
Advanced Data Management

First-Order Logic

Domenico Fabio Savo

Corso di laurea magistrale

INGEGNERIA INFORMATICA

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

University of Bergamo

Outline of the course

1. Introduction to propositional logic

2. Introduction to First-order Logic

3. Relational Calculus

4. Information Integration Systems (IIS)

5. Logical formalization of IISs

6. Mapping between Global Schema e Data Sources

7. Incomplete information databases

8. Query answering over IISs

9. Ontology-Based Data Management (OBDM)

10. Description Logic Ontologies

11. Query answering in ontologies

12. Query answering in OBDM

Propositional Logic (Recap)

Exercise 0 (our friends Ander and Bjorn)

On a walk in the woods, you stumble upon a bridge guarded by two trolls.

They say:

Ander: If I wear a tie or cufflinks then I wear a jacket.

Bjorn: Ander is not wearing a jacket!

Prove or disprove that:

1. Ander wears cufflinks.

2. Ander wears a tie.

Exercise 0: Solution

On a walk in the woods, you stumble upon a bridge guarded by two trolls.

They say:

Ander: If I wear a tie or cufflinks then I wear a jacket.

Bjorn: Ander is not wearing a jacket!

• Let 𝐶 = Cufflink, 𝑇 = Tie, 𝐽 = Jacket

• Consider the theory {¬(𝐶 ∨ 𝑇) ∨ 𝐽, ¬𝐽}

• In all the models 𝐼 of the theory above we have that 𝐼(𝐽) = 𝒇𝒂𝒍𝒔𝒆

• Therefore, 𝐼(¬(𝐶 ∨ 𝑇)) = 𝒕𝒓𝒖𝒆.

• By De Morgan: ¬(𝐶 ∨ 𝑇) ≡ (¬𝐶 ∧ ¬𝑇)

Predicate Logics: An Example

The Need For Predicates

With propositional logic, we can formally reason about the truth or falsity of a

sentence starting from the truth or falsity of some basic facts

– Basic facts are represented by propositional variables

– Logical connectives are used to represent how the facts are connected

Often (especially in databases) we need to talk about properties of sets

– Instead of propositional variables we use constants and predicates,

i.e., syntactic representations of individuals and of sets of individuals,

respectively.

Example of Predicates

Suppose you want to formalize the fact that Fabio is a person that

lives in a city called Bergamo (the subscript indicates the arity of

the predicate).

• Predicates: Person/1, City/1, Lives/2.

• Constants: Fabio, Bergamo

Person(Fabio) ∧ City(Bergamo) ∧ Lives(Fabio, Bergamo)

– This formula could capture our intuition.

Example of Predicates

Clearly one could write different sentences using the same

predicates.

• Predicates: Person/1, City/1, Lives/2.

Person(Bergamo)

– Bergamo is a Person.

City(Pavia) ∧ Lives(Fabio, Pavia)

– Fabio lives in Pavia.

Example of Functions

We may also want to talk about objects we do not explicitly know. In this

case we use functions.

• Predicates: Person/1, City/1, Lives/2.

• Constants: Fabio, Bergamo

• Functions: FatherOf/1,

Person(FatherOf(Fabio))

– The father of Fabio is a person.

City(Pavia) ∧ Lives(FatherOf(Fabio), Pavia)

– The father of Fabio lives in Pavia.

Truth or Falsity

Consider the following formula

– Person(Fabio) ∧ City(Bergamo) ∧ Lives(Fabio, Bergamo)

How can we define the truth value of such a formula?

Instead of evaluating each atom, we evaluate the value of the

predicates on the objects represented by the constants and

functions.

First-Order Logic

There are different formalisms to represent predicates.

First-order logic (FOL) is the logic to speak about objects.

FOL is concerned with properties of these objects and relations

among them.

FOL uses functions (including constants) that denote objects.

First-Order Logic: Syntax

Syntax of First-Order Logic (1)

First-Order Logic formulae consists of the following components

1. Terms, intuitively representing individuals

2. Predicates, intuitively representing relations and properties of

individuals

3. Connectives, intuitively representing the structure of the formula.

4. Quantifiers, intuitively representing individuals not explicitly occurring

in the formula

Syntax of First-Order Logic (2)

In what follows we assume to have the following pairwise

distinct countable sets:

• the set of symbols Vars = {𝑥1, 𝑥2… , }

• the set of function symbols Funcs

• A function symbol 𝑓 has an associated arity ar(𝑓) (𝑓/ar(𝑓))

• Functions of arity 0 are called constants.

• the set of predicate symbols Pred

• A predicate symbol P has an associated arity ar(P) (P/ar(P))

Note: a set is called countable if it is finite or countably infinite

Terms

Def: The set Terms is inductively defined as follows.

– Vars ⊆ Terms

– If 𝑡1, … , 𝑡𝑛 ∈ Terms and 𝑓/𝑛 ∈ Funcs then 𝑓(𝑡1, … , 𝑡𝑛) ∈ Terms.

– Nothing else is in Terms.

Further on this course, we will consider the fragment of FOL that includes

only constants as functions (a constant is a function with arity 0).

In such case, we will simplify our formalization saying that the set Terms

corresponds to Cons ∪ Vars where Cons is a countable set of constants

symbols

Exercise

Assume Vars = {𝑥1, 𝑥2}

Assume Funcs = {+/2, ∗/2 , 1/0 }

Which of the following is in Terms?

– +(1, 𝑥1)

– ∗ (+(1, 1), 2)

– +(+(𝑥1, 𝑥1), +(𝑥2, 𝑥2))

– ∗ (+(𝑥1, 1), +(1))

– ∗ (+(𝑥1, 𝑥2), +(𝑥3, 𝑥4))

Exercise: Solution

Assume Vars = {𝑥1, 𝑥2}

Assume Funcs = {+/2, ∗/2 , 1/0 }

Which of the following is in Terms?

– +(1, 𝑥1). YES!

– ∗ (+(1, 1), 𝟐). NO!

– +(+(𝑥1, 𝑥1), +(𝑥2, 𝑥2)). YES!

– ∗ (+(𝑥1, 1), +(𝟏)). NO!

– ∗ (+(𝑥1, 𝑥2), +(𝒙𝟑, 𝒙𝟒)). NO!

FOL Formulae

The set of Forms is defined inductively as follows:

If 𝑡1, … , 𝑡𝑛 ∈ Terms and P/n ∈ Pred, then 𝑃(𝑡1, … , 𝑡𝑛) ∈ Forms

If 𝑡1, 𝑡2 ∈ Terms then (𝑡1 = 𝑡2) ∈ Forms

If 𝑓1, 𝑓2 ∈ Forms and 𝑥 ∈ Vars then

▪ (𝑓1 ∧ 𝑓2) ∈ Forms

▪ (𝑓1 ∨ 𝑓2) ∈ Forms

▪ (𝑓1 → 𝑓2) ∈ Forms

▪ ¬(𝑓1) ∈ Forms

▪ ∃𝑥. 𝑓1 ∈ Forms

▪ ∀𝑥. 𝑓1 ∈ Forms.

Nothing else is in Forms

These are called

atomic formulae

Functions and Predicates

The sets Preds, Funcs, and Vars form the alphabet of our logic.

At the syntactic level predicates and functions look similar

– There is however a difference in the syntactic rules that define them

The difference will be clear at the semantic level

– Functions define individuals

– Predicates define relations among individuals

Propositional and Predicate Logics

• Connectives work the same in both logics

– At the syntactic level

• A predicate P with ar(0) can be seen as propositional variables.

– First-Order Logic is an extension of Propositional Logic

• In addition we can talk about objects:

– Constants and variables representing specific objects

– ∃𝐱 existential quantification: there exists an object such that.

– ∀𝐱 universal quantification: all objects such that.

Exercise

Assume the following alphabet:

Vars = {x, y}, Funcs = {+/2, */2, 1/0, 2/0, …}, Preds = {Even/1, Odd/1}

Which of the following are FOL formulae?

1. 𝑂𝑑𝑑(2)

2. ¬ 𝑂𝑑𝑑(2) ∨ ¬ 𝑁𝑎𝑡(1)

3. ¬ ∨ 𝑂𝑑𝑑(3)

4. ∀𝑥. ∃𝑦. 𝑂𝑑𝑑(+(𝑥, 𝑦)) ∧ 𝑁𝑎𝑡(𝑥) ∧ 𝑁𝑎𝑡(𝑦)

Exercise: Solution

Assume the following alphabet:

Vars = {x, y}, Funcs = {+/2, */2, 1/0, 2/0, …}, Preds = {Even/1, Odd/1}

Which of the following are FOL formulae?

1. 𝑂𝑑𝑑(2) YES!

2. ¬ 𝑂𝑑𝑑(2) ∨ ¬ 𝑁𝑎𝑡 1 YES!

3. ¬ ∨ 𝑂𝑑𝑑(3) NO!

4. ∀𝑥. ∃𝑦. 𝑂𝑑𝑑(+(𝑥, 𝑦)) ∧ 𝑁𝑎𝑡(𝑥) ∧ 𝑁𝑎𝑡(𝑦) YES!

Exercise: observation

Which of the following are FOL formulae?

1. 𝑂𝑑𝑑(2) YES!

2. ¬ 𝑂𝑑𝑑(2) ∨ ¬ 𝑁𝑎𝑡 1 YES!

3. ¬ ∨ 𝑂𝑑𝑑(3) NO!

4. ∀𝑥. ∃𝑦. 𝑂𝑑𝑑(+(𝑥, 𝑦)) ∧ 𝑁𝑎𝑡(𝑥) ∧ 𝑁𝑎𝑡(𝑦) YES!

Can we establish whether the above formulae are true?

Exercise: observation

Which of the following are FOL formulae?

1. 𝑂𝑑𝑑(2) YES!

2. ¬ 𝑂𝑑𝑑(2) ∨ ¬ 𝑁𝑎𝑡 1 YES!

3. ¬ ∨ 𝑂𝑑𝑑(3) NO!

4. ∀𝑥. ∃𝑦. 𝑂𝑑𝑑(+(𝑥, 𝑦)) ∧ 𝑁𝑎𝑡(𝑥) ∧ 𝑁𝑎𝑡(𝑦) YES!

Can we establish whether the above formulae are true?

Not yet! For now, formulae are meaningless syntactic objects.

To give meaning to the symbols we need interpretations that,

similarly to Propositional logic, will tell us whether a formula is

true of false.

First-Order Logic: Semantics

Domains and Interpretations

In order to interpret FOL formulae, we need a set of objects.

We will call this set domain of discourse (or simply domain).

– The domain of natural numbers …

– The domain of people and their jobs …

Observe: objects (i.e., elements in the domain) and terms

(elements of the set Terms define earlier) are not the same!

– Function 2/0 is not the number 2 in the domain of natural numbers.

To connect terms with objects we use interpretations.

– Intuitively, interpretations connect terms to their “meaning”

Relations

Before providing the notion of interpretation, we need the following notion of

relation

Assume to have a set 𝒜 of elements

An n-ary tuple over 𝒜 is a sequence of n elements of 𝒜

– Example: (𝑎1, 𝑎2, … , 𝑎𝑛)

The n-th power of 𝓐 (written 𝓐𝒏) is the set of n-ary tuples over 𝒜

An n-ary relation over 𝒜 is a subset of 𝓐𝒏

FOL Interpretation: Definition

Assume sets Funcs and Preds of functions and predicates, respectively

Definition: An interpretation 𝐼 is a pair (Δ𝐼, ⋅ 𝐼) where

– Δ𝐼 is a countable set (the domain of discourse)

– ⋅𝐼 is a function from Funcs ∪ Preds defined as follows:

• 𝑓𝐼 = Δ𝑘 → Δ , for each 𝑓 ∈ Funcs with 𝑎𝑟 𝑓 = 𝑘

• 𝑃𝐼 ⊆ Δ𝑘 , for each 𝑃 ∈ Preds with 𝑎𝑟 𝑃 = 𝑘

So, the function ⋅𝐼 maps each function symbol 𝑓 of arity n to an n-ary

function 𝑓𝐼 = Δ𝑘 → Δ and each predicate symbol 𝑃 of arity n to an n-ary

relation 𝑃𝐼 ⊆ Δ𝑘 .

In case for a function 𝑓 we have that 𝑎𝑟(𝑓) = 0, then 𝑓𝐼 denotes exactly

one object in Δ𝐼. As already said, we call them constants.

Example of Interpretation

Assume the following:

Funcs = {+/2, */2, 1/0, 2/0, …}, Preds = {Even/1, Odd/1}

In the standard interpretation 𝐼 of natural numbers we have:

– Δ𝐼 is equal to ℕ

– The predicate Even/1 is mapped to the unary relation 𝐸𝑣𝑒𝑛𝐼 ⊆ Δ ,

representing the set of even numbers

– The predicate Odd/1 is mapped to the unary relation 𝑂𝑑𝑑𝐼⊆ Δ ,

representing the set of odd numbers

– Each costant n/0 is mapped to a natural number: 𝑛𝐼 = 𝑛 ∈ ℕ

What is 𝑰 telling us about the following formulae?

Interpretation of Formulae

Can we say whether the following formulae are true in 𝐼?

1. 𝑂𝑑𝑑(2)

2. ¬ 𝑂𝑑𝑑(2) ∨ ¬ 𝑂𝑑𝑑(1)

3. ∃𝑥. 𝑂𝑑𝑑(𝑥) ∨ 𝐸𝑣𝑒𝑛(𝑥)

4. 𝑂𝑑𝑑(𝑥) ∨ 𝐸𝑣𝑒𝑛(𝑥)

Interpretation of Formulae

Can we say whether the following formulae are true in 𝐼?

1. 𝑂𝑑𝑑(2)

2. ¬ 𝑂𝑑𝑑(2) ∨ ¬ 𝑂𝑑𝑑(1)

3. ∃𝑥. 𝑂𝑑𝑑(𝑥) ∨ 𝐸𝑣𝑒𝑛(𝑥)

4. 𝑂𝑑𝑑(𝑥) ∨ 𝐸𝑣𝑒𝑛(𝑥)

Intuitively, 𝐼 tells everything we need to know about formulae 1 and 2.

Moreover, by interpreting ∃𝒙 as “there exists a domain element”, we have

that 𝐼 still gives us the truth value of the formula 3.

Formula 4 is totally different: we need a way to evaluate variables.

Assignments

Assume an interpretation 𝐼 = (Δ𝐼 ,⋅𝐼) for Funcs and Preds.

An assignment 𝜶 is function that maps each variable symbol in Vars to an

object in Δ𝐼, i.e.,

𝛼: 𝑽𝒂𝒓𝒔 → 𝜟𝑰

We define the extension ො𝛼 of 𝛼 to Terms as follows.

– ො𝛼 𝑥 = 𝛼(𝑥) , for each 𝑥 ∈ Vars.

– ො𝛼 𝑓(𝑡1, … , 𝑡𝑛) = 𝑓𝐼 (ො𝛼(𝑡1), … , ො𝛼(𝑡𝑛)), for each 𝑓 ∈ Terms.

Given a variable 𝑥 ∈ Vars and an object 𝑜 ∈ Δ𝐼, we define the assignment

𝛼[𝑥 → 𝑜] as

– 𝛼 𝑥 → 𝑜 (𝑦) = 𝛼(𝑦), for each variable 𝑦 ≠ 𝑥

– 𝛼 𝑥 → 𝑜 𝑥 = 𝑜

Truth of a Formula

Assume a FOL formula 𝜑, an assignment 𝛼, and an interpretation 𝐼

We say that 𝝋 is true in 𝑰 according to 𝜶 (written 𝑰, 𝜶 ⊨ 𝝋) if the following holds:

– 𝐼, 𝛼 ⊨ 𝑃(𝑥1, … , 𝑥𝑛) and ො𝛼 𝑥1 , … , ො𝛼 𝑥𝑛 ∈ 𝑃𝐼

– 𝐼, 𝛼 ⊨ (𝑥1 = 𝑥2) and ො𝛼 𝑥1 = ො𝛼(𝑥2)

– 𝐼, 𝛼 ⊨ (𝜑1 ∧ 𝜑2) and I, 𝛼 ⊨ 𝜑1 and I, 𝛼 ⊨ 𝜑2

– 𝐼, 𝛼 ⊨ (𝜑1 ∨ 𝜑2) and I, 𝛼 ⊨ 𝜑1 or I, 𝛼 ⊨ 𝜑2

– 𝐼, 𝛼 ⊨ (𝜑1 → 𝜑2) and either I, 𝛼⊭𝜑1 or I, 𝛼 ⊨ 𝜑2

– 𝐼, 𝛼 ⊨ ¬𝜑1 and I, 𝛼⊭𝜑1 (𝜑 is NOT true in 𝐼 according to 𝛼)

– 𝐼, 𝛼 ⊨ ∃𝑥. 𝜑1(𝑥) and I, 𝛼[𝑥 → 𝑎] ⊨ 𝜑1, for some 𝑎 ∈ Δ𝐼

– 𝐼, 𝛼 ⊨ ∀𝑥. 𝜑1(𝑥) and I, 𝛼[𝑥 → 𝑎] ⊨ 𝜑1, for each 𝑎 ∈ Δ𝐼

Truth and Falsity

Assume a FOL formula 𝜑.

• 𝜑 is called satisfiable if 𝐼, 𝛼 ⊨ 𝜑, for some 𝐼, 𝛼.

• 𝜑 is called unsatisfiable if 𝐼, 𝛼 ⊨ ¬𝜑, for every 𝐼, 𝛼.

• 𝜑 is called valid (tautology) if 𝐼, 𝛼 ⊨ 𝜑, for every 𝐼, 𝛼.

• 𝜑 is called falsifiable if 𝐼, 𝛼 ⊨ ¬𝜑, for some 𝐼, 𝛼.

Equalities – Symbols and Semantics

Given and interpretation 𝐼 and an assignment 𝛼, we know that

𝐼, 𝛼 ⊨ (𝑡1= 𝑡2) if ො𝛼(𝑡1) = ො𝛼(𝑡2)

What is the difference between the two equality symbols above?

• The = symbol on the left is syntactic, indeed, it represents a binary relation

symbol with special interpretation.

• The = symbol on the right is semantic, it means identity over the domain of 𝐼

Exercise

Assume functions 𝑡/0 and 𝑠/0

Are the following formulae satisfiable, falsifiable, unsatisfiable, or

valid?

1. (𝑡 = 𝑡)

2. (𝑡 = 𝑠)

3. ¬(𝑡 = 𝑡)

4. ¬(𝑡 = 𝑠)

Give examples of interpretations to support your claims

Exercise

Assume functions 𝑡/0 and 𝑠/0

Are the following formulae satisfiable, falsifiable, unsatisfiable, or

valid?

1. (𝑡 = 𝑡) Valid (is a tautology)

2. (𝑡 = 𝑠) Satisfiable, Falsifiable

3. ¬(𝑡 = 𝑡) Unsatisfiable

4. ¬(𝑡 = 𝑠) Satisfiable, Falsifiable

Give examples of interpretations to support your claims

Truth Of a Formula: Additional Remarks

• Connectives work as in Propositional Logic.
– Once we evaluate atoms, we essentially have the truth value of a

propositional formula.

• To capture the intuitive meaning of quantification we

use assignments.

Example of First-Order Formulae

Alphabet and Domain

• Funcs = {Arethi/0, Bob/0, Dep1/0, Dep2/0}

• Preds = {Employee/1, Department/1, Works/2, Directs/2}

• Δ𝐼 = {𝑎, 𝑏, 𝑐, 𝑑1, 𝑑2}

• Observe: None of the constants are in Δ𝐼.

Some Questions

• Is Dep1 a department or an employee?

• Can a constant be an object?

Some Questions

• Is Dep1 a department or an employee?

– Not necessarily. Depends on the interpretations.

• Can a constant be an object?

– Only if we assume to have the same object in the domain!

Interpretation: Functions

• Funcs = {Arethi/0, Bob/0, Dep1/0, Dep2/0}

– Δ𝐼 = {𝑎, 𝑏, 𝑐, 𝑑1, 𝑑2}

– Arethi𝐼 = 𝑎

– Bob𝐼 = 𝑏

– Dep1𝐼 = 𝑑1

– Dep2𝐼 = 𝑑2

• Observe: we have no function for 𝑐!

Interpretation: Predicates

Preds = { Employee/1, Department/1, Works/2, Directs/2}

– Δ𝐼 = {𝑎, 𝑏, 𝑐, 𝑑1, 𝑑2}

– 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝐼 = {𝑎, 𝑏, 𝑐}

– 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝐼 = {𝑑1, 𝑑2}

– 𝑊𝑜𝑟𝑘𝑠𝐼 = {(𝑎, 𝑑1), (𝑏, 𝑑2), (𝑐, 𝑑1)}

– 𝐷𝑖𝑟𝑒𝑐𝑡𝑠𝐼 = {(𝑎, 𝑑1), (𝑐, 𝑑1), (𝑐, 𝑑2)}

Observe: 𝑐 takes part to the interpretation of predicates!

Exercise

Assume an assignment 𝛼 𝑥 = 𝑎.

Which of the following formulae are true in 𝐼, 𝛼 ?

1. 𝑥 = 𝐴𝑟𝑒𝑡ℎ𝑖 ∨ (𝑥 = 𝐵𝑜𝑏)

2. 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 𝐴𝑟𝑒𝑡ℎ𝑖 ∧ 𝑊𝑜𝑟𝑘𝑠 𝐴𝑟𝑒𝑡ℎ𝑖, 𝐷𝑒𝑝1

3. ∃𝑥. 𝐷𝑖𝑟𝑒𝑐𝑡𝑠(𝑥, 𝐷𝑒𝑝2)

4. ∀𝑥. 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 𝑥 → ¬𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 𝑥

5. ∀𝑥. ∀𝑦. ∀𝑧. Directs x, y ∧ 𝐷𝑖𝑟𝑒𝑐𝑡𝑠 𝑥, 𝑧 → 𝑦 = 𝑧

Exercise: Solution

Assume the assignment 𝛼 𝑥 = 𝑎.

• 𝑥 = 𝐴𝑟𝑒𝑡ℎ𝑖 ∨ (𝑥 = 𝐵𝑜𝑏)

• ො𝛼 𝐴𝑟𝑒𝑡ℎ𝑖 = 𝑎

• ො𝛼(𝐵𝑜𝑏) = 𝑏

We can conclude that the formula is true.

Observe, this depends on the assignment → Consider for instance a

different assignment 𝛽 𝑥 = 𝑑1

Exercise: Solution

Assume the assignment 𝛼 𝑥 = 𝑎.

• 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 𝐴𝑟𝑒𝑡ℎ𝑖 ∧ 𝑊𝑜𝑟𝑘𝑠 𝐴𝑟𝑒𝑡ℎ𝑖, 𝐷𝑒𝑝1

• ො𝛼 𝐴𝑟𝑒𝑡ℎ𝑖 = 𝑎

• ො𝛼(𝐷𝑒𝑝1) = 𝑑1

• 𝑎 ∈ 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝐼 and (𝑎, 𝑑1) ∈ 𝑊𝑜𝑟𝑘𝑠𝐼

We can conclude that the formula is true.

Observe, this holds for every assignment (we have no variables)!

Exercise: Solution

Assume the assignment 𝛼 𝑥 = 𝑎.

• ∃𝑥. 𝐷𝑖𝑟𝑒𝑐𝑡𝑠(𝑥, 𝐷𝑒𝑝2) is true if for some 𝑜 ∈ Δ𝐼 we have

𝐼, 𝛼 𝑥 = 𝑜 ⊨ 𝐷𝑖𝑟𝑒𝑐𝑡𝑠 𝑥, 𝐷𝑒𝑝2

• Since 𝐼, 𝛼 𝑥 = 𝑐 ⊨ 𝐷𝑖𝑟𝑒𝑐𝑡𝑠 𝑥, 𝐷𝑒𝑝2 , since we have that

Dep2𝐼 = 𝑑2 and (𝑐, 𝑑2) ∈ 𝐷𝑖𝑟𝑒𝑐𝑡𝑠𝐼 we can conclude that the

formula is true.

Observe: the original assignment for 𝒙 does not really matter.

Exercise: Solution

Assume the assignment 𝛼 𝑥 = 𝑎.

▪ ∀𝑥. 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 𝑥 → ¬𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 𝑥 is true if for every 𝑜 ∈ Δ𝐼

we have:

𝐼, 𝛼 𝑥 = 𝑜 ⊨ 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 𝑥 → ¬𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 𝑥

▪ This is the case, therefore the formula is true.

Intuitively, the formula requires that the two sets are disjoint.

Exercise: Solution

Assume the assignment 𝛼 𝑥 = 𝑎.

• ∀𝑥. ∀𝑦. ∀𝑧. Directs x, y ∧ Directs 𝑥, 𝑧 → 𝑦 = 𝑧 is true if for every

𝑜, 𝑜′, 𝑜′′ ∈ Δ𝐼 we have:

𝐼, 𝛼 𝑥 = 𝑜 𝑦 = 𝑜′ 𝑧 = 𝑜′′ ⊨ Directs x, y ∧ Directs 𝑥, 𝑧 → 𝑦 = 𝑧

• This is not the case for 𝛼 𝑥 = 𝑐 𝑦 = 𝑑1 𝑧 = 𝑑2 . So, the formula

is false!

Intuitively, the formula is a key constraint (see Database course)

Consequence and Equivalence

Implication and Equivalence

Let 𝜑,𝜓 be two FOL formulae. We have that:

• 𝜑 implies 𝜓 (written 𝝋 ⊨ 𝝍) if for every 𝐼, 𝛼 s.t. 𝐼, 𝛼 ⊨ 𝜑 we have 𝐼, 𝛼 ⊨ 𝜓

• 𝜑 is equivalent to 𝜓 (𝝋 ≡ 𝝍) if for every 𝐼, 𝛼, we have that 𝐼, 𝛼 ⊨ 𝜑 if and

only if 𝐼, 𝛼 ⊨ 𝜓

We can extend implication and equivalence to logical theories (finite sets

of logical formulae) in the natural way.

Useful Equivalences

Some useful equivalences for FOL Formulae

‒ De Morgan’s Law 1: ¬ (𝜑 ∧ 𝜓) ≡ (¬𝜑 ∨ ¬𝜓)

‒ De Morgan’s Law 2: ¬ (𝜑 ∨ 𝜓) ≡ (¬𝜑 ∧ ¬𝜓)

‒ Double Negation: ¬¬ 𝜑 ≡ 𝜑

‒ Negation of Existential: ¬∃𝑥. 𝜑 ≡ ∀𝑥.¬𝜑

‒ Negation of Universal: ¬∀𝑥. 𝜑 ≡ ∃𝑥.¬𝜑

Exercise

Prove De Morgan’s Law 1 and the law of double negation.

Exercise: Solution

Prove De Morgan’s Law 1 and the law of double negation.

De Morgan’s Law 1: ¬ (𝜑 ∧ 𝜓) ≡ (¬𝜑 ∨ ¬𝜓)

Proof: We prove the claim showing the truth tables.

Truth table ¬ (𝜑 ∧ 𝜓) Truth table (¬𝜑 ∨ ¬𝜓)

• 𝜑 = true, 𝜓 = true. false false

• 𝜑 = true, 𝜓 = false true true

• 𝜑 = false, 𝜓 = true true true

• 𝜑 = false, 𝜓 = false true true

Exercise: Solution

Prove De Morgan’s Law 1 and the law of double negation.

Double Negation: ¬¬ 𝜑 ≡ 𝜑

Proof: We prove the claim showing the truth tables.

Truth table 𝜑 Truth table ¬¬𝜑

• 𝜑 = false false false

• 𝜑 = true true true

Exercise

Prove Negation of Existential

¬∃𝑥. 𝜑 ≡ ∀𝑥.¬𝜑

Exercise

Prove Negation of Existential

¬∃𝑥. 𝜑 ≡ ∀𝑥.¬𝜑

Proof: If 𝐼, 𝛼 ⊨ ¬∃𝑥. 𝜑 then 𝐼, 𝛼 ⊭∃𝑥. 𝜑. Therefore, 𝐼, 𝛼 𝑥 = 𝑎 ⊨ ¬𝜑, for

every 𝑎 ∈ Δ𝐼 . In turn, this proves that 𝐼, 𝛼 ⊨ ∀𝑥.¬𝜑.

If 𝐼, 𝛼 ⊨ ∀𝑥.¬𝜑, then 𝐼, 𝛼 𝑥 = 𝑎 ⊨ ¬𝜑, for every 𝑎 ∈ Δ𝐼 . In turn, this proves

that 𝐼, 𝛼 ⊭∃𝑥. 𝜑.

Introduction to computational complexity

Computational complexity (1/2)

Computational complexity theory aims to study how difficult it is to solve specific problems.

Complexity theory deals with decision problems: i.e., problems that admit a yes/no answer.

A decision algorithm is an algorithm that computes the correct truth value for each input instance

of a decision problem (The algorithm has to terminate on all inputs):

– input: an instance of the problem

– output: yes or no

A decision problem is decidable if there exists a decision algorithm for it. Otherwise it is

undecidable.

The complexity is measured in terms of the amount of resources (time, space) that the algorithm

needs to solve the problem (complexity of the algorithm, or upper bound).

To measure the complexity of the problem, we consider the best possible algorithm that solves it

(lower bound).

Computational complexity (2/2)

Worst-case complexity analysis: the complexity is measured in terms of a (complexity)

function f:

• argument: the size n of an instance of the problem

• result: the amount f(n) of time/space needed in the worst-case to solve an instance of

size n

To abstract away from contingent issues (e.g., programming language, processor speed,

etc.), we refer to an abstract computing model: Turing Machines (TMs).

Usually one does not consider specific complexity functions f, but rather families C of

complexity functions, giving rise to complexity classes.

Definition: A time/space complexity class C is the set of all problems P such that an

instance of P of size n can be solved in time/space at most C(n).

Reductions

To establish lower bounds on the complexity of problems, we make use of the

notion of reduction:

• Definition: A reduction from a problem P1 to a problem P2 is a function R

from instances of P1 to instances of P2 such that:

– R is efficiently computable (typically in logarithmic space), and

– An instance I of P1 has answer yes if and only if R(I) has answer yes.

We say that P1 reduces to P2 if there is a reduction R from P1 to P2.

• Intuition: If P1 reduces to P2, then P2 is at least as difficult as P1, since we

can solve an instance I of P1 by reducing it to the instance R(I) of P2 and then

solve R(I).

Hardness and Completeness

If we can provide an algorithm that solve a problem P of size n by using at most

C(n) time\space, than we can prove the membership of P to the class C (the

upper-bound)

To provide a lower-bound we need to refer to the notion of hardness:

• Definition: A problem P is hard for a complexity class C if every problem in C

can be reduced to P.

If we have both, we show the completeness w.r.t. a complexity class

• Definition: A problem P is complete for a complexity class C if it is hard for C,

and it belongs to C (membership to C)

Intuitively, a problem that is complete for C is among the hardest problems in C.

Tractability and intractability: PTime and NP

Definition: PTime is the set of problems solvable in polynomial time by a

deterministic TM.

• These problems are considered tractable, i.e., solvable for large inputs.

Definition: NP is the set of problems solvable in polynomial time by a non-

deterministic TM.

• These problems are believed intractable, i.e., unsolvable for large inputs.

• The best known actual algorithms actually require exponential time.

• Corresponds to a large class of practical problems, for which the following type

of algorithm can be used:

1. Non-deterministically guess a possible solution of polynomial size.

2. Check in polynomial time that the guessed solutions is good.

Complement of problems in NP: coNP

Definition: coNP is the set of problems whose complement is in NP, i.e.,

problems for which determining whether an instance admits a no answer is in NP.

For problems whose complexity is characterized in terms of a non-deterministic

TM, solving the problem and solving its complement might be different.

The reason for this is that a yes answer is returned if there exists a non-

deterministic computation-path of the TM that leads to acceptance. Instead, a no

answer requires that all non-deterministic computation-paths of the TM lead to

rejection.

Specifically, coNP is believed to be different from both NP and PTime.

Complexity classes above NP

Definition: PSpace is the set of problems solvable in polynomial space by a

deterministic TM.

• Polynomial space is "not really good", since these problems may require

exponential time. Indeed, these problems are believed to be more difficult than

NP problems.

Definition: ExpTime is the set of problems solvable in exponential time by a

deterministic TM.

• These problems are considered to be very difficult.

Definition: NExpTime is the set of problems solvable in exponential time by a

non-deterministic TM.

Complexity classes below PTime

Definition: LogSpace (NLogSpace) is the set of problems solvable in logarithmic

space by a (non-)deterministic TM.

• Note: when measuring the space complexity, the size of the input does not

count, and only the working memory (TM tape) is considered.

Definition: AC0 is the set of problems solvable in constant time using a

polynomial number of processors.

• These problems are solvable efficiently even for very large inputs.

• Corresponds to the complexity of model checking a fixed FO formula when

the input is the model only.

Relationship between the complexity classes

The following relationships are known:

Moreover, we know that:

Complexity of First-Order Logic

Logical Formulae and Logical Theories

In mathematics, logic is used mostly to describe a set of “relevant”

interpretations and prove theorems on these interpretations.

We define a logical theory, i.e., a finite set of logical formulae.

We look at interpretations satisfying the theory

– independently from the chosen assignment

– Interpretations satisfying a theory represent valid possible “worlds”.

We use the formal tools of equivalence and implication to prove our statements.

Implication and Equivalence (recap)

Let 𝜑,𝜓 be two FOL formulae,

• 𝜑 implies 𝜓 (𝜑 ⊨ 𝜓) if for every 𝐼, 𝛼 s.t. 𝐼, 𝛼 ⊨ 𝜑 we have 𝐼, 𝛼 ⊨ 𝜓

• 𝜑 is equivalent to 𝜓 (𝜑 ≡ 𝜓) if for every 𝐼, 𝛼, we have that 𝐼, 𝛼 ⊨ 𝜑 if and

only if 𝐼, 𝛼 ⊨ 𝜓

An Example of FOL Theory

Logical Tasks: Complexity

• Validity: check whether a FOL formula is valid.

• Satisfiability: check whether a FOL formula is satisfiable.

• Implication: Check whether 𝜑 ⊨ 𝜓, for input FOL formulae 𝜑,𝜓.

Logical Tasks: Complexity

• Validity: check whether a FOL formula is valid.

– Undecidable

• Satisfiability: check whether a FOL formula is satisfiable.

– Undecidable

• Implication: Check whether 𝜑 ⊨ 𝜓, for input FOL formulae 𝜑,𝜓.
– Undecidable

Unfortunately, in general none of the problems above is decidable.

Complexity of Propositional Logic

Truth and Falsity

Assume a propositional formula 𝑓.

• 𝑓 is called satisfiable if 𝐼(𝑓) = true, for some propositional interpretation I.

• 𝑓 is called valid (tautology) if 𝐼(𝑓) = true, for every propositional interpretation I.

• 𝑓 is called falsifiable if 𝐼(𝑓) = false, for some propositional interpretation I.

• 𝑓 is called unsatisfiable if 𝐼(𝑓) = false, for every propositional interpretation I.

Computational Complexity: Upper Bounds

• Checking whether a propositional formula f is satisfiable is in NP.

– Guess an interpretation I (for the variables in f).

– Check whether the I(f) = true.

• Checking whether a propositional formula f is unsatisfiable is in coNP.

– Guess an interpretation I (for the variables in f).

– Check whether the I(f) = true.

• Checking whether a propositional formula f is falsifiable is in NP.

– Guess an interpretation I (for the variables in f).

– Check whether the I(f) = false.

• Checking whether a propositional formula f is valid is in coNP.

– Guess an interpretation I (for the variables in f).

– Check whether the I(f) = false.

Normal Forms

• A propositional formula f is in n conjunctive normal form (n-CNF) if

– f = (l11 ∨ l12 ∨ … ∨ l1n) ∧ …. ∧ (lm1 ∨ lm2 ∨ … ∨ lmn)

– Where each lij is either an atom or its negation.

– Every propositional formula has an equivalent formula in 3-CNF

– However, the equivalent may be exponentially larger.

• A propositional formula f is in n disjunctive normal form (n-DNF) if

– f = (l11∧ l12∧ …∧ l1n) ∨ …. ∨ (lm1 ∧ lm2 ∧ … ∧ lmn)

– Where each lij is either an atom or its negation.

– Every propositional formula has an equivalent formula in 3-DNF

– However, the equivalent may be exponentially larger.

Computational Complexity: Lower Bounds

• Checking whether a propositional formula is satisfiable is NP-Hard.

– Even for formulae in 3-CNF

• Checking whether a propositional formula is unsatisfiable is coNP-Hard.

– Even for formulae in 3-DNF

• Checking whether a propositional formula is falsifiable is NP-hard.

– Even for formulae in 3-DNF.

• Checking whether a propositional formula is valid is in coNP-Hard.

– Even for formulae in 3-CNF

Credits

The presentations of this module of the course are based on the

original slides of Prof. Giuseppe De Giacomo, Prof. Diego

Calvanese, Prof. Marco Console, Prof. Maurizio Lenzerini, and Prof.

Domenico Lembo.

