼𝗇𝖾𝗀1(𝑐, 𝑡)

𝑞5(𝑐, 𝑡) = 𝖼𝗇𝖾𝗀2(𝑐, 𝑡)

𝑞6(𝑐, 𝑡) = 𝖼𝗇𝖾𝗀3(𝑐, 𝑡)

𝑞7(𝑥) = ∃𝑡 V(𝑥, 𝑡)

𝑞8(𝑗, 𝑥) = 𝖴𝗇𝖽𝖾𝖿 (𝑗, 𝑥)

𝑞9(𝑗, 𝑗′, 𝑥) = 𝖲𝖺𝗍(𝑗) ∧ NextF(𝑗, 𝑗′) ∧𝖴𝗇𝖽𝖾𝖿 (𝑗′, 𝑥) ∧ Even(𝑗)

𝑞10 = parity-sat(0).

Now, let  = ⟨ ,⟩ be a protection state of the CQE instance  = ⟨∅,Φ,⟩, and let us prove that, for every maximally cooperative 
censor  for  ,  ⊧ 𝑞10 iff Φ is an instance of coPARITY(SAT). Let  be any maximally cooperative censor for  . Queries 𝑞1,… , 𝑞6
do not trigger any denial, and so they can be answered honestly. This forces  to keep the facts of the ABox  relative to the 
roles 𝖼𝗏𝖺𝗋1, 𝖼𝗏𝖺𝗋2, 𝖼𝗏𝖺𝗋3, 𝖼𝗇𝖾𝗀1, 𝖼𝗇𝖾𝗀2, 𝖼𝗇𝖾𝗀3, thus fixing the structure of the input sequence of formulas Φ. When evaluating query 𝑞7, 
because of the first two denials,  contains a maximal set of variables for which we can find a truth value which does not make any of 
the clauses in the input sequence false. Here the assumption that each variable occurs at most in one input formula is crucial, because 
it implies the absence of any interaction between distinct formulas, so assigning a truth value to as many variables as possible means 
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trying to satisfy as many formulas of the sequence as possible. In other words, for each formula 𝜑𝑗 ∈Φ, the answer set for 𝑞7 contains 
all the individuals corresponding to the variables of 𝜑𝑗 iff the latter is satisfiable. Now, due to the form of the third denial, after 
the execution of query 𝑞8 the censor  contains a fact of the form 𝖴𝗇𝖽𝖾𝖿 (𝗃,𝗑) only for the variables 𝑥 that have not received a truth 
assignment. In other terms, at least one such a fact will belong to  iff 𝜙𝑗 is unsatisfiable. Consequently, query cert(, 𝑞9) ≠ ∅ iff the 
last satisfiable formula in the sequence Φ is even. Therefore, because of the fifth denial, query 𝑞10 holds in  (i.e., cert(, 𝑞10) = {𝜖}) 
iff the last satisfiable formula in the sequence Φ is not even.

Finally, let cqe be any MC-CQE semantics. By definition, there exists a maximally cooperative censor  for  such that, for 
each query 𝑞′ in , cqe( , 𝑞′) = cert(, 𝑞′). Therefore, by what we proved above we can conclude that cqe( , 𝑞10) = {𝜖} iff the last 
satisfiable formula in the sequence Φ is not even (that is, there is an odd number of satisfiable formulas in Φ, given the initial 
assumption on Φ). ■

Theorem 5. Let cqe be an MC-CQE semantics, then REC[cqe,FullUCQ] is Δ𝑝
2[𝑂(log𝑛)]-hard in data complexity, even in case the TBox is 

empty.

Proof. We can re-use the same construction used in Theorem 4: in fact, all the queries used, except for query 𝑞7 , are also full UCQs. 
However, it is easy to verify that query 𝑞7 can be replaced with the full UCQ 𝑞′7(𝑥) = 𝑉 (𝑥,1) ∨ 𝑉 (𝑥,0) without affecting the validity 
of the proof. ■

8. Open query evaluation under 𝗱𝘆𝗻𝗖𝗤𝗘[⪯] with tractable preferences

In this section, we show that the complexity of REC[𝖽𝗒𝗇𝖢𝖰𝖤[⪯],CQ] lies between Δ𝑝
2[𝑂(log𝑛)] and Σ𝑝

2, under the reasonable 
assumption that the total preference orderings ≤𝑞 are computable in polynomial time.

The lower bound follows immediately from Theorem 2 and Theorem 5; it does not depend on the complexity of the preference 
orderings.

Corollary 4. For all families ⪯ of preferences over censors (Definition 12), REC[𝖽𝗒𝗇𝖢𝖰𝖤[⪯],CQ] is Δ𝑝
2[𝑂(log𝑛)]-hard in data complexity. 

The same holds for FullUCQ.

Moreover, in the next section, we will prove that with tractable lexicographic orderings, REC[𝖽𝗒𝗇𝖢𝖰𝖤[⪯],FullCQ] is PTime-hard.

The upper bound can be proved as follows:

Theorem 6. For all families ⪯ of polynomial-time computable preferences over censors (Definition 12), REC[𝖽𝗒𝗇𝖢𝖰𝖤[⪯],UCQ] is in Σ𝑝
2 in 

data complexity.

Proof. Let ⟨ , 𝜎⟩ be any instance of REC[𝖽𝗒𝗇𝖢𝖰𝖤[⪯],UCQ], where  = ⟨ ,⟩,  = ⟨ , ,⟩,  = ⟨𝑞1,… , 𝑞𝑛⟩, and 𝜎 ∈𝔊𝑞𝑛
.

Recall that the number of ground atoms that can be built using the symbols in  ,  , and  is polynomial in the size of , so the 
same bound applies to the size of cl () and all the censors for  .

Claim 1: Checking whether a set of ground atoms  belongs to OptCens() is in PTime.

Indeed,  ∈ OptCens() iff  ⊆ cl (),  ∪∪ is consistent, and for all ground atoms 𝛼 built with the symbols in  ,  ∪∪{𝛼}∪
is inconsistent. Since UCQ answering in DL-Lite is in PTime in data complexity and the above checks involve a polynomial number 
of UCQs, Claim 1 is proved.

Moreover, recall that -- by the construction in Definition 13 -- all the censors in StCens[⪯](𝑖) answer 𝑞1,… , 𝑞𝑖 in the same way 
(because the orderings ≤𝑞𝑖

on the answer sets are total) and we have:

Claim 2: For every integer 𝑖 ∈ [1, 𝑛] and every  ∈ StCens[⪯](𝑖), StCens[⪯](𝑖) equals the set of all ′ ∈ OptCens() such that 
𝑐𝑒𝑟𝑡( ∪ ′, 𝑞𝑗 ) = 𝑐𝑒𝑟𝑡( ∪ , 𝑞𝑗 ) for every integer 𝑗 ∈ [1, 𝑖].

Claim 3: For all  ∈ StCens[⪯](𝑖−1) (𝑖 ∈ [1, 𝑛− 1]), checking whether  ∉ StCens[⪯](𝑖) is in NP.

Claim 3 can be proved by the following algorithm: guess a set of ground atoms ′; check whether ′ ∈ OptCens(); check whether 
𝑐𝑒𝑟𝑡( ∪′, 𝑞𝑗 ) = 𝑐𝑒𝑟𝑡( ∪, 𝑞𝑗 ) for all 𝑗 ∈ [1, 𝑖]; check whether 𝑐𝑒𝑟𝑡( ∪, 𝑞𝑖) <𝑞𝑖

𝑐𝑒𝑟𝑡( ∪′, 𝑞𝑖) (in polynomial time, by hypothesis); 
if all these tests succeed, then accept, otherwise reject. By the hypothesis on , Claim 2, and the definition of ≺𝑞𝑖

, the above algorithm 
accepts iff there exists ′ ∈ StCens[⪯](𝑖−1) such that  ≺𝑞𝑖

′, which is equivalent to  ∉ max≤𝑞𝑖
StCens[⪯](𝑖−1) = StCens[⪯](𝑖). 

Moreover, by Claim 1 and the tractability of ground atomic queries in DL-Lite in data complexity, the algorithm runs in polynomial 
time. This proves Claim 3.

We are now ready to prove the theorem. REC[𝖽𝗒𝗇𝖢𝖰𝖤[⪯],UCQ] can be decided in nondeterministic polynomial time using an 
oracle for NP as follows: First guess a set of ground atoms ; check whether  ∈ OptCens() = StCens[⪯](0) (in polynomial time, 
by Claim 1), then for all 𝑖 ∈ [1, 𝑛] check whether  ∈ StCens[⪯](𝑖) using the oracle (by Claim 3). Note that  ∈ StCens[⪯](𝑛) iff all 
the above tests succeed. The algorithm accepts the input iff the above tests succeed and, moreover, 𝜎 ∈ 𝑐𝑒𝑟𝑡( ∪ , 𝑞𝑛); this final test 
takes polynomial time in DL-Lite. It follows immediately that the above algorithm decides REC[𝖽𝗒𝗇𝖢𝖰𝖤[⪯],UCQ] in polynomial 
time, therefore REC[𝖽𝗒𝗇𝖢𝖰𝖤[⪯],UCQ] is in Σ𝑝

2. ■

In the following section, we prove tighter complexity bounds by exploiting the restrictions on the structure of preference orderings 
introduced in Definition 15.
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9. Open query evaluation under 𝗱𝘆𝗻𝗖𝗤𝗘𝒔𝒆𝒒[⊴] semantics

Now we focus on the complexity of 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴] in the case where, for each UCQ 𝑞, ⊴𝑞 is decidable in logarithmic space.6

9.1. The case when queries are UCQs

We now provide a complete characterization of the complexity of reasoning over CQs, full UCQs, and UCQs under 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴]
semantics. In the following theorem, we will use the decision problem LEX-SAT, which is known to be Δ𝑝

2-complete [27]:

Input: A 3-CNF formula 𝜙 with propositional variables 𝑥1,… , 𝑥𝑛
Question: Is 𝜙 satisfiable and 𝑥𝑛 true in the lexicographically maximum assignment satisfying 𝜙?7

Theorem 7. REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],CQ] is Δ𝑝
2-hard in data complexity, even in case the TBox is empty.

Proof. Since Δ𝑝
2 is closed under complement, the complementary problem of LEX-SAT (coLEX-SAT) is still Δ𝑝

2 -complete, so we prove 
the theorem by reducing coLEX-SAT to REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],CQ] using a fixed privacy policy and a fixed sequence of queries. Let 𝜑
be a 3-CNF formula using variables 𝑥1,… , 𝑥𝑛, we construct an ABox 𝜑 as follows: First, we consider the CQ 𝑞(𝑥) = 𝖫𝖾𝗑𝖫𝖺𝗌𝗍𝖵(𝑥) and 
the total order ⊴𝑞 , then we pick 𝑛 constants 𝗑1,… ,𝗑𝑛 such that 𝗑𝑛 ⊲𝑞 …⊲𝑞 𝗑1. For each 𝑖 ∈ [1, 𝑛], 𝗑𝑖 will represent the variable 𝑥𝑖 in 
𝜑. Then, we pick two other constants 1 and 0 representing the truth and falsity, respectively, and for each clause 𝑐𝑖 in 𝜑, we pick a 
constant symbol 𝖼𝑖 representing it. Furthermore, given a literal 𝑙 of 𝜑, we denote with 𝑣𝑎𝑟(𝑙) the individual representing the variable 
occurring in 𝑙. Moreover, 𝑛𝑒𝑔𝑎𝑡𝑒𝑑(𝑙) indicates whether 𝑙 is negated or not, that is, 𝑛𝑒𝑔𝑎𝑡𝑒𝑑(𝑙) yields the individual 0 if 𝑙 is positive, 
and the individual 1 otherwise. Note that 𝑛𝑒𝑔𝑎𝑡𝑒𝑑(𝑙) returns the truth assignment of 𝑣𝑎𝑟(𝑙) that makes 𝑙 false.

We then add the following ground atoms to 𝜑:

• 𝖴𝗇𝖽𝖾𝖿 (𝗑𝑖), V(𝗑𝑖,1), V(𝗑𝑖,0), 𝖫𝖾𝗑𝖫𝖺𝗌𝗍𝖵(𝗑𝑖) for each 𝑖 ∈ [1, 𝑛].
• 𝖫(𝗑𝑛).
• lex-sat(0),

and for each clause 𝑐𝑖 = 𝑙1𝑖 ∨ 𝑙2𝑖 ∨ 𝑙3𝑖 , we add the following ground atoms:

• 𝖼𝗏𝖺𝗋1(𝖼𝑖, 𝑣𝑎𝑟(𝑙1𝑖 ))
• 𝖼𝗇𝖾𝗀1(𝖼𝑖, 𝑛𝑒𝑔𝑎𝑡𝑒𝑑(𝑙1𝑖 ))
• 𝖼𝗏𝖺𝗋2(𝖼𝑖, 𝑣𝑎𝑟(𝑙2𝑖 ))
• 𝖼𝗇𝖾𝗀2(𝖼𝑖, 𝑛𝑒𝑔𝑎𝑡𝑒𝑑(𝑙2𝑖 ))
• 𝖼𝗏𝖺𝗋3(𝖼𝑖, 𝑣𝑎𝑟(𝑙3𝑖 ))
• 𝖼𝗇𝖾𝗀3(𝖼𝑖, 𝑛𝑒𝑔𝑎𝑡𝑒𝑑(𝑙3𝑖 ))

Now, we define the following fixed policy  :

1. ∃𝑣 (V(𝑣,1) ∧ V(𝑣,0))→ ⊥

2. ∃𝑣 (𝖫𝖾𝗑𝖫𝖺𝗌𝗍𝖵(𝑣) ∧ V(𝑣,0))→ ⊥

3. ∃𝑥, 𝑣1, 𝑣2, 𝑣3, 𝑡1, 𝑡2, 𝑡3 (
⋀3

𝑖=1(𝖼𝗏𝖺𝗋𝑖(𝑥, 𝑣𝑖) ∧ 𝖼𝗇𝖾𝗀𝑖(𝑥, 𝑡𝑖) ∧ V(𝑣𝑖, 𝑡𝑖)))→ ⊥

4. ∃𝑣, 𝑡 (V(𝑣, 𝑡) ∧𝖴𝗇𝖽𝖾𝖿 (𝑣))→ ⊥

5. ∃𝑣1, 𝑣2 (𝖴𝗇𝖽𝖾𝖿 (𝑣1) ∧ 𝖫(𝑣2))→ ⊥

6. ∃𝑣 (𝖫(𝑣) ∧ V(𝑣,1) ∧ lex-sat(0))→ ⊥

Informally, the first denial will be used to force to choose either V(𝗑𝑖,1) or V(𝗑𝑖,0), for each constant 𝗑𝑖, which corresponds 
to assigning either true or false to each propositional variable 𝑥𝑖 of 𝜙. The second denial enforces that all variables that belong to 
𝖫𝖾𝗑𝖫𝖺𝗌𝗍𝖵 must not be assigned the truth value 0. The third denial allows us to restrict the attention only to those assignments that 
satisfy 𝜙. Furthermore, the fourth denial will be used to check whether there exists at least a satisfying assignment to 𝜙, and the fifth 
denial will be used to discard 𝖫(𝗑𝑛) if 𝜙 is not satisfiable. Finally, the last denial will be used to enforce that whenever there exists a 
satisfying truth assignment for 𝜙 assigning 1 to 𝗑𝑛, then lex-sat(0) cannot hold.

Then, we define the following fixed sequence of queries .

𝑞1(𝑐, 𝑣) = 𝖼𝗏𝖺𝗋1(𝑐, 𝑣)

6 An example of such a family is the total order ⊴𝑞 in Example 12, provided that ≤⋅ is decidable in logarithmic space.
7 A truth assignment 𝑣 of the propositional variables 𝑥1,… , 𝑥𝑛 can be represented by a binary number 𝑚𝑣 of length 𝑛, where the most significant bit is the truth 

value assigned to 𝑥1 , and so on. Then, the lexicographically maximum assignment satisfying 𝜙 is the assignment 𝑣, among those satisfying 𝜙, that minimize 𝑚𝑣 .
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𝑞2(𝑐, 𝑣) = 𝖼𝗇𝖾𝗀1(𝑐, 𝑣)

𝑞3(𝑐, 𝑣) = 𝖼𝗏𝖺𝗋2(𝑐, 𝑣)

𝑞4(𝑐, 𝑣) = 𝖼𝗇𝖾𝗀2(𝑐, 𝑣)

𝑞5(𝑐, 𝑣) = 𝖼𝗏𝖺𝗋3(𝑐, 𝑣)

𝑞6(𝑐, 𝑣) = 𝖼𝗏𝖺𝗋3(𝑐, 𝑣)

𝑞7(𝑣) = ∃𝑡 V(𝑣, 𝑡)

𝑞8(𝑣) = 𝖴𝗇𝖽𝖾𝖿 (𝑣)

𝑞9(𝑣) = 𝖫𝖾𝗑𝖫𝖺𝗌𝗍𝖵(𝑣)

𝑞10(𝑣) = 𝖫(𝑣) ∧ V(𝑣,1)

𝑞11 = lex-sat(0).

We conclude the proof by showing that, given a 3-CNF formula 𝜙 with 𝑛 variables, the last query 𝑞11 of the query sequence  is 
entailed in the CQE instance (∅, ,𝜙) under the semantics 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴] if and only if 𝜙 is unsatisfiable or 𝜙 is satisfiable but 𝑥𝑛 is 
false in the lexicographically maximum assignment satisfying 𝜙.

After the first 6 queries, we can restrict the attention only to those censors that do not remove any ``clause''. Consider now query 
𝑞7. At this point, due to the first denial, we are forced to either remove V(𝗑𝑖,1) or remove V(𝗑𝑖,0) (or both) for each 𝑖 ∈ [1, 𝑛]. Now 
there are two cases: either 𝜙 is satisfiable or 𝜙 is not satisfiable.

If 𝜙 is not satisfiable, then every surviving censor has removed both V(𝗑𝑖,1) and V(𝗑𝑖,0) for at least one 𝗑𝑖 (to not violate the 
denials for the clauses). This means that, in each surviving censor, 𝖴𝗇𝖽𝖾𝖿 (𝗑𝑖) is preserved for at least one 𝗑𝑖, which allows us to return 
at least one answer for 𝑞8. However, due to the fifth denial, the ground atom 𝖫(𝗑𝑛) must be removed, and therefore 𝑞10 cannot return 
any answer. This means that the atom lex-sat(0) can be preserved and query 𝑞11 can be answered positively, as required.

If 𝜙 is satisfiable, then it is easy to see that all the tuples (𝗑𝑖) for 𝑖 ∈ [1, 𝑛] will return as answers to query 𝑞7. So, every surviving 
censor indicates a satisfying assignment to 𝜙. It follows that 𝖴𝗇𝖽𝖾𝖿 (𝗑𝑖) is not present in any of the surviving censors, allowing us to 
preserve 𝖫(𝗑𝑖). Now, consider query 𝑞9. Because of the second denial, 𝑞9 can hold only for those variables which have been assigned 
the truth value 1, therefore, since 𝗑𝑖 comes before than 𝗑𝑖+1, for each 𝑖 ∈ [1, 𝑛−1], 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴] will try to check whether there is a 
censor that assigns 1 to 𝗑1, then if it’s possible to assign 1 to 𝗑2 and so on, therefore among the surviving censors (those that indicate 
a satisfying assignment for 𝜙) it will be selected the one corresponding to the lexicographically maximum assignment to 𝜙. Now, if 
such last satisfying assignment assigns true to 𝑥𝑛, then query 𝑞10 returns as answers the nonempty set {{𝑣← 𝗑𝑛}} and so, because 
of the sixth denial, query 𝑞11 must be answered negatively. On the other hand, if such a last satisfying assignment assigns false to 
𝑥𝑛, then query 𝑞10 returns no answer, and so query 𝑞11 can be answered positively without triggering any denial. This allows us to 
conclude that 𝑞11 is answered positively iff the last satisfying assignment assigns true to 𝑥𝑛.

Finally, observe that since ⊴𝑞 is decidable in logarithmic space, it is clear that we can build 𝜑 in logarithmic space too. Therefore, 
the reduction can be carried in logarithmic space, and this proves that REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],CQ] is Δ𝑝

2-hard in data complexity. ■

Theorem 8. REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],FullUCQ] is Δ𝑝
2-hard in data complexity, even in case the TBox is empty.

Proof. We can re-use the same construction used in Theorem 7: in fact, all the queries used, except for query 𝑞7 , are also full UCQs. 
However, it is easy to verify that query 𝑞7 can be replaced with the full UCQ 𝑞′7(𝑥) = 𝑉 (𝑥,1) ∨ 𝑉 (𝑥,0) without affecting the validity 
of the proof. ■

In the next theorem, we will define an algorithm that decides REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],UCQ] and study its data complexity. To do so, 
consider the following decision problem 𝑃 .

Input: A DL-Lite CQE instance ⟨ , ,⟩ and a set 𝑆 of BUCQs 
Question: Does there exist a censor  for ⟨ , ,⟩ such that  ∪  ⊧ 𝑞 holds for each 𝑞 ∈ 𝑆?

This problem is in NP in data complexity, where only the ABox  varies. Indeed, the set of ground atoms cl () has polynomial 
size with respect to , hence the censor  can be computed by a polynomial number of guesses. Then, checking whether  ∪ ⊧ 𝑞, 
for each 𝑞 ∈ 𝑆 , is in AC0.

Therefore, Algorithm 1 can be executed by a nondeterministic Turing machine in polynomial time.

Theorem 9. REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],UCQ] is in Δ𝑝
2 in data complexity.

Proof. Let us fix a TBox  , a privacy policy  , a sequence of UCQs  = ⟨𝑞1,… , 𝑞𝑛⟩ and 𝜎 ∈ 𝔊𝑞𝑛
and let O be an oracle 

for the data complexity version of the problem 𝑃 defined above. Algorithm 2 defines a procedure using oracle O to solve 
REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],UCQ].

Artiϧcial Intelligence 348 (2025) 104402 

27 



P. Bonatti, G. Cima, D. Lembo et al. 

Algorithm 1: Existence of a censor satisfying a set of UCQs.

Data: A DL-Lite CQE instance ⟨ , ,⟩ and a set 𝑆 of BUCQs

1 guess a subset  of cl (); 
2 if  ∪  ∪ is consistent then

3 return  ∪  ⊧ 𝑆 ; 
4 else

5 return false; 

Algorithm 2: Algorithm for REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],UCQ].
Data: A state  = ⟨ ,⟩, where  is a DL-Lite CQE instance and = ⟨𝑞1 ,… , 𝑞𝑛⟩ is a sequence of UCQs and 𝜎 ∈𝔊𝑞𝑛

1 ⟨𝑞′1,… , 𝑞′
𝑘
⟩← BoolInst[⊴]( ,); 

2 pos← ∅; 
3 for 𝑗 ∈ [1, 𝑘] do

4 𝑟𝑒𝑠← call the oracle O with input ( ,pos ∪ {𝑞′
𝑗
}); 

5 if res = ``yes'' then

6 pos← pos ∪ {𝑞′
𝑗
}; 

7 return 𝜎(𝑞𝑛) ∈ pos; 

It is clear that this algorithm correctly decides for each ABox , whether 𝜎(𝑞𝑛) is true under the 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴] semantics. So we 
just have to prove that it runs in polynomial time.

Observe that, since  and  are fixed, for each 𝑖 ∈ [1, 𝑛], the set cert( ∪, 𝑞𝑖) can be computed in polynomial time, and so 
has polynomial size. Moreover, ⊴𝑞𝑖

can be decided in logarithmic space, so we can sort the elements of each cert( ∪, 𝑞𝑖) with 
respect to ⊴𝑞𝑖

in polynomial time. These observations imply that the sequence BoolInst[⊴]( , 𝑞𝑖) can be built in polynomial time and 
has polynomial length. Consequently, we can obtain BoolInst[⊴]( ,) by concatenation of the BoolInst[⊴]( , 𝑞𝑖), for each 𝑖 ∈ [1, 𝑛]. 
Hence, line 1 takes polynomial time and produces a polynomial length sequence. This implies that the loop on lines 3--6 is executed 
a polynomial number of times, and so Algorithm 2 runs in polynomial time. ■

Theorems 7, 8 and 9 imply the following completeness results.

Corollary 5. REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],CQ], REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],FullUCQ] and REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],UCQ] are Δ𝑝
2-complete in data complexity.

9.2. The case when queries are full CQs

Now we provide a complete characterization of the complexity of reasoning over full CQs under 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴] semantics.

We start by recalling some notions on graphs. An ordered graph is a triple 𝐺 = (𝑉 ,𝐸,<) where 𝑉 is the set of vertices, < a total 
order on 𝑉 and 𝐸 ⊆ {{𝑣1, 𝑣2}| 𝑣1, 𝑣2 ∈ 𝑉 } is symmetric binary relation representing the undirected edges of the graph. A clique of 𝐺
is a subset 𝐶 ⊆ 𝑉 such that for each 𝑣1, 𝑣2 ∈ 𝐶 , {𝑣1, 𝑣2} ∈𝐸. A clique of 𝐺 is maximal if it is not strictly contained in any other clique 
of 𝐺. Now, we can extend the total order < on vertices to a lexicographic order on cliques as follows: Let 𝐶1 and 𝐶2 be two cliques 
of 𝐺, we say that 𝐶1 comes lexicographically before 𝐶2 if there exists a vertex 𝑣 ∈ 𝑉 such that 𝑣 ∈ 𝐶1 ⧵𝐶2 and, for each 𝑣′ ∈ 𝑉 such 
that 𝑣′ < 𝑣, 𝑣′ ∈ 𝐶1 iff 𝑣′ ∈ 𝐶2.

In the next theorem, we use the decision problem LFMC, which is known to be PTime-complete [28], defined as follows:

Input: An ordered graph 𝐺 = (𝑉 ,𝐸,<) and a vertex 𝑣 ∈ 𝑉
Question: Determine whether 𝑣 belongs to the lexicographically first (with respect to <) maximal clique of 𝐺.

Theorem 10. REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],FullCQ] is PTime-hard in data complexity, even in case the TBox is empty.

Proof. We prove the theorem by reducing the problem LFMC to REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],FullCQ] using a fixed privacy policy and a fixed 
sequence of queries.

Let 𝐺 = (𝑉 ,𝐸,<) be an ordered graph and let 𝑣 ∈ 𝑉 . Let us define the following ABox 𝐺,𝑣 using the concept 𝖢𝗅𝗂𝗊𝗎𝖾 to contain 
the clique we want to find in 𝐺, the role 𝗇𝗈𝗍𝖤 to represent the absence of an edge between two vertices of the graph, the concept 
𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽 to encode the fact that we want to check whether the vertex 𝑣 is in the clique we found and the atom 𝖫𝖥𝖬𝖢(𝟣) to express 
whether or not 𝑣 was included in the lexicographically first maximal clique of 𝐺. In order to represent the vertices of 𝐺, we consider 
the query 𝑞(𝑥) = 𝖢𝗅𝗂𝗊𝗎𝖾(𝑥) and a set of individual names with the same cardinality as 𝑉 . Then, the mapping between vertices of 𝐺
and individual constants is increasingly monotonic w.r.t. ⊴𝑞 , that is 𝑤1 < 𝑤2 iff the corresponding individual constants 𝗐1 and 𝗐2
are such that 𝗐1 ⊲𝑞 𝗐2.

More specifically, we define the ABox 𝐺,𝑣 as follows:

• 𝖢𝗅𝗂𝗊𝗎𝖾(𝗐), for each 𝑤 ∈ 𝑉 ;

• 𝗇𝗈𝗍𝖤(𝗐1,𝗐2), for each 𝑤1,𝑤2 ∈ 𝑉 such that {𝑤1,𝑤2} ∉𝐸;
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• 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽(𝗏);
• 𝖫𝖥𝖬𝖢(𝟣).

Observe that, since ⊴𝑞 is by assumption decidable using logarithmic space, we can pick the individuals representing vertices of 𝐺
in logarithmic space and thus build 𝐺,𝑣 in logarithmic space.

Now we define the following fixed policy  .

1. ∃𝑥, 𝑦 (𝖢𝗅𝗂𝗊𝗎𝖾(𝑥) ∧ 𝗇𝗈𝗍𝖤(𝑥, 𝑦) ∧𝖢𝗅𝗂𝗊𝗎𝖾(𝑦))→ ⊥

2. ∃𝑥 (𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽(𝑥) ∧𝖢𝗅𝗂𝗊𝗎𝖾(𝑥))→ ⊥

3. ∃𝑥 (𝖫𝖥𝖬𝖢(𝟣) ∧ 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽(𝑥))→ ⊥

The first denial expresses the fact that all pairs of vertices in the extension of 𝖢𝗅𝗂𝗊𝗎𝖾 must be connected by an edge, i.e., 𝖢𝗅𝗂𝗊𝗎𝖾
represents a clique, the second denial expresses the fact that the concepts 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽 and 𝖢𝗅𝗂𝗊𝗎𝖾 must be disjoint, while the third 
denial expresses the fact that 𝖫𝖥𝖬𝖢(𝟣) can be true only when 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽 does not hold for any individual of the knowledge base.

Then we define the following fixed sequence of full CQs .

𝑞1(𝑥, 𝑦) = 𝗇𝗈𝗍𝖤(𝑥, 𝑦)

𝑞2(𝑥) = 𝖢𝗅𝗂𝗊𝗎𝖾(𝑥)

𝑞3(𝑥) = 𝗎𝗇𝗌𝖾𝗅𝖾𝖼𝗍𝖾𝖽(𝑥)

𝑞4 = 𝖫𝖥𝖬𝖢(𝟣).

Let 𝐺 be an ordered graph, 𝑣 one of its vertices, and let us consider the protection state  = ⟨⟨∅, ,𝐺,𝑣⟩,⟩. We conclude 
by proving that 𝖫𝖥𝖬𝖢(𝟣) is entailed by  under the 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴] semantics iff (𝐺,𝑣) is an instance of LFMC. First, observe that 
query 𝑞1 can be answered honestly, and it forces all maximally cooperative censors to retain all facts pertaining to the structure 
of 𝐺. Consequently, due to the first denial and maximal cooperativity, answering query 𝑞2 requires computing a maximal clique of 
the graph 𝐺. According to the semantics of 𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴], the resulting set is the lexicographically first, based on ⊴𝑞2

. Then, since 
the mapping between vertices in 𝐺 and individual constants occurring in 𝐺 is order-preserving, the answer set for 𝑞2 describes 
the lexicographically first maximal clique of 𝐺 as per the < relation. Subsequently, because of denial 2 and by definition of 𝐺,𝑣, 
answering 𝑞3 involves verifying whether the computed clique includes vertex 𝑣. Finally, because of denial 3, 𝑞4 will be true iff 𝑣 is in 
the lexicographically first clique of 𝐺. ■

We now prove the completeness by showing a PTime algorithm.

Theorem 11. REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],FullCQ] is in PTime in data complexity.

Proof. Let us fix a TBox  , a privacy policy  , a sequence of full CQs  = ⟨𝑞1,… , 𝑞𝑛⟩ and 𝜎 ∈ 𝔊𝑞𝑛
. Algorithm 3 solves 

REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],FullCQ].

Algorithm 3: Algorithm for REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],FullCQ].
Data: A state  = ⟨ ,⟩, where  = ⟨ , ,⟩ is a DL-Lite CQE instance and = ⟨𝑞1,… , 𝑞𝑛⟩ is a sequence of full CQs and 𝜎 ∈𝔊𝑞𝑛

1 ⟨𝑞′1,… , 𝑞′
𝑘
⟩← BoolInst[⊴]( ,); 

2 ← ∅; 
3 for 𝑗 ∈ [1, 𝑘] do

4 if  ∪  ∪ Atoms(𝑞′
𝑗
) ∪ is consistent then

5 ←  ∪ Atoms(𝑞′
𝑗
); 

6 return  ∪  ⊧ 𝜎(𝑞𝑛); 

As discussed in Theorem 9, BoolInst[⊴]( ,) has polynomial size and can be computed in polynomial time. Then, since  and 
are fixed, checking the consistency of  ∪  ∪ Atoms(𝑞′𝑗 ) ∪ in Step 4 can be done in polynomial time. Consequently, the algorithm 
runs in polynomial time. Due to Proposition 15, in order to prove the correctness of the algorithm, it is sufficient to prove that the 
censor  in Step 6 is maximally cooperative with respect to BoolInst[⊴]( ,). To do so, we denote by 𝑖 the set  after the 𝑖-th 
iteration of the for loop in Step 3. Assume by contradiction that there exists a censor ′ for  which is more cooperative than  with 
respect to BoolInst[⊴]( ,) = ⟨𝑞′1,… , 𝑞′

𝑘
⟩. We can assume that ′ is optimal. By definition, there exists a natural number 𝑚 such that:

• For each 𝑖 ∈ [1,𝑚],  ∪  ⊧ 𝑞′𝑖 iff  ∪ ′ ⊧ 𝑞′𝑖 ;
•  ∪  ̸⊧ 𝑞′

𝑚+1 and  ∪ ′ ⊧ 𝑞′
𝑚+1.
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Now, observe that since ′ is an optimal censor and each 𝑞′𝑗 , with 𝑗 ∈ [1, 𝑘], appearing in BoolInst[⊴]( ,) is a Boolean full CQ, then 
 ∪′ ⊧ 𝑞′𝑗 iff Atoms(𝑞′𝑗 ) ⊆ ′. On the other hand, by construction, we also have that  ∪ ⊧ 𝑞′𝑗 iff Atoms(𝑞′𝑗 ) ⊆ . Therefore, it follows 
that:

• For each 𝑖 ∈ [1,𝑚], Atoms(𝑞′𝑖 ) ⊆  iff Atoms(𝑞′𝑖 ) ⊆ ′;
• Atoms(𝑞′

𝑚+1) ⊈ ;

• Atoms(𝑞′
𝑚+1) ⊆ ′.

This situation can only occur because  ∪ 𝑚 ∪ Atoms(𝑞′
𝑚+1) ∪  is inconsistent. On the other hand, we have that 𝑚 ⊆ ′ and thus 

 ∪ ′ ∪ would be inconsistent too. A contradiction. ■

The above theorems imply the following final result.

Corollary 6. REC[𝖽𝗒𝗇𝖢𝖰𝖤𝑠𝑒𝑞[⊴],FullCQ] is PTime-complete in data complexity.

10. Related work

Controlled Query Evaluation was first investigated in the context of databases in [3,11,23,22].

The framework has then been extended to Description Logics in different ways. In [29] the authors define CQE for ontologies 
specified in Boolean  and queries that are  formulas. The focus of the work is on the properties that a censor should have to 
guarantee certain desiderata regarding data confidentiality protection. This investigation has been later generalized to general forms 
of logic in [30]. In [24,6], the confidentiality of secrets is obtained through confidentiality preserving (CP) censors. More specifically, 
reference [24] considers ontologies in OWL 2 RL, the tractable profile of OWL 2 [13] that is encodable in Datalog, and a policy that 
is a set of ground atoms. The notion of CP censor defined allows a user to obtain a maximal set of answers to each query without 
being able to infer the atoms in the policy. Additionally, the paper pinpoints a subset of OWL 2 RL for which an optimal censor can 
be computed in polynomial time. Continuing their exploration in [6], the same authors delve into ontologies specified in Datalog or 
in one of the OWL 2 profiles, with the policy expressed as a CQ. Similar to [24], the primary focus of the paper is on the existence 
and computation of an optimal censor, according to two different censor notions, called view-based and obstruction-based. Various 
computational complexity results are provided. Interestingly, for OWL 2 QL ontologies, i.e., the OWL 2 counterpart of DL-Lite
(which is the logic studied in the present paper), an obstruction-based censor in the considered setting can be obtained in polynomial 
time. The CQE problem for DL ontologies has been then addressed, and somehow revisited, in [7], where the authors study skeptical 
reasoning in CQE, that is, the problem of computing only the query answers that are returned by all censors. This form of query 
answering is studied for ontologies expressed in two popular lightweight DLs, that is, DL-Lite and ⊥. Algorithms and complexity 
results are provided for different, incomparable notions of censors, differing from one another for the censor language on which 
they are based. Intuitively, a censor for a language  returns a set of sentences in  that are entailed by the original ontology and 
that together with the TBox do not infer data protected by the policy. The policy is given as a set of denials, exactly as done in the 
present paper. Interestingly, a case in which skeptical reasoning in CQE is polynomial in data complexity is identified for ontologies 
expressed in DL-Lite. This result has been later refined in [31], where the problem is shown to be FO rewritable and thus in AC0 in 
data complexity. We point out that all the above mentioned approaches do not take into account what a user asked in the past, that is, 
in answering a user query they do not consider a protection state, as we do in the present paper (see Definition 1). As a consequence, 
to ensure confidentiality, it has to be assumed that a user may have asked whatever query she wanted. Intuitively, this assumption 
may compromise cooperativeness, as we have defined it in the present paper. In particular, we have formally shown in Section 3
that the skeptical reasoning semantics is always a sound approximation of any MC-CQE semantics (the skeptical reasoning semantics 
corresponds to the semantics studied in [7] when the censor language is the language of ground atoms constructible on the ontology 
signature). As for safeness guarantees, it has to be said that the type of censors studied in [24,6,7] do not take into account possible 
background knowledge owned by an attacker and thus, as it was shown in [8], in the presence of such additional knowledge, security 
breaches under these censors may occur.

A safer notion of censor, protecting even in the above mentioned situation, is the indistinguishability based (IB) one. The first CQE 
method for Description Logics based on IB censors was introduced in [1,32]. The confidentiality model proposed in these papers takes 
into account both object-level and meta-level background knowledge of the attacker and is more robust and general. However, CQ 
answering and FO rewritability are not addressed in those papers. Moreover, the secure views of [1] are constructed from a sequence 
of queries that covers all possible relevant queries, while the properties we investigate in this paper hold for arbitrary (possibly 
non-exhaustive) sequences of queries submitted by the users.

In [9] IB censors are compared with CP censors that in general do not enjoy the indistinguishability property. Moreover, [9] 
provides algorithms and complexity results for skeptical reasoning under IB censors, that is, the problem of computing only the query 
answers that are returned by all IB censors, for the case of DL-Lite ontologies and policy that is a set of denials. The paper shows 
that the problem is, in general, intractable. To re-gain tractability, the paper proposes a sound approximation of IB censors for which 
answering CQs is FO rewritable. We notice that the approximation proposed in [9] corresponds to the 𝖨𝖦𝖠 semantics studied in [12], 
and then adopted in [33] for more expressive policies allowing for numerical restrictions in the denial body. We have recalled the 
𝖨𝖦𝖠 semantics in Section 3 and have shown in Proposition 3 that it is, in general, less cooperative than MC-CQE semantics.
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Table 3
Data complexity of the examined decision problem.

Query language General MC-CQE semantics Tractable preferences Lexicographic preferences 
BUCQ in AC0 in AC0 in AC0

FullCQ not in AC0 PTime-hard PTime-complete 
CQ 

Δ𝑝

2[𝑂(log𝑛)]-hard Δ𝑝

2[𝑂(log𝑛)]-hard in Σ𝑝

2 Δ𝑝

2-completeFullUCQ 
UCQ 

The issue of how to select an optimal censor has been tackled in [10]. The selection criterion is based on explicit preferences over 
predicates, that are specified together with the CQE instance. This approach, in general, is not maximally cooperative w.r.t. a given 
state, because the optimal censor is selected statically, in a stateless fashion. Moreover, the given preferences are not always able to 
select a single optimal censor.

Benedikt et al. [34,35] provide, for ontology-based data integration settings, a systematic complexity analysis of confidentiality 
preserving query answering based on indistinguishability. They do not address the issue of selecting a secure data disclosure among 
the available ones, but rather study the problem on whether a data integration system, in which mappings connect a source database 
to a global integrated one (possibly given in terms of an ontology), is such that no data protected by a policy specified on the sources 
are indeed disclosed. Intuitively, this means checking whether the mappings of the data integration systems are able to filter out 
confidential data as specified by the source policy. IB censors in OBDA are also considered in [12], where a practical approach to 
skeptical reasoning in CQE is presented. Differently from our approach, in [12] censors do not take into account the history of the 
users’ queries.

An alternative approach for preserving privacy in query answering relies on probabilistic frameworks, ensuring that users gain 
no new insights regardless of their prior beliefs when executing queries. In [36], a prior belief is defined as a probability distribution 
over tuples, indicating the likelihood of each tuple being present in a given database. The security of a view is determined by the 
inability of its answers to contribute to Bayesian inference, thereby enhancing the probability of a secret. This concept easily extends 
to multiple views, enabling the examination of potential collusions among attackers. In a similar vein, Biskup et al. [37] adopt a query 
refusal approach that guarantees the conditional probability of any secret, given the provided answers, remains below a predefined 
threshold.

Furthermore, Cuenca Grau et al. [2,38] introduce and investigate an anonymization framework for knowledge graphs based on 
substituting nodes with blanks. This framework is used in [39] to define a CQE semantics in the case when there is no TBox, the 
privacy policy is defined in the Description Logic  and the only allowed queries are instance queries. Note that, as observed in [8], 
the approach used is vulnerable when the attacker knows the anonymization algorithm and the policy.

We conclude this section by discussing the relationship between the CQE problem, as considered in this paper, and the Consistent 
Query Answering (CQA) problem, extensively studied for databases and ontologies [40--43]. Both problems address complementary 
challenges related to reasoning over inconsistent or restricted knowledge. CQA focuses on deriving semantically coherent answers 
from inconsistent ontologies by considering all possible repairs, that is, maximal subsets of the data that restore consistency with the 
ontology’s logical constraints [43]. CQE, on the other hand, enforces confidentiality policies by dynamically censoring query answers 
that might reveal sensitive information, while still returning maximal non-sensitive subsets of those answers. Optimal censors in 
CQE selectively withhold the minimal amount of information necessary to prevent policy violations, thereby reflecting a principle 
of minimal change similar to the one underlying repairs in CQA. Recent studies have established a formal connection between the 
two frameworks: confidential data in CQE can be viewed as inconsistencies relative to policy constraints, making CQE analogous to 
answering queries over models that somehow ``repair'' policy violations [31]. This connection in some cases enables mutual reductions 
between the CQE and the CQA problem, especially within the context of Description Logics, where both frameworks rely on reasoning 
over alternative scenarios (repairs or censored views) to compute query answers (see [31] for a detailed discussion). It is also worth 
noting that, building on the connection between CQE and CQA, priority-based CQA semantics have been adapted to the CQE setting 
in cases where priority relations among axioms can be exploited to guide the censoring process [44]. Interestingly, a scenario is 
identified in which answering conjunctive queries under prioritized ontologies is in AC0 in data complexity. We point out, however, 
that the investigation in [31,44] shares with CQA approaches the skeptical nature of reasoning. Instead, in the present paper, we aim 
at maximizing the information preserved in the semantics in order to increase cooperativeness. This difference sets our approach apart 
from the previous ones. Therefore, the results presented in this work have not been obtained leveraging the CQE-CQA correspondence, 
and the preference ordering over censors used in the present paper is fundamentally different in nature from the priority relations 
considered in [44].

11. Conclusions

In this investigation, our objective is to enhance the cooperative nature of indistinguishability-based CQE within Description 
Logic ontologies. To this end, we have identified a class of maximally cooperative CQE semantics (MC-CQE), enjoying the ``longest 
honeymoon'' property. This property guarantees that, when presented with a sequence of queries, the provision of honest answers is 
maximized before resorting to deceptive responses.
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We have shown that our approach delivers a larger set of answers compared to competing methodologies, such as skeptical 
reasoning and 𝖨𝖦𝖠. We have also proved that our method cannot be simulated by modifying the underlying ontology or privacy 
policy. Instead, it necessitates specific query answering techniques.

We have conducted an in-depth study on the complexity of query answering in the MC-CQE framework. The results of our analysis 
are summarized in Table 3. We remark that, as stated by Theorem 3, Theorem 4, Theorem 5, Theorem 7, Theorem 8 and Theorem 10, 
the lower complexity bounds hold for every semantics in the indicated family. Moreover, these bounds remain valid even when the 
TBox is empty.

This work examines the profitability of the MC-CQE framework compared to other methodologies and provides a detailed analysis 
of its data complexity with respect to DL-Lite. However, several design and computational challenges remain, creating opportunities 
for further research.

From a design perspective, we assume that MC-CQE processes all users’ queries in a single sequence. While this approach may 
appear less cooperative from an individual user’s perspective, it ensures security even when users collude to share information. 
The extent to which this assumption can be relaxed depends on the specific application domain. Moreover, specific realizations of 
maximally cooperative CQE semantics, such as 𝖽𝗒𝗇𝖢𝖰𝖤 and 𝖽𝗒𝗇𝖢𝖰𝖤[⪯], maintain the entire query history, which can grow rapidly 
over time. However, as the history expands, many queries may no longer affect the set of active censors and, therefore, could be 
omitted from the history. Furthermore, the number of active censors may decrease to just one, at which point no additional queries 
need to be stored. As future work, quickly identifying queries that do not influence future evaluations can serve as a performance 
optimization technique, which may produce shorter FO rewritings for Boolean queries.

From a theoretical perspective, we aim at exploring the combined complexity of our framework when queries may vary. Addition

ally, at an abstract level, MC-CQE semantics demonstrate a degree of independence from the underlying logical language. Therefore, 
more expressive denial languages can be considered, enabling the representation of numerical restrictions or inequality relations [10]. 
Similarly, MC-CQE semantics can be explored within other Description Logic fragments.

Finally, once the theoretical landscape is sufficiently understood, we intend to implement and experimentally evaluate suitable 
MC-CQE semantics.
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