

Netfilter & Packet Dropping

 Netfilter provides a set of hooks is several
points of the kernel network stack.

 The hooks can be exploited to define custom
functions for manipulating IP packets
 Dropping
 Manipulation of header fields
 Etc.

 The hooks are triggered by the kernel after the
execution of the functions that implement the
network procedures

Netfilter Architecture

 An incoming IP packet travels in the kernel
following a path

Netfilter Architecture

 Kernel path for incoming packets

1.Sanity checks (i.e., not truncated, IP checksum OK,
etc)

2.Routing decision (it decides whether the packet is
destined for another interface, or a local process)
 Local process: the netfilter framework is called again for

the NF_IP_LOCAL_IN hook
 Another interface: the netfilter framework is called for

the NF_IP_FORWARD hook

3.Final step (the packet passes a final netfilter hook the
NF_IP_POST_ROUTING hook)

Netfilter Architecture

 When a hook is triggered, a customized function can
manipulate the packet content

 Kernel modules can register to listen at any of the
hooks described in the previous slide

 After manipulating a packet, the module returns a
code to the claling function:
 NF_ACCEPT: continue traversal as normal
 NF_DROP: drop the packet; don't continue traversal
 NF_STOLEN: stole the packet from the path
 NF_QUEUE: queue the packet (for userspace handling)
 NF_REPEAT: call this hook again

Netfilter & Iptables

 The iptables tool has been developed over the
netfilter framework

 Kernel modules can register a new table, and
ask for a packet to traverse a given table

 Hooks registered with netfilter

Prerouting Forwarding Postrouting

Conntrack Mangle Mangle

Mangle Src NAT

Dst NAT Filter Conntrack

QDisc

Registration of filtering functions

 Structure containing the function handle:

static struct nf_hook_ops netfilter_ops_pre;

 Customized attributes of the hook:

netfilter_ops_pre.hook = hook_pre_routing;

netfilter_ops_pre.pf = PF_INET;

netfilter_ops_pre.hooknum = NF_INET_PRE_ROUTING;

netfilter_ops_pre.priority = NF_IP_PRI_FIRST;

Registration of the hook

ret = nf_register_hook(&netfilter_ops_pre);

Registration of filtering functions

 hook_pre_routing is the function implementing the
packet filtering

 PF_INET: Internet Protocol Family

 NF_INET_PRE_ROUTING: the function is triggered
before the routing decision

 NF_IP_PRI_FIRST: the registered function has the
highest priority of execution

 The unregistration is performed using the following
function:

nf_unregister_hook(&netfilter_ops_pre);

Kernel Modules

 The kernel module implementing the filtering function
needs to be cross-compiled for the um architecture

 The Makefile is very similar to the Makefile used to
compile kernel modules

 In addition to indicating the directory which contains
the headers and the objects of the Netkit kernel, it is
necessary to define the architectures of the host and
target machines
 ARCH=um
 SUBARCH=i386

Kernel Modules

 Makefile for the pkt_drop module

obj-m += pkt_drop.o

KERNELPATH="path/to/kernel/src"

all:

make -C $(KERNELPATH) M=$(shell pwd) ARCH=um
SUBARCH=i386 modules

clean:

make -C $(KERNELPATH) M=$(shell pwd) ARCH=um
SUBARCH=i386 clean

Example

 Packet dropping:
 A simple linux kernel module which defines a

function that drops data packets before performing
the routing decision.

 The function is registerd as a PREROUTING hook
 Note that some of the auxiliary functions defined by

the kernel to access the header fields may NOT
work

 See the code pkt_drop.c

Example

pc1

r1 r2

pc2

Collision Domain ”A”
172.20.0.0/16

Collision Domain ”B”
10.0.0.0/8

Collision Domain ”C”
11.0.0.0/8

Example

 The command insmod is usually used to load kernel
modules

insmod pkt_drop.ko drop_deg=5

(5 out of 10 ICMP echo reqs will be discarded)
 The command rmmod is usually used to unload

kernel modules

rmmod pkt_drop
 modprobe is an alternative command to load and

unload modules
 modprobe -i pkt_drop.ko drop_deg=5
 modprobe -r pkt_drop.ko

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

